

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

EC8711 EMBEDDED LABORATORY

Semester - 07

LABORATORY MANUAL

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Vision

To excel in providing value based education in the field of Electronics and
Communication Engineering, keeping in pace with the latest technical developments
through commendable research, to raise the intellectual competence to match global
standards and to make significant contributions to the society upholding the ethical
standards.

Mission

 To deliver Quality Technical Education, with an equal emphasis on theoretical
and practical aspects.

 To provide state of the art infrastructure for the students and faculty to upgrade
their skills and knowledge.

 To create an open and conducive environment for faculty and students to carry
out research and excel in their field of specialization.

 To focus especially on innovation and development of technologies that is
sustainable and inclusive, and thus benefits all sections of the society.

 To establish a strong Industry Academic Collaboration for teaching and research,
that could foster entrepreneurship and innovation in knowledge exchange.

 To produce quality Engineers who uphold and advance the integrity, honour and
dignity of the engineering.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

1. To provide the students with a strong foundation in the required sciences in order
to pursue studies in Electronics and Communication Engineering.

2. To gain adequate knowledge to become good professional in electronic and
communication engineering associated industries, higher education and
research.

3. To develop attitude in lifelong learning, applying and adapting new ideas and
technologies as their field evolves.

4. To prepare students to critically analyze existing literature in an area of
specialization and ethically develop innovative and research oriented
methodologies to solve the problems identified.

5. To inculcate in the students a professional and ethical attitude and an ability to
visualize the engineering issues in a broader social context.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1: Design, develop and analyze electronic systems through application of relevant

electronics, mathematics and engineering principles.

PSO2: Design, develop and analyze communication systems through application of

fundamentals from communication principles, signal processing, and RF System Design
& Electromagnetics.

PSO3: Adapt to emerging electronics and communication technologies and develop
innovative solutions for existing and newer problems.

SYLLABUS

EC8711-Embedded Lab L T P C

0 0 4 2

Course Objective:

The student should be made to:

 Learn the working of ARM processor

 Understand the Building Blocks of Embedded Systems

 Learn the concept of memory map and memory interface

 Write programs to interface memory, I/Os with processor

 Study the interrupt performance

List of Experiments:

1. Study of ARM evaluation system

2. Interfacing ADC and DAC.

3. Interfacing LED and PWM.

4. Interfacing real time clock and serial port.

5. Interfacing keyboard and LCD.

6. Interfacing EPROM and interrupt.

7. Mailbox.

8. Interrupt performance characteristics of ARM and FPGA.

9. Flashing of LEDS.

10. Interfacing stepper motor and temperature sensor.

11. Implementing zigbee protocol with ARM.

Course Outcome:

At the end of the course, the student should be able to:

 Write programs in ARM for a specific Application

 Interface memory, A/D and D/A convertors with ARM system

 Analyze the performance of interrupt

 Write program for interfacing keyboard, display, motor and sensor.

 Formulate a mini project using embedded system

TOTAL: 60 PERIODS

LIST OF EXPERIMENTS

Expt.

No.
Title of the Experiment

Page

No.

1

Study of ARM evaluation system

1

2 Interfacing ADC and DAC. 7

3 Interfacing LED and PWM. 15

4 Interfacing real time clock and serial port. 18

5 Interfacing keyboard and LCD. 24

6 Interfacing EPROM and interrupt. 35

7 Mailbox. 43

8 Interrupt performance characteristics of ARM and FPGA. 58

9 Flashing of LEDS. 69

10 Interfacing stepper motor and temperature sensor. 71

11 Implementing zigbee protocol with ARM. 78

Topic Beyond The Syllabus

12 Simulation using Proteus Software.- An Introduction 84

13

Simulation of calculator using 8051 microcontroller in Proteus

software

95

1

1. Study of ARM Evaluation System

Aim

To learn about the evolution, core features, general characteristics and applications of ARM

processors.

Pre Lab Questions

1. What is an embedded system?

2. Mention the difference between microprocessor and microcontroller.

3. Enumerate the terms object oriented and object based language

4. Define Pipelining.

5. List the basic units of Microprocessor

Theory

The LPC2148 microcontrollers are based on a 32/16 bit ARM7TDMI-S CPU with real-

time emulation and embedded trace support, that combines the microcontroller with embedded

high speed flash memory ranging from 32 kB to 512 kB. A 128-bit wide memory interface and

unique accelerator architecture enable 32-bit code execution at the maximum clock rate. For

critical code size applications, the alternative 16- bit Thumb mode reduces code by more than 30

% with minimal performance penalty.

Due to their tiny size and low power consumption, LPC2148 are ideal for applications

where miniaturization is a key requirement, such as access control and point- of-sale. A blend of

serial communications interfaces ranging from a USB 2.0 Full Speed device, multiple UARTS,

SPI, SSP to I2C s and on-chip SRAM of 8 kb up to 40 kb, make these devices very well suited

for communication gateways and protocol converters, soft modems, voice recognition and low

end imaging, providing both large buffer size and high processing power. Various 32-bit timers,

single or dual 10-bit ADC(s), 10-bit DAC, PWM channels and 45 fast GPIO lines with up to nine

edge or level sensitive external interrupt pins make these microcontrollers particularly suitable for

industrial control and medical systems.

2

LPC2148 specification

Features:

16/32-bit ARM7TDMI-S microcontroller in a tiny LQFP64package.

8 to 40 KB of on-chip static RAM and 32 to 512kB of on-chip flash Program memory.

128 bit wide interface/accelerator enables high speed 60 MHz operation.

In-System/In-Application Programming(ISP/IAP)via on-chip boot- loader software. Single

flash sector or full chip erase in 400ms and programming of 256 bytes in 1 ms.

Embedded ICE RT and Embedded Trace interfaces offer real-time debugging with the on-

chip Real Monitor software and high speed tracing of instruction execution.

USB 2.0 Full Speed compliant Device Controller with 2 kb of endpoint RAM. In addition, the

LPC2146/8 provide 8 kb of on-chip RAM accessible to USB by DMA.

One or two (LPC2141/2 vs. LPC2144/6/8) 10-bit A/D converters provide a

o total of 6/14 analog inputs, with conversion times as low as 2.44μsper channel.

Single 10-bit D/A converter provide variable analog output.

Two 32-bit timers/external event counters (with four capture and four compare channels

each), PWM unit (six outputs) and watchdog.

Low power real-time clock with independent power and dedicated 32kHz Clock input.

Multiple serial interfaces including two UARTs (16C550), two Fast I2C -bus (400 kbit/s),

SPI and SSP with buffering and variable data length capabilities.

Vectored interrupt controller with configurable priorities and vector addresses.

3

Up to 45 of 5 V tolerant fast general purpose I/O pins in a tinyLQFP64 package.

Up to nine edge or level sensitive external interrupt pins

available.

60 MHz maximum CPU clock available from programmable on-chip PLL with settling time of

100μs.

On-chip integrated oscillator operates with an external crystal in range from 1MHz to 30 MHz and

with an external oscillator up to 50MHz.

Power saving modes include Idle and Power-down.

Individual enable/disable of peripheral functions as well as peripheral clock scaling for additional

power optimization.

Processor wake-up from Power-down mode via external interrupt, USB, Brown-Out Detect

(BOD) or Real-Time Clock(RTC).

Single power supply chip with Power-On Reset (POR) and BOD circuits:

- CPU operating voltage range of 3.0 V to 3.6 V (3.3 V ± 10 %)with 5V tolerant

I/O pads.

4

Pin Configuration:

For further studies about LPC2148 specification refer NXP’s website to download LPC2148

user manual.

5

APPENDIX-II: CONNECTORS & CONNECTION DETAILS

Type Label Description

26 Pin FRC CON1 For GPIO

20 Pin FRC CON2 For JTAG

DB9 CON3 UART0

DB9 CON4 UART1

3 Pin RMC CON5 PWM output

6 Pin RMC CON6 ADC input

3 Pin RMC CON7 DAC output from OPAMP

3 Pin RMC CON8 Temperature sensor input

16 Pin RMC CON9 LCD Display

Power jack C10 Power input

PS2 CON11 Keyboard interface

Connections Details for 26 pin FRC:

Connection Details for LCD(16 pin RMC):

6

Connection Details for JTAG(20 pin FRC):

Post Lab Questions

1. What is the difference between embedded systems and the system in which rtos is running?

2. Discuss about semaphore.

3. What are the instructions used to access the memory in ARM?

4. Mention the characteristics of RISK Instruction.

5. Define Interrupt.

Result
The evolution, core features, general characteristics and the applications of ARM processors has

been studied and is evaluated.

7

2. INTERFACING ADC & DAC

Aim

To develop a C-Language program for reading an on-chip ADC, convert into decimal

and to display it in PC and to generate a square wave depending on this ADC reading. The ADC

input is connected to any analog sensor/ on board potentiometer.

Pre Lab Questions

1. List the types of ADC and DAC

2. Define resolution.

3. Summarize the features of Conversion time in ADC.

4, What is the function of Sample-and-hold circuits in analog-to digital converters?

5. Why are internal ADCs preferred over external ADCs?

Apparatus & Software Required

1. LPC2148 Development board.

2. KeilµVision 5 software.

3. Flash Magic.

4. USB cable.

5. CRO.

Theory

The LPC 2148 has 10-bit successive approximation analog to digital converter. Basic clocking

for the A/D converters is provided by the VPB clock. A programmable divider is included in

each converter, to scale this clock to the 4.5 MHz (max) clock needed by the successive

approximation process. A fully accurate conversion requires 11 of these clocks. The ADC cell

can measure the voltage on any of the ADC input signals.

ARM Board has one potentiometer for working with A/D Converter. Potentiometer outputs are

in the range of 0V to 3.3V. Switch select in right position for reading the Potentiometer value

by ADC.

8

Procedure

1. Follow the steps to create a New project

2. Type the below code and save it with the name (anyname.c)

3. Follow the steps to create a New Project to compile and build the program

4. Follow the procedures in to download your Hex code to processor using Flash

Magic Software.

9

MAIN ADC TEST

/**/
/* This is a test program to ADC in theARMLPC2148 developmentboard*/

/**/

#include<LPC214x.H> /* LPC214x definitions*/

#include"ADC_Driver.c" /* contains prototypes of driverfunctions*/ #include"lcd.c"

#include <stdio.h>

int main (void)

{

unsigned int adc_val;

unsigned int temp;

unsigned char buf[4] ={0,0,0,0}; ADCInit();

lcdinit();

//wait();
clrscr(10);

printstr("ADC Test",0,0); wait();

while(1) /* Loop forever*/

{

adc_val = ADC_ReadChannel();
temp = (unsigned int)((3*adc_val*100)/1024);

sprintf(buf,"%d",temp);

printstr(buf,0,1);

}

}

/***/

LCD.C

/**/

#include <LPC214x.h>

#defineRS 0x00000400 /* P0.10 */

#defineCE 0x00001800 /* P1.11*/

void clrscr(char ch); void

lcdinit(void); void

lcdcmd(char); void

lcddat(char);

void gotoxy(char,char); //x,y ; x-char position(0 - 16) y-line number 0 or1 void

printstr(unsignedchar*,char,char); //string,column(x),line(y)
void wait (void);

void split_numbers(unsigned int number);

#define SET1

#define OFF0

unsigned int thousands,hundreds,tens,ones;

10

voidwait(void)

{ /* wait function */

int d;
for (d = 0; d <100000;d++); /* only to delay for LED flashes*/

}

void lcdinit()
{

IODIR0 |= 0xFFFFFFFF;

IOCLR0 |= 0X00000FFF;

lcdcmd(0x28);lcd

cmd(0x28);

lcdcmd(0x0c);

lcdcmd(0x06);

lcdcmd(0x01);

lcdcmd(0x0f);

wait();
}

void gotoxy(char x, char y)

{
if(y == 0)

lcdcmd(0x80+x);

else

lcdcmd(0xc0+x);

}

void printstr(unsigned char *str, char x, char y)

{

char i; gotoxy(x,y);

wait();//(500);

for(i=0;str[i]!='\0';i++)lcddat(str[i

]);

}

void lcdcmd(charcmd)

{

unsigned charLCDDAT;

LCDDAT = (cmd&0xf0); //higher nibble

IOSET0 =LCDDAT;

IOCLR0 = RS;

IOSET0 = CE;

wait();//(100); //enablelcd

IOCLR0 = CE;

IOCLR0 = 0X00000FFF;

LCDDAT = ((cmd<<0x04)&0xf0); //lower nibble

IOSET0 =LCDDAT;

IOCLR0 = RS;

IOSET0 = CE;

wait();//(100); //enablelcd
IOCLR0 = CE;

IOCLR0 = 0X00000FFF;

}

void lcddat(char cmd)

11

{

unsigned charLCDDAT;

LCDDAT = (cmd&0xf0); //higher nibble

IOSET0 =LCDDAT;

IOSET0 = RS;

IOSET0 = CE;

wait();//(100); //enablelcd
IOCLR0 = CE;

IOCLR0 = 0X00000FFF;

LCDDAT = ((cmd<<0x04)&0xf0); //lower nibble

IOSET0 =LCDDAT;
IOSET0 = RS;

IOSET0 =CE;

wait();//(100); //enable lcd

IOCLR0 =CE;

IOCLR0 = 0X00000FFF;

}

void clrscr(char ch)

{

if(ch==0)

{

printstr(" ",0,0);
gotoxy(0,0);

}

else if(ch == 1)

{

printstr(" ",0,1);

gotoxy(0,1);

}

else

{

}

}

lcdcmd(0x01);

//delay(100);

void split_numbers(unsigned int number)
{

thousands = (number /1000);

number %= 1000;

hundreds = (number / 100);

number %= 100;

tens = (number / 10);

number %= 10;

ones = number ;
}

void Wait_Msg(void)

{

lcdcmd(0x01);

printstr(" Please Wait ", 0,0);

}

void Welcome_Msg(void)
{

lcdcmd(0x01);

printstr(" Welcometo ", 0,0);

printstr(" SMMICRRO ", 0,1);

}

12

/***/

ADC_ DRIVER.C

/**/

#include<LPC214x.H> /* LPC214x definitions */

Void ADCInit(void)

{

PINSEL1|=0x04000000; /*For Channel AD0.2 is P0.29*/

IODIR0 |=~(0x04000000);

AD0CR |=0x00200204; /*0x04 selects AD0.2 to mux output, 0x20 makes ADCin operational*/

AD0GDR; /*A read on AD0GDR clears the DONEbit*/

}

void ADC_StartConversion(void)

{

AD0CR |= (1<<24);

}

void ADC_StopConversion(void)

{

AD0CR &= (~ (1<<24));

}

unsigned int ADC_ReadChannel(void)

{
// unsigned int i; unsigned long

ADC_Val, t;

ADC_StartConversion();

while((AD0DR2&0x80000000)==0); /*wait until ADC conversion completes*/

if(AD0STAT & 0x00000400)

{
//printstr("OVR",0,1);return(

0);

}

t = AD0DR2;
ADC_Val = ((t>>6) & 0x000003FF);//(AD0DR2 & 0x000003FF); //((AD0CR>>6) & 0x000003FF);

//ADC_StopConversion();retur

n(ADC_Val);

ADC PROGRAM PORT DETAILS

ARM DETAILS

P0.29 ADC0.2

PO.10 RS LCD PIN

P1.11 CE LCD PIN

13

DAC PROGRAM

/**/ DAC.C

/**/
This is a test program to DAC in the ARM LPC2148 Development board

/**/

#include<LPC214X.H>

void wait_long (void)

{ /* wait function*/

int d;
for (d = 0; d <1000000;d++); /* only to delay*/

}

int main()
{

wait_long();wai

t_long();

IODIR0 = 0X00000FFF;

IODIR1 = 0XFFFF0000;

IOSET0 = 0XFFFFFFFF;

IOCLR1 = 0XFFFF0000;

PINSEL1 |= 0x00080000; //Enablepin0.25 asDAC

DACR=0X00017FC0; // 000 = 0V (min),7FC = 1.6V,7FF =3.3V(max)

While (1);

}

DAC PROGRAM PORT DETAILS

ARM DETAILS

P0.25 DAC ENABLE PIN

14

Post Lab Questions

1. What are the ADC operating modes in LPC2148?

2. What is the function of A/D Status Register

3. Which pin provides a voltage reference level for the D/A converter?

4. What is Burst conversion mode?

5. What is settling time?

Result :

The C-Language program for reading an on-chip ADC, convert into decimal and to display

it in PC was written & output is verified with the ADC input is connected to on board

potentiometer

The DAC, convert digital data into analog signal& output is verified with the DAC input and

the square wave has been generated to display it in CRO.

15

3. INTERFACING LED & PWM

Aim

To write a C program for Switch & L ED to activate LED’s and generate a PWM and to vary

the duty cycle .

Pre Lab Questions

1. What happens if the junction temperature of LED is increased?

2. Mention the principle of PWM.

3. What are the materials used to make LED?

4. What are the types of seven segment display.

5. Differentiate LED from LCD.

Apparatus & Software Required

1. LPC2148 Development board.

2. Keil µVision 5 software.

3. Flash Magic.

4. USB cable.

5. CRO .

Theory

The PWM is based on the standard timer block and inherits all of its features, although only the

PWM function is pinned out on the LPC2148. The timer is designed to count cycles of the

peripheral clock (PCLK) and optionally generate interrupts or perform other actions when

specified timer values occur, based on seven match registers. The PWM function is also based

on match register events.

Procedure

1. Follow the steps to create a New project

2. Type the below code and save it with the name (anyname.c)

3. Follow the steps to create a New Project to compile and build the program

4. Follow the procedures in to download your Hex code to processor using Flash

Magic Software.

16

/**/

SWITCH AND LED PROGRAM
/**/

/* Description: This program gets DIP switch inputs and switches ON corresponding LED
*/

/* P1.16 to P1.31 are output switch */

/**/

#include<LPC214x.H>

int main()

{

IO1DIR=0xFFFF0000; // P1.16 TO P1.31 OUTPUTPIN

while(1)

{

}

IOCLR1 = 0xFFFF0000; // output pin cleared for enable the led

}

SWITCH AND LED PORT DETAILS

ARM DETAILS

P1.16 S&L ENABLE PIN

P1.17 S&L ENABLE PIN

P1.18 S&L ENABLE PIN

P1.19 S&L ENABLE PIN

P1.20 S&L ENABLE PIN

P1.21 S&L ENABLE PIN

P1.22 S&L ENABLE PIN

P1.23 S&L ENABLE PIN

P1.24 S&L ENABLE PIN

P1.25 S&L ENABLE PIN

P1.26 S&L ENABLE PIN

P1.27 S&L ENABLE PIN

P1.28 S&L ENABLE PIN

P1.29 S&L ENABLE PIN

P1.30 S&L ENABLE PIN

P1.31 S&L ENABLE PIN

17

/**/

PWM.C

/**/

/* Place lcd.c file into following directories C:\Keil\ARM\INC\Philips.*/

/* This program is used to Generate the PWM, Frequency and Duty cycle can be changed*/

***/

#include<LPC214x.H>

int main(void

{

PINSEL1 |= 0x00000400;//Enablepin0.7 asPWM2

PWMPR =0x00000100; //Load prescaler (to vary the frequency can modify here)

PWMPCR=0x00002000; //PWM channel single edge control, output enabled

PWMMCR = 0x00000003; //On match with timer reset the counter

/* PWMR0 AND PWMR5 Both Value can change the duty cyle ex : PWMR0 = 10 AND PWMR5 = 2*/

PWMMR0 = 0x00000010; //set cycle rate to sixteen ticks

PWMMR5 = 0x00000008; //set rising edge of PWM2 to 2 ticks

PWMLER = 0x00000021; //enable shadow latch for match 0 - 2

PWMTCR = 0x00000002; //Reset counter and prescaler

PWMTCR = 0x00000009; //enable counter and PWM, release counter fromreset

while(1) // mainloop

{

}

}

PWM PROGRAM PORT DETAIL

ARM DETAILS

P0.7 PWM2

Post Lab Questions

1. How do the variations in an average value get affected by PWM period?

2. Name the common formats available for LED display

3. Why are the pulse width modulated outputs required in most of the applications?

4. How do you determine the duty cycle of the waveform ?

5. What is the function of GPIO?

Result
The C code is generated for Switch & LED and output is verified in LED’s by Switches

The C code is generated for PWM and to vary the duty cycle and verified in CRO output.

18

4. INTERFACING REAL TIME CLOCK PROGRAM

AND SERIAL PORT

Aim

To develop a C-Language program for reading the RTC, convert into decimal and to display

it.

Pre Lab Questions

1. How would you define real time clock?

2. List the applications of real time clock.

3. What is the baud rate of serial port ?

4. Compare serial communication and parallel communication.

5. Enumerate the different modes of communication.

Apparatus & Software Required

1. LPC2148 Development board.

2. KeilµVision 5 software.

3. Flash Magic.

4. USB cable.

5. RS232 Serial cable.

Theory

The Real Time Clock (RTC) is a set of counters for measuring time when system power is on,

and optionally when it is off. It uses little power in Power-down mode. On the LPC2141/2/4/6/8,

the RTC can be clocked by a separate 32.768 KHz oscillator, or by a programmable prescale

divider based on the VPB clock. Also, the RTC is powered by its own power supply

pin,VBAT,which can be connected to a battery or to the same 3.3 V supply used by the rest of

the device.

19

Serial Communication

Serial communication takes a byte of data and transmits the 8 bits in the byte one at a time. The

advantage is that a serial port needs only one wire to transmit the 8 bits (while a parallel port

needs 8). The disadvantage is that it takes 8 times longer to transmit the data than it would if

there were 8 wires. Serial ports lower cable costs and make cables smaller.

Procedure
1. Follow the steps to create a New project

2. Type the below code and save it with the name (anyname.c)

3. Follow the steps to create a New Project to compile and build the program

4. Follow the procedures in to download your Hex code to processor using Flash

Magic Software.

20

/**/

RTC.C

/**/

/* Place lcd.c file into following directories C:\Keil\ARM\INC\Philips.******/

/* This program is used to interface the RTC.You can change the date and time*/

/* If you want. This Program can both Read and write data into RTC.RTC has a*/

/* Battery backup for continuous Running. ************************************/

/*
pclk = 30,000,000 Hz

PREINT = (int)(pclk/32768)-1

PREFRAC = pclk - ((PREINT+1) x 32768)

*/

#include<LPC214X.H>

#include<lcd.c>
int main()
{

unsigned int hrs,min,sec;

wait();

wait();

wait();

wait();

lcdinit();clrs

cr(2);

printstr("SM MICRROSYSTEM",0,0);

printstr(" ARMDEVKIT ",0,1);

VPBDIV = 0x00000002; // VPB bus clock is one half of the processor clock(cclk)

PREINT = 0x00000392; // Set RTC prescaler for 30MHz Pclk

// PREINT = (int) (30,000,000/32768(RTC

crystal))-1 = 914

PREFRAC = 0x00004380;

CIIR=0x00000001; // Enable seconds counterinterrupt

CCR=0x00000001; // Start theRTC

YEAR=2009; // Year

MONTH=11; //Month

DOM=25; // Day of month

DOY=0; // Day ofyear

DOW=0; // Day of week

HOUR=18; //Hours

MIN=30; // Minutes

SEC =30;

printstr(" ",0,1);

while(1)

{

gotoxy(0,1);hrs

= HOUR; min

= MIN; sec =

SEC;

split_numbers(hrs);lcdd

at(tens+0x30);

lcddat(ones+0x30);

lcddat(':');

split_numbers(min);lcd

dat(tens+0x30);

21

PORT INBUILT

lcddat(ones+0x30);

lcddat(':');

split_numbers(sec);lcdd

at(tens+0x30);

lcddat(ones+0x30);

//lcddat(':');

}

}

RTC PROGRAM PORT DETAILS

22

SERIAL PORT PROGRAM

/**/
/* Uart0 Initialization */

/* This is a test program to send and receive data via uart0 in theARMLPC2148 */

Development board itself

/**

#include<LPC214x.H> /* LPC214x definitions*/

#include"uart0.h" /* contains prototypes of driverfunctions*/

int main (void)

{

unsigned char *s1;

initserial(); /* uart0 initialization */

send_string("**");

send_string(" SMMicrroSystem ");

send_string(" Tambaram ");

send_string(" Chennai ");

send_string("**");
send_string("");send_string("");

send_string("This program Echos the string entered byuser."); send_string("So,type

some strings and press ENTERkey");

while(1) /* Loop forever*/

{

s1 = receive_string();

send_string(s1);

}

}

/**/

SERIAL PORT PROGRAM

/**/

/* Uart1 Initialization */

/**/

#include<lpc214x.h>#inc

lude<stdio.h>

#include<stdlib.h>

#include "uart1_driver.c"

int main()

{

unsigned char *a;

//unsigned char *w;

a=malloc(sizeof(100));

inituart1();
sendstring1("ABCDEFGHIJKLMNOPQRSTUVWXYZ");

sendstring1("ABCDEFGHIJKLMNOPQRSTUVWXYZ");

23

sendstring1("ABCDEFGHIJKLMNOPQRSTUVWXYZ");

sendstring1("ABCDEFGHIJKLMNOPQRSTUVWXYZ");

sendstring1("ABCDEFGHIJKLMNOPQRSTUVWXYZ");

/*sendstring1(" * ");

sendstring1(" ** ");

sendstring1(" *** "); s

endstring1(" * *** "); sendstring1(" *

* * * * ");

sendstring1(" SM MICRRO ");

sendstring1(" * * * * * ");

sendstring1(" * *** "); sendstring1("

*** ");

sendstring1(" ** ");

sendstring1(" * "); */

while(1)

{

receivestring1(a);send

string1(a);

}

}

SERIAL PROGRAM

PORTDETAILSUART0

ARM DETAILS

P0.0 TXDO

P0.1 RXDO

UART1
ARM DETAILS

P0.8 TXD1

P0.9 RXD1

Post Lab Questions
1. What is I2C and how does it work?
2. Summarize the features of I2C in LPC2148 ARM7 microcontroller.

3. Through which port the date and time is displayed in RTC?

4. What is a serial port?

5. List the registers used to transfer data in serial port.

Result

The C-Language program for reading RTC and displaying it in LCD was written & output is

verified with running the RTC from a default/specified time.

24

5.INTERFACING KEYBOARD ANDLCD

MATRIX KEYBOARD PROGRAM

Aim

To develop a C-Language program for displaying the Key pressed in the Keypad in the LCD

module. The display should come in the desired line and column.

Pre Lab Questions

1. Mention the function of pull up resistor?

2. Outline the keyboard matrix.

3. Summarize the working principal of LCD.

4. What kind of interrupt is generated if a key has to be operated in an interrupt mode?

5. How many rows and columns are present in a 16 x 2 alphanumeric LCD?

Apparatus & Software Required

1. LPC2148 Development board.

2. KeilµVision 5 software.

3. Flash Magic.

4. USB cable.

Theory

The Matrix keyboard is used to minimize the number of I/O lines. Normally it is possible to

connect only one key or switch with an I/O line. If the number of keys in the system exceeds the

more I/O lines are required. To reduce the number of I/O lines the keys are connected in the

matrix circuit. Keyboards use a matrix with the rows and columns made up of wires. Each key

acts like a switch. When a key is pressed a column wire makes contact with row wire and

completes a circuit. For example 16 keys arranged in a matrix circuit uses only 8 I/O lines.

25

Procedure

1. Follow the steps to create a New project

2. Type the below code and save it with the name (anyname.c)

3. Follow the steps to create a New Project to compile and build the program

4. Follow the procedures in to download your Hex code to processor using Flash

Magic Software.

26

/**/

MAIN.C
/***/

/* Description: This program gets input from Matrix key board and displays

corresponding */

/* Key value in 7segment display. Hence this program demonstratesboth

/ 7 segment display as well as Matrix keyboard./

/* P1.16 to P1.23 are inputs from matrix keyboard,*/

/* P1.24 to P1.31 are outputs to 7 segmentdisplay

*/

/***

****/

/* ------- matrix key boarddescription----------

*/

*/

*/

/**/
#include <LPC214x.h>

#include "mat_7seg.h"

int main()

{

unsigned int key, last_key, Disp_key;
init_Matrix_7seg(); // Initialize matrix keyboard and 7segment dispaly
clearall_7seg(); // clear 7 segmentdisplay

last_key=0; // Initialize this variable to zero

while(1)

{

key=catch_key(); // scan for a valid keypress
if(key!=0) // zero means no key ispressed

{

if(key!=last_key) // check whether the same key is pressed again(assume this as STEP1)

{

/*

/*
*/
/*

row1

--

--| c | ---- | d |--

--

--

--| e |--

--

--

--|F|--

--

--

(SW1,SW2,SW3,SW4)

--

/*
*/

-- -- -- --

/*
*/

row2 --| 8 |-- --| 9 |-- --| A | ---- |b|-- (SW5,SW6,SW7,SW8)

/*
*/

/*
*/

--

--

--

--

--

--

--

--

/*
*/

row3 --| 4 |-- --| 5 |-- --| 6 |-- --|7|-- (SW9,SW10,SW11,SW12)

/*
*/

/*

*/

/*

*/
/*

row4

--

--

--| 0 |-- --| 1 |--

--

--

--

--| 2 |--

--

--

--

--|3|--

--

--

--

(SW13,SW14,SW15,SW16)

--*/

27

Disp_key=key; // valid new key is stored in anothervariable

last_key=key; // this variable's value is used forSTEP1

}
}

//Display_Number(Disp_key); /*this function is used to display number in

decimalformat*/

Alpha_Dispay(4,Disp_key); /*this function is used to display number in hex format

(single digitonly)*/

}

}

/**/

MATRIX SEVEN SEGMENT DRIVER.C

/**/

#include <LPC214x.h>

#include "defs.h"

/*******************************Global

variables**/

unsigned int thousands,hundreds,tens,ones;

/***

******/

void init_Matrix_7seg(void)
{

IODIR1 |= 0xff0f0000; // set 7seg LEDs as output ports and matrix's MSB as

inputs and LSB as outputs

IODIR0|=S7SEG_ENB; // set P0.19 to P0.22 as outputs to drive 7segenable

pins

}

IOPIN0|=S7SEG_ENB; // since we are using active low 7 seg display,the

enable signals

// should be initially set to HIGH.

/***

*******/

unsigned long scan_row(unsigned int row_num)

{

//unsigned int row,i;
unsigned long val;

IOSET1=ROW_MASK; //clear the previous scan row output ie make all row opshigh

switch(row_num)
{

case 1: IOCLR1 = ROW1;break; // make P1.16 low
case 2: IOCLR1 = ROW2;break; // make P1.17 low

case 3: IOCLR1 = ROW3;break; // make P1.18 low

case 4: IOCLR1 = ROW4;break; // make P1.19 low

//default: row = ERR;
}

// for(i=0;i<=65000;i++);
val=IOPIN1; // read the matrixinputs
val = ((val >> 20) & 0x0000000F)^0x0000000F; // shift the colum value so that it comes to LSB

// XORing is done to take 1's

complement of shifted value.
//

return(val);
}

28

unsigned int catch_key(void)

{

unsigned long v; v =

scan_row(1);

switch(v)
{

case 1:return(13);

case 2:return(14);

case 4:return(15);

case 8:return(16);
}

v = scan_row(2);

switch(v)

{
case 1: return(9);

case 2:return(10);

case 4:return(11);

case 8:return(12);

}

v = scan_row(3);

switch(v)

{
case 1:return(5);

case 2:return(6);

case 4:return(7);

case 8:return(8);

}
v = scan_row(4);

switch(v)

{

case 1:return(1);

case 2:return(2);

case 4:return(3);

case 8: return(4); default:

return(0);
}

}
/***

*****/
void clearall_7seg(void)

{

IOPIN1 &= ~S7SEG_LED; // make all the 7seg led pins toLOW

IOPIN0|=S7SEG_ENB // Disable all the 7 segdisplay

}

/***

****/

void clearDigit_7seg(int digit_num)

{

IOPIN0 |= S7SEG_ENB; // clear enables first

switch(digit_num)

{
case 1: {

 IOPIN0 =
break;

~DIGI1_ENB; // now enable only the digit1

 }

case 2: {

 IOPIN0 = ~DIGI2_ENB; // now enable only the digit2
 break;

 }

case 3: {

 IOPIN0 = ~DIGI3_ENB; // now enable only the digit3

29

case 4: {

}

break;

}

IOPIN0=~DIGI4_ENB; // now enable only the digit4 break;

}

IOPIN1&=~S7SEG_LED; // make all the 7seg LED pinsLOW

}

/***

*****/
void Digit_Dispay(int digit_num, unsigned int value)

{
clearDigit_7seg(digit_num);switch(

value)

{
case 0: IOPIN1 |= ZERO;break;
case 1: IOPIN1 |= ONE; break;
case 2: IOPIN1 |= TWO; break;
case 3: IOPIN1 |= THREE; break;
case 4: IOPIN1 |= FOUR; break;
case 5: IOPIN1 |= FIVE; break;
case 6: IOPIN1 |= SIX; break;
case 7: IOPIN1 |= SEVEN; break;
case 8: IOPIN1 |= EIGHT; break;
case 9: IOPIN1 |= NINE; break;

}

}

/***
*****/

void Alpha_Dispay(int digit_num, unsigned int value)

{

clearDigit_7seg(digit_num);switch(

value)

{
case 1: IOPIN1 |= ZERO;break;
case 2: IOPIN1 |= ONE; break;
case 3: IOPIN1 |= TWO; break;
case 4: IOPIN1 |= THREE; break;
case 5: IOPIN1 |= FOUR; break;
case 6: IOPIN1 |= FIVE; break;
case 7: IOPIN1 |= SIX; break;
case 8: IOPIN1 |= SEVEN; break;
case 9: IOPIN1 |= EIGHT; break;

case10: IOPIN1 |= NINE; break; case
11: IOPIN1 |= AAA; break; case 12:
IOPIN1 |= bbb; break; case 13: IOPIN1 |=

ccc; break; case 14: IOPIN1 |= ddd; break;

case 15: IOPIN1 |= eee; break; case 16:

IOPIN1 |= fff;break;

}

}
/***

******/

void split_numbers(unsigned int number)

{

thousands = (number /1000);

number %= 1000;

hundreds = (number / 100);

number %= 100;

tens = (number / 10);

number %= 10;

30

ones = number ;

}

/***

******/

void Display_Number(unsigned int num)

{

unsigned int i;

if(num <= 9999)

{

clearall_7seg();

split_numbers((unsignedint)num);

Digit_Dispay(4, ones);

for(i=0;i<10000;i++);

Digit_Dispay(3, tens);

for(i=0;i<10000;i++);

Digit_Dispay(2,hundreds);

for(i=0;i<10000;i++);

Digit_Dispay(1,thousands);

for(i=0;i<10000;i++);

}

}

MATRIX SEVEN SEGMENT PROGRAM PORT DETAIL

ARM DETAILS

P0.19 SEGMENT ENABLE PIN

P0.21 SEGMENT ENABLE PIN

P0.22 SEGMENT ENABLE PIN

P1.16 KEY BOARD INPUT

P1.17 KEY BOARD INPUT

P1.18 KEY BOARD INPUT

P1.19 KEY BOARD INPUT

P1.20 KEY BOARD INPUT

P1.21 KEY BOARD INPUT

P1.22 KEY BOARD INPUT

P1.23 KEY BOARD INPUT

P1.24 OUTPUT SEGMENT

P1.25 OUTPUT SEGMENT

P1.26 OUTPUT SEGMENT

P1.27 OUTPUT SEGMENT

P1.28 OUTPUT SEGMENT

P1.29 OUTPUT SEGMENT

P1.30 OUTPUT SEGMENT

31

LCD PROGRAM

/**/

LCD.h

/**/

void clrscr(char ch);

void lcdinit(void);

void lcdcmd(char);
void lcddat(char);

void gotoxy(char,char); //x,y ; x-char position(0 - 16) y-line number 0 or1

voidprintstr(char*,char,char); //string,column(x),line(y)

void wait (void);

void split_numbers(unsigned int number);

void Wait_Msg(void);
void Welcome_Msg(void);

/**/

LCD.c

/**/
#include <LPC214x.h>

#defineRS 0x00000400 /* P0.10 */
#defineCE 0x00001800 /* P1.11 */

void clrscr(char ch); void

lcdinit(void); void

lcdcmd(char); void

lcddat(char);

void gotoxy(char,char); //x,y ; x-char position(0 - 16) y-line number 0 or1

voidprintstr(char*,char,char); //string,column(x),line(y)

void wait (void);

void split_numbers(unsigned int number);

#define SET1

#define OFF0

unsigned int thousands,hundreds,tens,ones;

voidwait(void) { /* wait function */ int

d;

for (d = 0; d <100000;d++); /* only to delay for LED flashes*/

}

void lcdinit()

{
IODIR0 |= 0x0000FFFF;

IOCLR0 |= 0X00000FFF;

lcdcmd(0x28);lcd

cmd(0x28);

lcdcmd(0x0c);

lcdcmd(0x06);

lcdcmd(0x01);

32

lcdcmd(0x0f);wait();

}

void gotoxy(char x, char y)

{

if(y == 0)
lcdcmd(0x80+x);

else

lcdcmd(0xc0+x);

}

void printstr(char *str, char x, char y)

{

char i; gotoxy(x,y);

wait();//(500);

for(i=0;str[i]!='\0';i++)lcddat(str[i

]);

}

void lcdcmd(charcmd)
{
unsigned charLCDDAT;

LCDDAT = (cmd&0xf0); //higher nibble

IOSET0 =LCDDAT;

IOCLR0 = RS;

IOSET0 = CE;

wait();//(100); //enablelcd

IOCLR0 = CE;

IOCLR0 = 0X00000FFF;

LCDDAT = ((cmd<<0x04)&0xf0); //lower nibble

IOSET0 =LCDDAT;

IOCLR0 = RS;
IOSET0 = CE;

wait();//(100); //enablelcd

IOCLR0 = CE;

IOCLR0 = 0X00000FFF;

}

void lcddat(char cmd)

{

unsigned charLCDDAT;
LCDDAT = (cmd&0xf0); //higher nibble

IOSET0 =LCDDAT;

IOSET0 = RS;

IOSET0 = CE;

wait();//(100); //enablelcd

IOCLR0 = CE;

IOCLR0 = 0X00000FFF;

LCDDAT = ((cmd<<0x04)&0xf0); //lower nibble

IOSET0 =LCDDAT;

IOSET0 = RS;

IOSET0 = CE;

wait();//(100); //enablelcd
IOCLR0 = CE;

33

IOCLR0 = 0X00000FFF;

}

void clrscr(char ch)

{

if(ch==0)
{

printstr(" ",0,0);

gotoxy(0,0);

}

else if(ch ==1)
{

}

else

{

}

}

printstr(" ",0,1);
gotoxy(0,1);

lcdcmd(0x01);

//delay(100);

void split_numbers(unsigned int number)

{

thousands = (number /1000);

number %= 1000;

hundreds = (number / 100);

number %= 100;

tens = (number / 10);

number %= 10;

ones = number ;

}

void Wait_Msg(void)

{

lcdcmd(0x01);

printstr(" PLEASEWAIT ", 0,0);
}
void Welcome_Msg(void)
{

lcdcmd(0x01);
printstr(" WELCOMETO ", 0,0);

printstr("SM MICRRO SYSTEM", 0,1);

}

34

/***/

LCDmain.c
/**/

/* This is a test program to display strings in LCD module in theARMLPC2148Development board itself*/

/**/

#include<LPC214x.H> /* LPC214x definitions*/

#include"lcd.h" /* includes lcd driverfuntions*/

int main (void)

{

lcdinit(); /*Initializelcd*/

Wait_Msg(); /*Display message - "Please Wait"*/ Welcome_Msg();

/*Display message - "Welcome to SMMICRRO"*/

while(1) /*LoopForever*/

{

}

LCD PROGRAM PORT DETAILS

ARM Details

PO.10 RS LCD PIN

P1.11 CE LCD PIN

Post Lab Questions

1. Outline the operations involved when the key in a 4 x 4 keyboard matrix is being pressed.

2. List the registers used to store the keyboard, display modes and other operations
programmed by CPU.

3. What is switch bouncing ? How to prevent it using de-bounce circuit?

4. How to adjust the contrast of the LCD?

5. Which command of an LCD is used to shift the entire display to the right?

Result

The C-Language program for displaying the Key pressed in the Keyboard is displayed

in the seven segment display and LCD module and the output was verified on the LCD on the

desires line and column/address.

35

6. INTERFACING EPROM AND INTERRUPT

Aim

To develop a C-Language program to write and read a data in EEPROM and also to

analyze its performance with the interrupt

Pre Lab Questions

1. What is an edge triggering ?

2. Mention the advantages and disadvantages of level triggering pulse.

3. Differentiate EPROM and ROM.

4. List the different types of Memory devices.

5. Which interrupt is said to be non maskable interrupt , Why?

Apparatus & Software Required

1. LPC2148 Development board.

2. Keil µVision5 software.

3. Flash Magic.

4. USB cable.

Theory
Serial-interface EEPROM’s are used in a broad spectrum of consumer, automotive,

telecommunication, medical, industrial and PC related markets. Primarily used to store personal

preference data and configuration/setup data, Serial EEPROM’s are the most flexible type of

nonvolatile memory utilized today. Compared to other NVM solutions, Serial EEPROM devices

offer a lower pin count, smaller packages, lower voltages, as well as lower powerconsumption.

36

Procedure

1. Follow the steps to create a New project

2. Type the below code and save it with the name (anyname.c)

3. Follow the steps to create a New Project to compile and build the program

4. Follow the procedures in to download your Hex code to processor using Flash

Magic Software.

EPROM PROGRAM

/**/

I2C .C

/**/

/* This Program For I2C Interface */

#include<LPC214x.H>

#include "lcd.c"

void InitI2C (void);

void SendI2C Address(unsigned char Addr_S); void

WriteI2C (unsigned char Data);

void StopI2C (void); void

StartI2C (void);

#define AA 0x04

void InitI2C (void)
{

I2C 0CONCLR = 0xFF;
PINSEL0 |=0x50; // Set pinouts as scl andsda
I2C 0SCLL =19; //speed at 100Khz for a VPBClockDivider = 4 at 12 MHz
I2C 0SCLH =19;

I2C 0CONSET=0x40; //Active Master Mode on I2C bus

}

void SendI2C Address(unsigned char Addr_S)

{

while(I2C 0STAT!=0x08); // Wait for start to becompleted

I2C 0DAT =Addr_S; // Charge slaveAddress
I2C 0CONCLR = SIC|STAC; // Clear I2C interrupt bit to send the data
while(!(I2C 0CONSET &SI)); // wait till statusavailable

}

unsigned char ReadI2C (void)

{

unsigned char r;

#define STA 0x20

#define SIC 0x08

#define SI 0x08
#define STO 0x10
#define STAC 0x20

37

I2C 0CONCLR = SIC;

I2C 0CONSET=0x04; // clearSIC;
while(!(I2C 0CONSET&0x8)); // wait till statusavailable r=I2C

0STAT;

wait(); // check forerror

if (r==0x50){ // look for "Data byte has been received; ACKhas been returned"

lcdcmd(0x01);

printstr("Read Sucess",0,0);

}

return I2C 0DAT;

}

void WriteI2C (unsigned char Data)

{

unsigned char r;
I2C 0DAT =Data; // ChargeData

I2C 0CONCLR=0x8; // SIC; Clear I2C interrupt bit to send thedata while(!(I2C

0CONSET&0x8)); // wait till statusavailable

r=I2C 0STAT;

if (r == 0x28)
{ // look for "Data byte in S1DAT has been transmitted; ACKhas been received"

lcdcmd(0x01);

printstr("Write Sucess",0,0);

}

}

void StopI2C (void)

{

I2C 0CONCLR = SIC;

I2C 0CONSET =

STO;

while((I2C 0CONSET&STO)); // wait for Stopped busI2C
}

void StartI2C (void)

{

I2C 0CONCLR=0xFF; // clear I2C - included if User forgot to "StopI2C ()"
// else this function would hang.

I2C 0CONSET=0x40; // Active Master Mode on I2C bus I2C

0CONSET=0x00000020; // Startcondition
}

int main()

{

unsigned char r;

wait();

wait();

wait();

wait();

lcdinit();clrsc
r(2);

printstr("SM MICRRO SYSTEM",0,0);

printstr(" ARMDEVKIT ",0,1);
InitI2C ();

StartI2C ();

SendI2C Address(0xa0); // EEPROM device address

WriteI2C (0); // Set the control portvalue

WriteI2C ('B');

38

StopI2C

();wait();

wait();

StartI2C ();

SendI2C Address(0xa0); // EEPROM device address

WriteI2C (0); // Set the control portvalue

StopI2C ();

StartI2C ();

SendI2C Address(0xa1); // Start the read

r=ReadI2C (); // read the result

StopI2C ();

gotoxy(0,1);

split_numbers(r);

lcddat(0x30+hundreds);lcdda

t(0x30+tens);

lcddat(0x30+ones); while(1);

}

/***/

LCD.C

/***/

#defineRS 0x00000400 /* P0.10 */

#defineCE 0x00001800 /* P1.11 */

void clrscr(char ch); void

lcdinit(void); void

lcdcmd(char); void

lcddat(char);

void gotoxy(char,char); //x,y ; x-char position(0 - 16) y-line number 0 or1

voidprintstr(char*,char,char); //string,column(x),line(y)
void wait (void);

void split_numbers(unsigned int number);

#define SET1

#define OFF0

unsigned int thousands,hundreds,tens,ones;
voidwait(void) { /* wait function */

intd;
for (d = 0; d <100000;d++); /* only to delay for LED flashes*/

}

void lcdinit()

{

IODIR0 = 0xFFFFFFFF;

IOCLR0 = 0X00000FFF;
lcdcmd(0x28);

lcdcmd(0x28);

lcdcmd(0x0c);

lcdcmd(0x06);

lcdcmd(0x01);

lcdcmd(0x0f);

wait();//(1600);

}

39

void gotoxy(char x, char y)

{

if(y == 0)
lcdcmd(0x80+x);

else

lcdcmd(0xc0+x);

}
void printstr(char *str, char x, char y)

{

char i; gotoxy(x,y);

wait();//(500);

for(i=0;str[i]!='\0';i++)lcddat(str[i

]);

}

void lcdcmd(charcmd)

{

unsigned charLCDDAT;

LCDDAT = (cmd&0xf0); //higher nibble

IOSET0 =LCDDAT;
IOCLR0 = RS;

IOSET0 = CE;

wait();//(100); //enablelcd

IOCLR0 = CE;

IOCLR0 = 0X00000FFF;

LCDDAT = ((cmd<<0x04)&0xf0); //lower nibble

IOSET0 =LCDDAT;

IOCLR0 = RS;

IOSET0 = CE;

wait();//(100); //enablelcd

IOCLR0 = CE;

IOCLR0 = 0X00000FFF;

}

void lcddat(char cmd)

{

unsigned charLCDDAT;

LCDDAT = (cmd&0xf0); //higher nibble

IOSET0 =LCDDAT;

IOSET0 = RS;

IOSET0 = CE;

wait();//(100); //enablelcd

IOCLR0 = CE;

IOCLR0 = 0X00000FFF;

LCDDAT = ((cmd<<0x04)&0xf0); //lower nibble

IOSET0 =LCDDAT;

IOSET0 = RS;

IOSET0 = CE;

wait();//(100); //enablelcd
IOCLR0 = CE;

IOCLR0 = 0X00000FFF;

}

void clrscr(char ch)

{

40

if(ch==0)

{

printstr(" ",0,0);

gotoxy(0,0);

}

else if(ch ==1)

{

}

else

{

}

}

printstr(" ",0,1);
gotoxy(0,1);

lcdcmd(0x01);
//delay(100);

void split_numbers(unsigned int number)

{

thousands = (number /1000);

number %= 1000;

hundreds = (number / 100);

number %= 100;

tens = (number / 10);

number %= 10;

ones = number ;

}

EPROM (I2C) PROGRAM PORT SETAILS

ARM DETAILS

PO.10 RS LCD PIN

P1.11 CE LCD PIN

P0.11 SCL

P0.14 SDA

41

INTERRUPT BUZZER PROGRAM

/***/

ExtDriver.C

/***/

#include <LPC214x.h>

void init_VIC(void)

{
/* initialize VIC*/

VICIntEnClr =0xffffffff;

VICVectAddr =0;

VICIntSelect =0;

}

void ExtInt_ISR(void)irq

{

//EXTINT=(1<<2); /* clear EINT2 flag by writing HIGH to corespondingbit*/

//IOCLR0 = 0x40000000; /* Trigger the relay*/
IOCLR1 = 0x400f0000; /* P1.18 Trigger the relay*/

//IOPIN1 = 0x00000000;

EXTINT = (1<<2);

VICVectAddr=0; /* Acknowledge Interrupt*/

}
void init_Interrupt(void)

{
PINSEL0=0x80000000; // select P0.15 for EINT2

VICIntEnable = (1<<16); // External interrupt 2(EINT2)

VICVectCntl0=(1<<5)|(16); // set the VIC control reg for EINT2

VICVectAddr0 = (unsignedlong)ExtInt_ISR;

EXTMODE&=~(1<<2); // set VIC for egdse sensitive forEINT2

// EXTPOLAR = ~(1<<2); // set VIC for falling edge sensitive forEINT2
}

void init_ports(void)

{

IODIR0 = 0x40000000;

IODIR1 = 0x400f0000;

IOPIN1 = 0xff010000;

IOSET0 = 0x40000000;

IOSET1 = 0x400f0000;

}

/*void wait_for_turnoffRelay(void)

{

is pressed

int val;

val=IOPIN1; // read the ports for key board input
while((~(val>>20))!=0); // wait until 1st key in the matrixkeyboard

IOCLR0=0x00010000; // switch off therelay

}*/

42

/***/

XINTR _RELAY.C

/**/

#include <LPC214x.h>

#include "ext.h"

int main()

{

init_VIC();

init_Interrupt();init_po

rts();

while(1)
{

//wait_for_turnoffRelay();

}

}

INTERRUPT BUZZERPROGRAM

ARM DETAILS

P1.18 TRIGGER THE RELAY

P0.15 EINT2

Post Lab Questions

1. What will be the initial values in all the cells of an EPROM ?

2. What are the contents of the IE register, when the interrupt of the memory location 0x00 is caused?

3. Why normally LJMP instructions are the topmost lines of the ISR?

4. Enumerate the features of nested interrupt.

5. Illustrate the Master Slave mode.

Result

The C-Language program to write and read a data in EEPROM and also to analyze its

performance with the interrupt is developed and is verified.

43

7. MAILBOX

Aim

To develop a ‘C’code to create a mailbox and to understand the RTOS functions.

Pre Lab Questions

1. How does mailbox works in RTOS?

2. What is Semaphore?

3. Differentiate mailbox and queue.

4. List the synchronous and asynchronous modes are there in serial port?

5. Interpret the inter process communication

Apparatus & Software Required

1. LPC2148 Development board.

2. KeilµVision 5 software.

3. Flash Magic.

4. USB cable.

.

Theory

Real-time and embedded systems operate in constrained environments in which computer

memory and processing power are limited. They often need to provide their services within strict

time deadlines to their users and to the surrounding world. It is these memory, speed and timing

constraints that dictate the use of real-time operating systems in embedded software.

The "kernel" of a real-time operating system ("RTOS") provides an "abstraction layer" that hides

from application software the hardware details of the processor (or set of processors) up on

which the application software will run.

In providing this "abstraction layer" the RTOS kernel supplies five main categories of basic

services to application software

44

The most basic category of kernel services is Task Management. This set of services allows

application software developers to design their software as a number of separate "chunks" of

software -- each handling a distinct topic, a distinct goal, and perhaps its own real-time deadline.

Each separate "chunk" of software is called a "task." The main RTOS service in this category is

the scheduling of tasks as the embedded system is in operation.

The second category of kernel services is Inter task Communication and Synchronization. These

services make it possible for tasks to pass information from one to another, without danger of

that information ever being damaged. They also make it possible for tasks to coordinate, so that

they can productively cooperate with one another. Without the help of these RTOS services,

tasks might well communicate corrupted information or otherwise interfere with each other.

Since many embedded systems have stringent timing requirements, most RTOS kernels also

provide some basic Timer services, such as task delays and time-outs.

Many (but not all) RTOS kernels provide Dynamic Memory Allocation services. This category

of services allows tasks to "borrow" chunks of RAM memory for temporary use in application

software. Often these chunks of memory are then passed from task to task, as a means of quickly

communicating large amounts of data between tasks. Some very small RTOS kernels that are

intended for tightly memory-limited environments, do not offer Dynamic memory allocation.

45

Many (but not all) RTOS kernels also provide a "Device I/O Supervisor" category of services.

These services, if available, provide a uniform framework for organizing and accessing the

many hardware device drivers that are typical of an embedded system.

Procedure

1. Follow the steps to create a New project

2. Type the below code and save it with the name (anyname.c)

3. Follow the steps to create a New Project to compile and build the program

4. Follow the procedures in to download your Hex code to processor using Flash

Magic Software.

46

/**/

MAILBOX.C

/**/
#include <string.h>

#include <stdio.h>

#include <RTL.h>

#include <LPC214x.H>

#include "config.h"

#include "uart.h" #include

"lcd.h"

/* LPC214x definitions */

OS_TID tsk1; /* assigned identification for task 1 */
OS_TID tsk2; /* assigned identification for task 2 */

typedefstruct{ /* Messageobjectstructure */

charmsgBuf[MBOX_MSG_BUF_SIZE];

} T_MEAS;

os_mbx_declare(MsgBox,MAILBOX_MEMORY_POOL_CNT); /* Declare an RTXmailbox*/
_declare_box (mpool,sizeof(T_MEAS),MAILBOX_MEMORY_POOL_CNT);/* Dynamic memory pool*/

task void send_task (void);

task void rec_task (void);
void main_menu()

{
send_string(USE_UART,"\n\r\n\n**");

send_string(USE_UART,"\n\r SM Micrro System,Tambaram,Chennai ");

send_string(USE_UART,"\n\r MailBoxMessageSimulation ");

send_string(USE_UART,"\n\r MAIN MENU");

send_string(USE_UART,"\n\r**");

send_string(USE_UART,"\n\n\r");

send_string(USE_UART,"\n\rThis program simulates MailBox IPC mechanism.");

send_string(USE_UART,"\n\rPlease Follow Below Commands"); send_string(USE_UART,"\n\r - Type any

string and press enter to send"); send_string(USE_UART,"\n\r the
stringusingmailbox. "); send_string(USE_UART,"\n\r-Press SPACE Key to

check available MailboxCount"); send_string(USE_UART,"\n\r-Press ESC Key to reset

the input string"); send_string(USE_UART,"\n\n\r");

}

/*
* Task1: RTX Kernel starts this task with os_sys_init(send_task)
* */

task void send_task (void)
{

T_MEAS *mptr;

static unsigned char sInputBuf[MBOX_MSG_BUF_SIZE]; int

cnt=0;

char sSndTskBuf[30]; char

ch;

int MsgFree = 0;

tsk1 =os_tsk_self(); /* get own taskidentificationnumber */

#ifndefDISABLE_RECV_TASK

tsk2 = os_tsk_create (rec_task, 0); /* starttask2 */

#endif /* DISABLE_RECV_TASK*/

os_mbx_init (MsgBox, sizeof(MsgBox));/* initializethemailbox */

os_dly_wait(5); /* Startup delayforMCB21xx */

lcdinit();

47

clrscr(10);

printstr(" MailBox ",0,0);

printstr(" Simulation ",0,1);

#ifndef DISABLE_RECV_TASK

mptr =_alloc_box(mpool); /* Allocate a memory forthemessage */

memset(mptr->msgBuf,'\0',MBOX_MSG_BUF_SIZE);

memcpy (mptr->msgBuf, STD_MSG1, sizeof(STD_MSG1));

os_mbx_send (MsgBox, mptr, 0xffff); /* Send the message to the mailbox*/

os_dly_wait (100);

mptr = _alloc_box (mpool);

memset (mptr->msgBuf,'\0',MBOX_MSG_BUF_SIZE);

memcpy (mptr->msgBuf, STD_MSG2, sizeof(STD_MSG2));

os_mbx_send (MsgBox, mptr, 0xffff); /* Andsendit. */
os_tsk_pass(); /*Cooperativemultitasking */

os_dly_wait(100);

mptr = _alloc_box (mpool);

memset (mptr->msgBuf,'\0',MBOX_MSG_BUF_SIZE);

memcpy (mptr->msgBuf, STD_MSG3, sizeof(STD_MSG3));

os_mbx_send (MsgBox, mptr, 0xffff); /* Andsendit. */

os_dly_wait(100);

#endif /* DISABLE_RECV_TASK */

memset (sInputBuf,'\0',MBOX_MSG_BUF_SIZE);
cnt = 0;

main_menu();w

hile(1)

{

ch = receive(USE_UART);
if(ch == CARRIAGE_RET && cnt > 0)

{
send_string(USE_UART,"\n\n\n\r************SENDING MAILBOX USER MESSAGE***************");

MsgFree = os_mbx_check (MsgBox); if

(MsgFree != 0)

{

mptr = _alloc_box (mpool);
memset (mptr->msgBuf,'\0',MBOX_MSG_BUF_SIZE);

memcpy (mptr->msgBuf, sInputBuf, strlen((const char *)sInputBuf));

*/

}

else

{

}

#ifdefDISABLE_RECV_TASK

sprintf (sSndTskBuf, “\n\ros_mbx_send byTaskID:%d ",tsk1);

send_string(USE_UART,sSndTskBuf);send

_string(USE_UART,"\n\n\r");

os_mbx_send (MsgBox, mptr, 0xffff); /* And send it. os_dly_wait

(100);

memset (sInputBuf,'\0',MBOX_MSG_BUF_SIZE); cnt
= 0;

send_string(USE_UART,"\n\rMailbox is FULL");

main_menu();

48

#endif /* DISABLE_RECV_TASK */

}

else if (KEY_SPACE == ch)

{

MsgFree = os_mbx_check (MsgBox); if

(MsgFree == 0)

{
send_string(USE_UART,"\n\rMailboxisFULL");

}

else

{

}

sprintf (sSndTskBuf, "\n\rMailBox Free Count : %d ", MsgFree);

send_string(USE_UART,sSndTskBuf);
send_string(USE_UART,"\n\n\r");

os_dly_wait (100);

main_menu();

}

else if (KEY_ESC == ch)

{

cnt = 0;

memset (sInputBuf,'\0',MBOX_MSG_BUF_SIZE);
send_string(USE_UART,"\n\rClearing Buffer

PleaseWait. ");

main_menu();

}

else if('\0' != ch)
{

os_dly_wait (100);

sInputBuf[cnt++] = ch;

cnt %= MBOX_MSG_BUF_SIZE;

if(ch == CARRIAGE_RET &&cnt==1) //emptystring

{

}

else

{

}

cnt = 0;

putcharr (USE_UART,ch);

}

}

// os_tsk_delete_self(); /* We are done here, deletethistask */

}

#ifndef DISABLE_RECV_TASK

/*

* Task 2: RTX Kernel starts this task with os_tsk_create (rec_task,0)
* */

task void rec_task (void)

{

T_MEAS *rptr;

static char sRxTskBuf[MBOX_MSG_BUF_SIZE];

for (;;)

{

os_mbx_wait (MsgBox, (void **)&rptr, 0xffff); /* wait forthemessage */

send_string(USE_UART,"\n\n\n\r************MAILBOXMESSAGE

RECEIVED***************");

49

sprintf (sRxTskBuf, "\n\rec_task by Task ID: %d ", tsk2); send_string(USE_UART,sRxTskBuf);

memset (sRxTskBuf,'\0',MBOX_MSG_BUF_SIZE);

memcpy (sRxTskBuf, rptr->msgBuf, strlen(rptr->msgBuf)); send_string(USE_UART,"\n\n\rReceived Mbox: ");

send_string(USE_UART,sRxTskBuf);

send_string(USE_UART,"\n\r***");

_free_box(mpool,rptr); /* free memory allocatedformessage */

main_menu();
}

}
#endif /* DISABLE_RECV_TASK */

/*

* Main: Initialize and start RTXKernel
* */

int main (void)

{

initserial(USE_UART); /* uart0 initialization*/

_init_box(mpool,sizeof(mpool), /* initialize the 'mpool'memoryfor */

sizeof(T_MEAS)); /* the memboxdynamicallocation */

os_sys_init(send_task); /* initialize and starttask1 */

}

/*

* end of file

* */

/***/
RTX_CONFIG.C

/***/

/*

* RL-ARM -RTX
*

* Name: RTX_CONFIG.C

* Purpose: Configuration of RTX Kernel for NXPLPC21xx
* Rev.: V4.20
*
* This code is part of the RealView Run-TimeLibrary.
* Copyright (c) 2004-2011 KEIL - An ARM Company. All rightsreserved.
* */

#include <RTL.h>
#include<LPC21xx.H> /*LPC21xxdefinitions */

/*

* RTX User configuration partBEGIN
* */

//-------- <<< Use Configuration Wizard in Context Menu >>> -----------------

//

// <h>TaskConfiguration

//=====================

//

50

// <o>Number of concurrent running tasks<0-250>

// <i> Define max. number of tasks that will run at the sametime.
// <i> Default: 6

#ifndefOS_TASKCNT

#defineOS_TASKCNT 6

#endif

// <o>Number of tasks with user-provided stack<0-250>
// <i> Define the number of tasks that will use a biggerstack.
// <i> The memory space for the stack is provided by theuser.

// <i> Default: 0
#ifndefOS_PRIVCNT
#defineOS_PRIVCNT 0
#endif
// <o>Task stack size [bytes]<20-4096:8><#/4>
// <i> Set the stack size for tasks which is assigned by thesystem.

// <i> Default: 200

#ifndefOS_STKSIZE

#defineOS_STKSIZE 50

#endif

// <q>Check for the stackoverflow

//===============================

// <i> Include the stack checking code for a stack overflow.

// <i> Note that additional code reduces the RTX performance. #ifndef

OS_STKCHECK

#defineOS_STKCHECK 1

#endif

// </h>

// <h>Tick Timer Configuration

// =============================

// <o>Hardware timer <0=> Timer 0 <1=> Timer1

// <i> Define the on-chip timer used as a time-base forRTX.
// <i> Default: Timer 0

#ifndefOS_TIMER

#defineOS_TIMER 1

#endif

// <o>Timer clock value [Hz]<1-1000000000>

// <i> Set the timer clock value for selectedtimer.

// <i>Default:15000000 (15MHz at 60MHz CCLK and VPBDIV = 4)

#ifndefOS_CLOCK

#defineOS_CLOCK 15000000
#endif

// <o>Timer tick value [us]<1-1000000>

// <i> Set the timer tick value for selectedtimer.

// <i>Default:10000 (10ms)

#ifndefOS_TICK

#defineOS_TICK 10000

#endif

// </h>

// <h>SystemConfiguration

//=======================

// <e>Round-Robin Taskswitching

//=============================

// <i> Enable Round-Robin Task switching. #ifndef

OS_ROBIN

#defineOS_ROBIN 1

51

#endif

// <o>Round-Robin Timeout [ticks]<1-1000>

// <i> Define how long a task will execute before a taskswitch.

// <i> Default: 5

#ifndefOS_ROBINTOUT

#defineOS_ROBINTOUT 5

#endif

// </e>

// <o>Number of user timers<0-250>
// <i> Define max. number of user timers that will run at the sametime.
// <i>Default:0 (User timersdisabled)

#ifndefOS_TIMERCNT

#defineOS_TIMERCNT 0

#endif

// <o>ISR FIFOQueuesize<4=> 4entries <8=> 8entries

// <12=>12entries <16=> 16entries
// <24=>24entries <32=> 32entries

// <48=>48entries <64=> 64entries

// <96=> 96entries

// <i> ISR functions store requests to thisbuffer,

// <i> when they are called from the IRQhandler.

// <i> Default: 16 entries

#ifndefOS_FIFOSZ

#defineOS_FIFOSZ 16

#endif

// </h>

//------------- <<< end of configuration section >>> -----------------------

// Standard library systemmutexes

//===============================

// Define max. number system mutexes that are used toprotect
// the arm standard runtime library. For microlib they are notused.

#ifndefOS_MUTEXCNT

#defineOS_MUTEXCNT 8

#endif

/*

* RTX User configuration partEND
* */

#if (OS_TIMER==0) /*Timer0 */

#defineOS_TID_
#defineTIMx(reg)

4
T0##reg

/* TimerID */

#elif (OS_TIMER==1)
#defineOS_TID_

5
/*Timer1
/* TimerID

*/
*/

#defineTIMx(reg) T1##reg

#else

#error OS_TIMER invalid

#endif

#defineOS_TIM_ (1<<OS_TID_) /* InterruptMask */
#defineOS_TRV ((U32)(((double)OS_CLOCK*(double)OS_TICK)/1E6)-1)

#defineOS_TVAL TIMx(TC) /* TimerValue */

#defineOS_TOVF (TIMx(IR)&1) /* OverflowFlag */

#defineOS_TFIRQ() VICSoftInt =OS_TIM_; /* Force Interrupt */

#defineOS_TIACK() TIMx(IR)=1; /* InterruptAck */ \

52

#define

OS_TINIT()

VICSoftIntClr = OS_TIM_;
VICVectAddr = 0;

TIMx(MR0) =OS_TRV;

/* Initialization

\

*/ \

 TIMx(MCR) =3;
TIMx(TCR) =1;

 \
\

 VICDefVectAddr = (U32)os_def_interrupt;

VICVectAddr15 =(U32)os_clock_interrupt;

VICVectCntl15 = 0x20 |OS_TID_;

\
\

#define OS_IACK() VICVectAddr =0; /* InterruptAck */

#define#

define

OS_LOCK()

OS_UNLOCK

()

VICIntEnClr =OS_TIM_; /* Task Lock

VICIntEnable =OS_TIM_; /* Task Unlock

*/
*/

/* WARNING: Using IDLE mode might cause you troubles while debugging.*/ #define_idle_()

PCON =1;

/*

* GlobalFunctions
* */

/* os_idle_demon */

task void os_idle_demon (void) {

/* The idle demon is a system task, running when no other task is ready*/

/* to run. The 'os_xxx' function calls are not allowed fromthistask. */

for (;;) {

/* HERE: include optional user code to be executed when no task runs.*/

}
}

/* os_tmr_call */

void os_tmr_call (U16 info) {

/* This function is called when the user timer hasexpired.Parameter */

/* 'info' holds the value, defined when the timerwascreated. */

/* HERE: include optional user code to be executed on timeout. */

}

/* os_error */

void os_error (U32 err_code){

/* This function is called when a runtime error is detected. Parameter*/

/* 'err_code' holds the runtime error code (definedinRTL.H). */

/* HERE: include optional code to be executed on runtime error. */ for (;;);

}

/*

* RTX ConfigurationFunctions
* */

static void os_def_interrupt(void)irq {

/* Default Interrupt Function: may be called when timer ISR is disabled */ OS_IACK();

}

53

#include <RTX_lib.c>

/*

* end offile
* *

/***/

LCD.C

/**/

#include<LPC214x.H> /* LPC214x definitions */

#defineRS 0x00000400 /* P0.10*/

#defineCE 0x00001000 /* P1.11*/

#define SET1
#define OFF0

void lcdcmd(char cmd); void

lcddat(char cmd);

void printstr(unsigned char *str, char x, char y);

voidwait(void) { /* wait function */ int

d;

for (d = 0; d <100000;d++); /* only to delay for LED flashes*/

}

void lcdinit(void)

{

IODIR0 |= 0x000014f0;

lcdcmd(0x28);

lcdcmd(0x28);

lcdcmd(0x0c);

lcdcmd(0x06);

lcdcmd(0x01);

lcdcmd(0x0f);

wait();//(1600);

}

void gotoxy(char x, char y)

{

if(y == 0)

lcdcmd(0x80+x);

else

lcdcmd(0xc0+x);

}

void printstr(unsigned char *str, char x, char y)

{

char i; gotoxy(x,y);

wait();//(500);

for(i=0;str[i]!='\0';i++)lcddat(str[i

]);

}

54

void lcdcmd(charcmd)

{

unsigned charLCDDAT;

LCDDAT = (cmd&0xf0); //higher nibble

IOSET0 |=LCDDAT;

IOCLR0 |= RS;

IOSET0 |= CE;

wait();//(100); //enablelcd

IOCLR0 |= CE;
IOCLR0 |= 0X00000FFF;

LCDDAT = ((cmd<<0x04)&0xf0); //lower nibble
IOSET0 |=LCDDAT;

IOCLR0 |= RS;

IOSET0 |= CE;

wait();//(100); //enablelcd

IOCLR0 |= CE;

IOCLR0 |= 0X00000FFF;

}

void lcddat(char cmd)

{

unsigned char LCDDAT;
LCDDAT = (cmd&0xf0); //higher nibble
IOSET0 |=LCDDAT;

IOSET0 |= RS;

IOSET0 |= CE;

wait();//(100); //enablelcd

IOCLR0 |= CE;

IOCLR0 |= 0X00000FFF;

LCDDAT = ((cmd<<0x04)&0xf0); //lower nibble

IOSET0 |=LCDDAT;

IOSET0 |= RS;

IOSET0 |= CE;
wait();//(100); //enablelcd

IOCLR0 |= CE;
IOCLR0 |= 0X00000FFF;

}

void clrscr(char ch)
{

if(ch==0)

{

printstr(" ",0,0);

gotoxy(0,0);
}

else if(ch ==1)

{

}

else

{

}
}

printstr(" ",0,1);

gotoxy(0,1);

lcdcmd(0x01);

//delay(100);

55

/**/

UART.C

/***/

/* This file contains driver functions to send and receive data via uart0inthe */

/* ARM LPC2148 Development board itself */

/**/ #include

<LPC214x.H>
#include "config.h"

#define TEMT (1<<6)

void initserial(unsigned char uart)
{

if(0 == uart)

{

PINSEL0=0x00000005; /* Make pins 19 and 21 to function as TXD0and RXD0

forUART0*/

U0LCR=0x83;
U0FDR=0x00000010;

/* 8 bits, no Parity, 1Stopbit
/* DIVADDVAL = 0; MULVAL = 1*/

*/

U0DLL=98; /* 9600 Baud Rate @ 15MHz VPB Clock; =97.65=98

*/

}

else

{

U0LCR=0x03; /* DLAB = 0*/

U0IER=0x01; /* Enable reciever data availableinterrupt*/

PINSEL0=0x00050000; /* Make pins 19 and 21 to function as TXD0and

RXD0 for UART0*/

U1LCR=0x83; /* 8 bits, no Parity, 1Stopbit */

U1FDR=0x00000010; /* DIVADDVAL = 0; MULVAL = 1*/

U1DLL=98; /* 9600 Baud Rate @ 15MHz VPB Clock; =97.65=98
*/

U1LCR=0x03; /* DLAB = 0*/

U1IER=0x01; /* Enable reciever data availableinterrupt*/

}
}

void putcharr (unsigned char uart, unsignedcharch) /* Writes character to

SerialPort*/

{
if(0 == uart)

{

}
else
{

}

}

while (!(U0LSR &TEMT)); U0THR

=ch;

while (!(U1LSR &TEMT)); U1THR

=ch;

unsigned char getcharr (unsignedcharuart) /* Reads character from

SerialPort*/

{

if(0 == uart)

{

while (!(U0LSR & 0x01));

return (U0RBR);

56

}

else

{
while (!(U1LSR & 0x01));

return (U1RBR);

}

}

char receive(unsigned char uart) /*function for receiving data from sensor (readsbyte by byte & returns value if

exist,else#) */

{
if(0 == uart)
{

if (U0LSR&0x01) /* If U0LSR 1st bit contains valid data, thenreturn value ofU0RBR*/
{

return (U0RBR);
}

#*/

}

else
{

return'\0'; /* If other than 0 to 9 data is recievedreturn

if (U1LSR&0x01) /* If U0LSR 1st bit contains valid data, thenreturn

value of U0RBR*/

{

}

return (U1RBR);

return'\0'; /* If other than 0 to 9 data is recievedreturn

#*/

}

}

void send_string(unsigned charuart,char*cpr) /* Writes string to serial port*/

{

while(*cpr != '\0')

{

putcharr (uart,*cpr); cpr++;
}

}

unsigned char* receive_string(unsignedcharuart) /* Reads string to serial

port*/

{
static unsigned char c[30]; unsigned

char i=0;

c[i] = getcharr(uart); while(c[i] !=

CARRIAGE_RET)

{

i++;
c[i] = getcharr(uart);

}
c[i] = '\0';

return(c);

}

57

CONFIG.H

/**/

#define MAILBOX_MEMORY_POOL_CNT16

#define MBOX_MSG_BUF_SIZE 100
#defineUSE_UART 0
/**/
/* Enable below macro to disable the the recv task to check mailbox full*/
//#define DISABLE_RECV_TASK
/**/
#define STD_MSG1 "MailBox Test Message 1" #define

STD_MSG2 "MailBox Test Message 2" #define STD_MSG3

"MailBox Test Message3"

#define LINE_FEED 0x0A #define

CARRIAGE_RET 0x0D #define

KEY_SPACE 0x20 #define

KEY_ESC0x1B

MAIL PROGRAM PROGRAM

PORTDETAILS UART0

UART1

ARM DETAILS

P0.8 TXD1

P0.9 RXD1

LCD PORTDETAILS
ARM DETAILS

PO.10 RS LCD PIN

P1.11 CE LCD PIN

Post Lab Questions

1. Mention the operations that can be performed on a mailbox.

2. When does the mailbox will get deleted?

3. Illustrate the operation of reading operation from a mailbox.

4. How to configure the mailbox?

5. What is branch prediction?

Result

The C-Language program to create a mailbox and to understand the about the RTOS functions

is developed and is verified.

ARM DETAILS

P0.0 TXDO

P0.1 RXDO

58

8. Interrupt Performance Characteristics ofARM andFPGA

Aim

To study about the Interrupt performance characteristics between ARM and FPGA.

Pre Lab Questions

1. Define interrupts.

2. What is FPGA?

3. Difference between ARM and FPGA.

4. What are PROS and CONS for ARM?

5. What is interrupt pipelining?

Apparatus & Software Required

1. LPC2148 Development board.

2. KeilµVision 5 software.

3. Flash Magic.

4. USB cable.

5. Xilinx FPGA Spartan6

6. Xilinx ISE Design suite

7. JTAG Cable

8. FRC Cable

Theory
UART implementation FPGA & ARM7

Why we are doing this experiment?

An embedded system typically consists of both hardware and software. During the design phase

of an embedded system the system design Engineer has to choose the components of software and

hardware. In a system, implementing a specified logic or algorithm can be done exclusively using

software alone or hardware alone.

59

Implementing a logic or algorithm using only with software involves low cost but delivers only

low performance. Implementing the same logic or algorithm only with hardware involves high

performance but with low cost.

Hence, from the above graphical analysis it is clear that while designing an embedded system the

design engineer must choose a heterogeneous methodology which involves both hardware and

software. In this heterogeneous method the engineer has to decide which part of the logic to be

implemented in software and which other part to be implemented in software based on

performance. So from this experiment a student can learn how to design an embedded system based

on performance characteristics.

What is hardware software partitioning on performancecharacteristics?

Choosing the implementation method based on cost is called hardware software portioning on cost

characteristics. The design engineer must also consider the performance characteristics like speed,

power consumption and reliability while choosing the implementation methodology. Hence

deciding which part of our algorithm has to be implemented in software and which other part of

the algorithm has to be implemented as hardware based on performance characteristics is called

Hardware software partitioning on performance characteristics

60

Objective of the Experiment:

The aim of this experiment is to implement a UART serial communication algorithm as an

embedded system by which to learn hardware-software partitioning based on performance

characteristics.

Design of the system:
It is assumed that the reader knows about

i. UART communication protocol
ii. How microprocessor/microcontroller works

iii. What is FPGA and its use

iv. What is ASIC

Software UART Hardware UART

Advantages:

i. Simple to implement
ii. Can be easily modified when

need arises

Advantages:

i. Speed depends only on the FPGA’s
clocking speed

ii. The same design can be
manufactured several copies.
Hence it is reliable

Disadvantages:
i. Complexity of writing code increases

when the design involves the
operating system.

ii. Speed depends on the
microprocessor’s execution speed and

other application code that club with
this UART algorithm

iii. Since the software code
depends on processor architecture,
porting the same code in other type of
processor needs modifying code again

and hence itis
not reliable

Disadvantages:

i. Designing and writing code in HDL
needs good understanding of digital

circuit design and a HDL language.
Hence complex to implement.

ii. The hardware cannot be modified
when there is need to upgrade the
implemented protocol if it is
implemented as ASIC.

Hence, in this experiment we are going to follow the heterogeneous approach to implement the

UART algorithm. So it involves both software part and as well as hardware part.

61

Every protocol has two basic techniques,

i. Data driving logic and

ii. Data packing/ unpackinglogic

Data driving logic:

This involves feeding and obtaining the actual data to be packed to the data packing/ unpacking

logic.

Data packing/unpacking logic:

This involves packing the data or unpacking the data and error checking as per the protocol

specification.

In this experiment, to design UART communication

a) Data driving logic is implemented in Software. There a son for choosing this logic to
be implemented in software is

i) The data is user dependent

ii) Initiating the data transfer is also user dependent

iii) Software design can easily be changed based on the user requirement
b) Data packing/unpacking logic is implemented inhardware. The reason for choosing

this logic to be implemented in hardware is

i. Since the protocol specification is fixed one and the packing/ unpacking logic
involves designing algorithm for the protocolalone

ii. Data packing/ unpacking speed is high

62

in hardware and

Pictorial representation:

LPC2148DevelopmentKit TX

MA

X

232

To PC, for
flashing the

program
memory

D
B

9

Data and

control

lines

ARM7

LPC2148/246

8

RX

Data driving

logic is
implemented in
software and
ARM7
processor

26 pin FRC connector executes it.

26 pin FRC connector

26 pin FRC cable

FPGA Development

control

lines

Xilinx FPGA

XC3S250E

TX

fro A

To PC, for
HyperTerminal
display

D

B

9

The lsogoicfistimwpalermeentewdhich drives the data RX m ppli river.

FPGA is used for it.

232
RTolld

MA

X

Xilinx

Data

packing/unpacking

Data and

63

Software Part:

1. UART driver i.e. data driving logic is software part in this experiment.

2. This software is written using Embedded Clanguage

3. Keil uVision4 IDE and keil arm compiler is used for compiling the Ccode.
4. Flash Magic tool has been used to download the program in to ARM7 microcontroller.

Hardware part:

1. UART protocol i.e. packing/unpacking logic is hardware part in this experiment.
2. This hardware is designed using Verilog HDLprogram
3. The Model sim IDE is used for simulation to test the functionality of the hardware designed

using Verilog HDL

4. Xilinx ISE is used to synthesize the design and to download the synthesized RTL file in to the

Xilinx FPGAXC3S250E.

Procedure

1. Follow the steps to create a New project

2. Type the below code and save it with the name (anyname.c)

3. Follow the steps to create a New Project to compile and build the program

4. Follow the procedures in to download your Hex code to processor using Flash

Magic Software.

64

/**/

UART implementation FPGA & ARM7

ARM UART

/***/

#include <LPC214x.h>

void init_ios(void)

{

/*
P1.16toP1.23 --IN -- rx data

P1.24toP1.31 --OUT -- tx data

P0.15 --OUT -- txcmd

P0.16 --IN -- txdone
P0.17 --IN -- rx_rdy

*/

IODIR1=0xff000000; // tx data made as output

IODIR0=0x00008000; // tx cmd made as output
IOCLR0=0xff008000; // Default both the outputs toZero

}

void tx_char(unsigned char data)

{

char tx_done;

unsigned int i;

tx_done = ((IOPIN0>>16) & 0x00000001);
if(tx_done)

{

IOPIN1 &= ~0xff000000; // clr data port

IOPIN1|=data<<24; // place data on port

for(i=0;i<1000;i++); //wait
IOSET0=1<<15; // enable tx command

for(i=0;i<9000;i++); //wait

IOCLR0=1<<15; // Disable tx command

while(!tx_done)

tx_done = ((IOPIN0>>16) & 0x00000001);

}

}

void tx_string(unsigned char* stringg)

{

while(*stringg != '\0')

{

tx_char(*stringg);string

g++;

}
tx_char(0x0a);tx_c

har(0x0d);

}

int main (void)

{

char i;
init_ios();

for(i=0;i<100;i++);

65

while (1)

{

tx_string("SM MICRRO SYSTEM");

}

}

/**/

FPGA UART

/**/

S/GName Portinarm Data Direction inFPGA

tx_cmd -- P0.15 IN

tx_data[0] -- P1.24 IN

tx_data[1] -- P1.25 IN

tx_data[2] -- P1.26 IN

tx_data[3] -- P1.27 IN

tx_data[4] -- P1.28 IN

tx_data[5] -- P1.29 IN

tx_data[6] -- P1.30 IN

tx_data[7] -- P1.31 IN

tx_done -- P0.16 OUT

rx_data[0] -- P1.16 OUT
rx_data[1] -- P1.17 OUT
rx_data[2] -- P1.18 OUT
rx_data[3] -- P1.19 OUT
rx_data[4] -- P1.20 OUT
rx_data[5] -- P1.21 OUT
rx_data[6] -- P1.22 OUT
rx_data[7] -- P1.23 OUT
rx_rdy -- P0.17 OUT

Connector Details

P0.18 - P113 P1.24- P116 |
Po.17 - P59 P1.25- P66 |
P0.16 - P112 P1.26- P91 |
P0.15 - P92 P1.27- P93 |
P0.19 - P94 P1.28- P98 |
P0.20 - P97 P1.29- P106 |
P0.21 - P105 P1.30- P103 |
P0.23
+5v

- P104
-

P1.31-
GND -

P96 |
|

P1.16 - P135 P1.23- P134 |
P1.17 - P132 P1.22- P131 |
P1.18 - P130 P1.21- P117 |

P1.19 - P139 P1.20- P126 |

*/

module uart_top(clk,

 rst,tx

 ,

66

rx,

lcd_rs,

lcd_en,

//lcd_rw,lcd

_dat,

);

tx_cmd_i,

tx_data_i,tx_

done_o,rx_da

ta_o,rx_rdy_
o

/*********** I/O Declecration**********/

input clk;

input rst;

input rx;

output tx;

input tx_cmd_i;
input [7:0]tx_data_i;

output lcd_rs;

output lcd_en;
//output lcd_rw;

output [3:0]lcd_dat; output

tx_done_o;

output [7:0]rx_data_o; output

rx_rdy_o;

/*
Local Wire and reg decleration for I/Os

*/

wire u_clk; wire

tx_done;

reg [7:0] dat = 8'h31;

//reg tx_cm;

//reg [15:0]c1;

wire [3:0]lcddata_in; wire
rx_rdy;

baud b1(
.sys_clk(clk),

.sys_rst_l(rst),

.baud_clk(u_clk)

);

u_xmitt1(.sys_clk(u_clk),

.sys_rst_l(rst),

.uart_xmitH(tx),

.xmitH(tx_cmd_i),

.xmit_dataH(tx_data_i),

.xmit_doneH(tx_done_o)

);

u_recr1(.sys_rst_l(rst),

.sys_clk(u_clk),

.uart_dataH(rx),

.rec_dataH(lcddata_in),

.rec_readyH(rx_rdy)
);

lcd_dis lcd1(.clk(clk),

.rs(lcd_rs),

67

.en(lcd_en),

//.rw(lcd_rw),

.data(lcd_dat),

.wr_sig(rx_rdy),

.data_in(lcddata_in)
);

/*

always @(posedge u_clk or negedge rst) begin

if(~rst)

else

begin
c1 <= 16'd0;
end

begin
c1 <= c1 + 16'd1; if(c1 ==16'd1000)

tx_cm <= 1'b1; if(c1

==16'd1010)

begin

tx_cm <= 1'b0; end

end

*/

end

assign rx_data_o = lcddata_in; assignrx_rdy_o

=rx_rdy;

endmodule

/**/

FPGA UCF FILE

/**/

#PACE: Start of Constraints generated by PACE #PACE:

Start of PACE I/O Pin Assignments

NET"clk" LOC="p80" ;

NET"lcd_dat[0]" LOC="p2" ;
NET"lcd_dat[1]" LOC="p3" ;

NET"lcd_dat[2]" LOC="p4" ;

NET"lcd_dat[3]" LOC="p5" ;

NET"lcd_en" LOC="p16"

NET"lcd_rs" LOC="p15"
LOC="p6"

;
; NET"rst"
;

NET"rx" LOC="p120" ;
NET "rx_data_o[0]" LOC = "p168" ; NET
"rx_data_o[1]" LOC = "p171" ; NET

"rx_data_o[2]" LOC = "p172" ; NET

"rx_data_o[3]" LOC = "p177" ; NET

"rx_data_o[4]" LOC = "p178" ; NET

"rx_data_o[5]" LOC = "p179" ; NET
"rx_data_o[6]" LOC = "p180" ; NET

"rx_data_o[7]" LOC = "p181";

68

NET"rx_rdy_o" LOC="p200" ;

NET"tx" LOC="p119" ;

NET "tx_cmd_i" LOC = "p197";
NET "tx_data_i[0]" LOC = "p185" ; NET
"tx_data_i[1]" LOC = "p186" ; NET

"tx_data_i[2]" LOC = "p187" ; NET

"tx_data_i[3]" LOC = "p189" ; NET
"tx_data_i[4]" LOC = "p190" ; NET

"tx_data_i[5]" LOC = "p192" ; NET

"tx_data_i[6]" LOC = "p193" ; NET
"tx_data_i[7]" LOC = "p196" ; NET

"tx_done_o" LOC = "p199";

#PACE: Start of PACE Area Constraints #PACE: Start of

PACE Prohibit Constraints #PACE: End of Constraints

generated by PACE

Post Lab Questions

1. What are basically ARM processors?

2. Compare RISC and CISC.

3. How to interface interrupts?

4. Explain the importance of using LPC2148 Development board.

5. List out the applications of ARM.

Result

The C-Language program for Interrupt performance characteristics between ARM and FPGA and

its characteristics was studied.

69

9. Flashing of LEDS

Aim

To develop a ‘C’ program to make the LED blink (including delay routine). Upon change in

the delay program the speed should vary.

Pre Lab Questions

1. What is seven segment displays?

2. Where LEDs are used?

3. What are the different configurations of LED?

4. What is the use of flash magic software?

5. Differentiate LED from LCD.

Apparatus & Software Required

1. LPC2148 Development board.

2. KeilµVision 5 software.

3. Flash Magic.

4. USB cable.

Theory

LEDs are based on the semiconductor diode. When the diode is forward biased (switched on),

electrons are able to recombine with holes and energy is released in the form of light. This effect

is called electroluminescence and the color of the light is determined by the energy gap of the

semiconductor.

Procedure

1. Follow the steps to create a New project

2. Type the below code and save it with the name (anyname.c)

3. Follow the steps to create a New Project to compile and build the program

4. Follow the procedures in to download your Hex code to processor using Flash

Magic Software.

70

/* This is a test program to make the LEDs L2 and L3 Blink in theARMLPC2148 */

Development board itself
/**/

#include<LPC214x.H> /* LPC214x definitions*/

voidwait(void) /* wait function*/

{

int d;

for (d = 0; d <1000000;d++); /* only to delay for LED flashes*/

}

int main (void)

{

IODIR0=0x80002000; /* P0.13 and P0.31 defined as Outputs*/

while(1) /* Loop forever*/

{

IOCLR0=0x80002000; /*Active Low outputs makes the

LEDsON*/

wait ();

OFF*

/

IOSET0=0x80002000; /* High outputs makes the LEDs

wait();

}

}

FLASHING LED PROGRAM PORT DETAILS

ARM DETAILS

P0.13 LED PIN

P0.31 LED PIN

Post Lab Questions

1. What is the function of GPIO?

2. What are the Pins which are used to connect LEDs?

3. How to identify 'Polarity' of LED?

4. What is a use of Jumper?

5. Which port is used in ARM 7 processor kit?

Result

The C-Language program to make the LED blink was developed and output was verified. Upon

change in the delay program the speed variation was verified.

71

10. INTERFACING STEPPER MOTOR

ANDTEMPERATURE SENSOR

Aim

To write C Programs for running stepper motor either in clock- wise or counter-clock- wise and

the direction of the rotation of the stepper motor depends on the variation in the temperature

sensor.

Pre Lab Questions

1. What is LM35?

2. List the devices used to sense temperature.

3. What is the purpose of a thermocouple?

4. What is signal conditioning?

5. What is the output voltage of a thermocouple?

Apparatus & Software Required

1. LPC2148 Development board.

2. KeilµVision 5 software.

3. Flash Magic.

4. USB cable.

5. Stepper Motor.

Theory

Stepper motors, effectively have multiple "toothed" electromagnets arranged around a central

metal gear. To make the motor shaft turn, first one electromagnet is given power, which makes

the gear's teeth magnetically attracted to the electromagnet's teeth. When the gear's teeth are thus

aligned to the first electromagnet, they are slightly offset from the next electromagnet.

72

So when the next electromagnet is turned on and the first willturn off, the gear rotates slightly to

align with the next one and from there the process is repeated. Each of those slight rotations is

called a "step." In that way, the motor can be turned to a précised angle. There are two basic

arrangements for the electromagnetic coils: bipolar and unipolar.

Procedure

1. Follow the steps to create a New project

2. Type the below code and save it with the name (anyname.c)

3. Follow the steps to create a New Project to compile and build the program

4. Follow the procedures in to download your Hex code to processor using Flash

Magic Software.

STEPPER MOTOR PROGRAM

/* This is a test program to stepper motor interface in theARMLPC2148 */

/* developmentboarditself */

/**/

#include<LPC214x.H> /* LPC214x definitions*/

#definestep1 0x00010000 /* P1.16 */

#definestep2 0x00020000 /* P1.17 */

void wait (void)

{ /* wait function*/
int d;
for (d = 0; d <10000;d++); /* only to delay for LED flashes*/

}

call_stepper_forw()

{

IOCLR1 = 0X00FF0000;

IOSET1 = 0X00040000;

//wait();
//wait();

wait();

wait();
IOCLR1 = 0X00FF0000;

IOSET1 = 0X00060000;

//wait();

//wait();

73

wait();
wait();
IOCLR1 = 0X00FF0000;
IOSET1 = 0X00070000;

//wait();
//wait();

wait();
wait();
IOCLR1 = 0X00FF0000;
IOSET1 = 0X00050000;

//wait();
//wait();

wait();
wait();

}

int main (void)
{

IODIR1 |= 0xFFFFFFFF; IOCLR1

|= 0X00FF0000;
wait();

while(1) /*LoopForever*/
{

call_stepper_forw();
// wait();
// wait();

wait();
wait();

IOCLR1 = 0X00FF0000;
}

}

STEPPER MOTOR PROGRAM PORT DETAILS

ARM DETAILS

P1.16 STEP 1

P1.17 STEP 2

74

TEMPERATURE SENSOR PROGRAM

/***/

MAIN ADC TEST

/***/

/* This is a test program to temperature sensor in the ARM LPC2148 developmentboard*/

/**/

#include<LPC214x.H> /* LPC214x definitions*/

#include"ADC_Driver.c" /* contains prototypes of driverfunctions*/ #include"lcd.c"
#include <stdio.h>

int main (void)

{

unsigned int adc_val;

unsigned int temp;

unsigned char buf[4] ={0,0,0,0}; ADCInit();

lcdinit();

//wait();

clrscr(10);

printstr("ADC Test",0,0); wait();

while(1) /* Loop forever*/

{
adc_val = ADC_ReadChannel();

temp = (unsigned int)((3*adc_val*100)/1024);

sprintf(buf,"%d",temp);

printstr(buf,0,1);

}

}

/**/

LCD.C

/**/

#include <LPC214x.h>

#defineRS 0x00000400 /* P0.10 */
#defineCE 0x00001800 /* P1.11 */

void clrscr(char ch); void

lcdinit(void); void

lcdcmd(char); void

lcddat(char);

void gotoxy(char,char); //x,y ; x-char position(0 - 16) y-line number 0 or1
void printstr(unsignedchar*,char,char); //string,column(x),line(y)

void wait (void);

void split_numbers(unsigned int number);

#define SET1
#define OFF0

75

unsigned int thousands,hundreds,tens,ones;

voidwait(void) { /* wait function */

intd;

for (d = 0; d <100000;d++); /* only to delay for LED flashes*/

}

void lcdinit()

{

IODIR0 |= 0xFFFFFFFF;

IOCLR0 |= 0X00000FFF;

lcdcmd(0x28);lcd

cmd(0x28);

lcdcmd(0x0c);

lcdcmd(0x06);

lcdcmd(0x01);

lcdcmd(0x0f);

wait();
}

void gotoxy(char x, char y)

{

if(y == 0)

lcdcmd(0x80+x);

else
lcdcmd(0xc0+x);

}

void printstr(unsigned char *str, char x, char y)

{

char i; gotoxy(x,y);
wait();//(500);

for(i=0;str[i]!='\0';i++)lcddat(str[i

]);

}

void lcdcmd(charcmd)

{
unsigned charLCDDAT;

LCDDAT = (cmd&0xf0); //higher nibble

IOSET0 =LCDDAT;
IOCLR0 = RS;

IOSET0 = CE;

wait();//(100); //enablelcd

IOCLR0 = CE;

IOCLR0 = 0X00000FFF;

LCDDAT = ((cmd<<0x04)&0xf0); //lower nibble

IOSET0 =LCDDAT;

IOCLR0 = RS;

IOSET0 = CE;

wait();//(100); //enablelcd

IOCLR0 = CE;

IOCLR0 = 0X00000FFF;

}

void lcddat(char cmd)

76

{

unsigned charLCDDAT;

LCDDAT = (cmd&0xf0); //higher nibble

IOSET0 =LCDDAT;

IOSET0 = RS;

IOSET0 = CE;

wait();//(100); //enablelcd

IOCLR0 = CE;

IOCLR0 = 0X00000FFF;

LCDDAT = ((cmd<<0x04)&0xf0); //lower nibble

IOSET0 =LCDDAT;
IOSET0 = RS;

IOSET0 = CE;

wait();//(100); //enablelcd

IOCLR0 = CE;

IOCLR0 = 0X00000FFF;

}

void clrscr(char ch)

{

if(ch==0)

{

printstr(" ",0,0);

gotoxy(0,0);
}

else if(ch ==1)

{

}

else

{

}

}

printstr(" ",0,1);

gotoxy(0,1);

lcdcmd(0x01);

//delay(100);

void split_numbers(unsigned int number)
{

thousands = (number /1000);

number %= 1000;

hundreds = (number / 100);

number %= 100;

tens = (number / 10);

number %= 10;

ones = number ;
}

void Wait_Msg(void)

{

lcdcmd(0x01);

printstr(" Please Wait ", 0,0);

}

void Welcome_Msg(void)

{

lcdcmd(0x01);

printstr(" Welcometo ", 0,0);

printstr(" SMMICRRO ", 0,1);

}

77

ADC_ DRIVER.C

/**/

#include<LPC214x.H> /* LPC214x definitions */
Void ADCInit(void)

{
PINSEL1|=0x04000000; /*For Channel AD0.2 is P0.29*/
IODIR0 |=~(0x04000000);
AD0CR |=0x00200204; /*0x04 selects AD0.2 to mux output, 0x20 makes ADCin operational*/
AD0GDR; /*A read on AD0GDR clears the DONEbit*/

}

void ADC_StartConversion(void)
{

AD0CR |= (1<<24);
}

void ADC_StopConversion(void)
{

AD0CR &= (~(1<<24));
}

unsigned int ADC_ReadChannel(void)
{

// unsigned int i; unsigned long
ADC_Val, t;
ADC_StartConversion();
while((AD0DR2&0x80000000)==0); /*wait until ADC conversion completes*/
if(AD0STAT & 0x00000400)

{
//printstr("OVR",0,1);return(0);

}

t = AD0DR2;
ADC_Val = ((t>>6) & 0x000003FF);//(AD0DR2 & 0x000003FF); //((AD0CR>>6) & 0x000003FF);
//ADC_StopConversion();return(
ADC_Val);

}.

TEMPERATURE SENSOR PROGRAM PORT DETAILS

ARM DETAILS

P0.29 ADC0.2

PO.10 RS LCD PIN

P1.11 CE LCD PIN

Post Lab Questions

1. Why LM35 is used to Measure Temperature?

2. Compare the difference between LM 34 and LM 35 sensors?

3. What is the operating temperature range in LM35?

4. How many pins are available in LM35?

5. What is the main function of analog pin in LPC 2148?

Result
The C-Language program for running stepper motor either in clock-wise or counter-clock-wise

Depending on the temperature is developed in the sensor LM35 and the output is verified in LCD.

78

Aim

11. Implementing zigbee protocol with ARM

To write C Programs for Zigbee Protocol and verify the communication between Xbee Module

Transmitter and Receiver.

Pre Lab Questions

1. What are the applications of zigbee protocol?

2. Why Zigbee based is preferred for wireless communication?

3. What is the function of a scheduler?

4. What is the main function of voltage convertors in UART?

5. List the advantages of using Zigbee protocol.

Apparatus & Software Required

1. LPC2148 Development board.

2. KeilµVision 5 software.

3. Flash Magic.

4. USB cable.

5. Zigbee Module Tx and Rx.

Theory

The X Bee/X Bee-PRO ZNet 2.5 (formerly known as Series 2 and Series 2 PRO) RF Modules

were directed to operate within the ZigBee protocol. The modules provide reliable delivery of

data between remote devices. Zigbee is the communication protocol like wifi and Bluetooth. Xbee

is the module using Zigbee protocol

Some of its features are:

ZigBee is targeted at radio-frequency (RF) applications

Low data rate, long battery life, and secure networking

Transmission range is between 10 and 75 meters (33~246 feet)

The addressing space allows of extreme node density—

up to 18,450,000,000,000,000,000 devices (64 bit IEEE address)

79

Using local addressing, simple networks of more than 65,000 nodes can be configured,

with reduced address overhead

The radios use direct-sequence spread spectrum coding, which is managed by the digital

stream into the modulator.

To ensure reliable data transmission

Binary phase shift keying (BPSK) in the 868/915 MHz

Offset quadrature phase shift keying (O-QPSK) at 2.4 GHz

Procedure

1. Follow the steps to create a New project

2. Type the below code and save it with the name (anyname.c)

3. Follow the steps to create a New Project to compile and build the program

4. Follow the procedures in to download your Hex code to processor using Flash

Magic Software.

80

/**/

ARM TRANSMITTER

PROGRAMLCD.C

/**/

#include <LPC214x.h>

#include "lcd.h"

#defineRS 0x00000400 /* P0.10 */

#defineCE 0x00001800 /* P1.11 */

/*void clrscr(char ch); void

lcdinit(void);

voidlcdcmd(char);

voidlcddat(char);
void gotoxy(char,char); //x,y ; x-char position(0 - 16) y-line number 0 or1

voidprintstr(char*,char,char); //string,column(x),line(y)

void wait (void);

void split_numbers(unsigned int number);*/

#define SET1

#define OFF0

unsigned int thousands,hundreds,tens,ones; void wait

(void)

{ /* wait function*/

int d;

for (d = 0; d <100000;d++); /* only to delay for LED flashes*/
}

void lcdinit()
{

IODIR0 |= 0xFFFFFFFF;

IOCLR0 |= 0X00000FFF;

lcdcmd(0x28);lcd

cmd(0x28);

lcdcmd(0x0c);

lcdcmd(0x06);

lcdcmd(0x01);

lcdcmd(0x0f);

wait();

}

void gotoxy(char x, char y)

{

if(y == 0)

lcdcmd(0x80+x);

else

lcdcmd(0xc0+x);

}

void printstr(char *str, char x, char y)

{

char i; gotoxy(x,y);

wait();//(500);

for(i=0;str[i]!='\0';i++)

81

lcddat(str[i]);

}

void lcdcmd(charcmd)

{

unsigned charLCDDAT;

LCDDAT = (cmd&0xf0); //higher nibble

IOSET0 =LCDDAT;

IOCLR0 = RS;

IOSET0 = CE;

wait(); //(100);
//enable lcd

IOCLR0 = CE;
IOCLR0 = 0X00000FFF;

LCDDAT = ((cmd<<0x04)&0xf0); //lower nibble

IOSET0 =LCDDAT;

IOCLR0 = RS;

IOSET0 = CE;

wait();//(100); //enablelcd
IOCLR0 = CE;

IOCLR0 = 0X00000FFF;

}

void lcddat(char cmd)

{

unsigned charLCDDAT;
LCDDAT = (cmd&0xf0); //higher nibble

IOSET0 =LCDDAT;

IOSET0 = RS;

IOSET0 = CE;

wait();//(100); //enablelcd

IOCLR0 = CE;
IOCLR0 = 0X00000FFF;

LCDDAT = ((cmd<<0x04)&0xf0); //lower nibble
IOSET0 =LCDDAT;

IOSET0 = RS;

IOSET0 = CE;

wait();//(100); //enablelcd

IOCLR0 = CE;

IOCLR0 = 0X00000FFF;
}

void clrscr(char ch)

{

if(ch==0)

{

printstr(" ",0,0);

gotoxy(0,0);

}

else if(ch ==1)

{

}

else

{

}

printstr(" ",0,1);

gotoxy(0,1);

lcdcmd(0x01);

//delay(100);

82

}

void split_numbers(unsigned int number)

{

thousands = (number /1000);

number %= 1000;

hundreds = (number / 100);

number %= 100;

tens = (number / 10);

number %= 10;

ones = number ;

}

void Wait_Msg(void)

{

lcdcmd(0x01);

printstr(" Please Wait ", 0,0);

}

void Welcome_Msg(void)
{

lcdcmd(0x01);

printstr(" Welcometo ", 0,0);

printstr(" SMMICRRO ", 0,1);

}

/***/

LCD.h

/***/

void clrscr(char ch); void

lcdinit(void); void

lcdcmd(char); void

lcddat(char);

void gotoxy(char,char); //x,y ; x-char position(0 - 16) y-line number 0 or1

voidprintstr(char*,char,char); //string,column(x),line(y)

void wait (void);

void split_numbers(unsigned int number); void

Wait_Msg(void);

void Welcome_Msg(void);

/**/

UART_1.C

/**/

#include <LPC214X.H>

#include "lcd.c"

#define TEMT0X40

void uart_1(void);

voiddelay(void);

void putcharr (unsignedcharch); /* Writes character to Serial Port*/

void tx_string(charstr);

int main(void)

{

uart_1();

lcdinit();dela

y();

delay();

83

delay();

delay();

printstr("SM MICRRO SYSTEM",0,0);
while(1)

{

tx_string('C');

gotoxy(7,1);

lcddat('C');delay

();

delay();
delay();
delay();
while(1);

}

}

void uart_1(void)

{

PINSEL0 = 0x00050000;

U1LCR = 0x83;

U1FDR = 0x00000010;

U1DLL = 98;

U1LCR = 0x03;

U1IER = 0x01;

}

void delay(void)

{

int d;

for (d = 0; d <100000;d++); /* only to delay for LED flashes*/

}

void tx_string(char str)

{

putcharr(str);

}

void putcharr (unsignedcharch) /* Writes character to SerialPort*/
{

while (!(U1LSR&TEMT)); /* U1LSR --> Statusregister

*/

U1THR = ch;
}

/**/

ARM RECEIVERPROGRAM

/**/

#include <LPC214X.H>

#include "lcd.c"

void uart_1(void); void

delay(void);

unsigned chargetcharr(void); /* Reads character from SerialPort*/

int main(void)

{

char rx_data;
uart_1();

lcdinit();

printstr("SM MICRRO SYSTEM",0,0);
while(1)

{

84

ARM Details

P0.8 TXD1

P0.9 RXD1

P0.10 RS LCD PIN

P1.11 CE LCD PIN

ARM Details

P0.8 TXD1

P0.9 RXD1

P0.10 RS LCD PIN

P1.11 CE LCD PIN

Port*/

}

}

rx_data=getcharr(); /* Reads character fromSerial

gotoxy(7,1);

lcddat(rx_data);

voiduart_1(void) /* UART Installation*/

{

PINSEL0 = 0x00050000;

U1LCR = 0x83;

U1FDR = 0x00000010;

U1DLL = 98;

U1LCR = 0x03;

U1IER = 0x01;

}

void delay(void)

{

int d;

for (d = 0; d <100000;d++); /* only to delay for LED flashes*/

}

unsigned chargetcharr(void) /* Reads character from SerialPort*/
{

while (!(U1LSR & 0x01));

return (U1RBR);
}

Implementing zigbee protocol with ARM PROGRAMS PORTDETAIL

TRANSMITTER PROGRAM RECEIVER PROGRAM

Post Lab Questions

1. How to verify the communication between Transmitter and Receiver?

2. Which module is using Zigbee protocol?

3. How many UART ports available in LPC2148?

4. Write the two modes of communication are used in a ZigBee network.

5. Mention the transmission range for Zigbee protocol.

Result

The C-Language program for Zigbee Protocol is written and the communication between

Xbee Module Transmitter and Receiver is verified.

84

12. SIMULATION USING PROTEUS

SOFTWARE –AN INTRODUCTION

Aim
To simulate a multivibrator using Proteus Software and

check its functionality by verifying its output with an simulated

LED.

Pre Lab Questions
1. What is the need for a simulationtool?

2. What is Proteus Software?

3. List the feature of Proteus Software?

4. List some of the design tools in proteus software?

5. Give any 3 gadgets available in the proteus software?

Procedure

Step1:

Start All Programs Proteus xx Professional

ISIS xxProfessional

85

Note:

Identify the components

The MenuBar

TheToolbars

Command Toolbars

86

Mode Selector Toolbar

Orientation Toolbar

Simulation Toolbar

Construct the following multivibrator circuit using analog and digital components and

simulate it,

87

The Components needed are,

Resistors 4.7kΩ ,1kΩ 330Ω , 100k (variable resistor)

Capacitors 10uF ,0.01uF

IC NE555

LED

Power supply

Step 2:

Choose required components from the component library in

editingcommands.

88

Then the component library window will appear

Step 3

Then choose the all require components and put into the main window.

89

1. Select “Analog ICs” inCategory

2. Then select “555 ANALOGTIME/OSCILATOR”

3. Next click onOK

4. Finally component put into mainwindow

90

Following the same procedure, place all the required components to main window

91

Step 4

Connect all the components as the above circuit diagram by using connecting lines. We can

get connecting lines by selectingendsofthecomponentsasshowsinfollowingfigure.

Then complete the circuit using connecting lines as following figure…..

92

Step 5

Now make sure all the components correctly connected. Then go the simulation tool bar.

To start the simulation click on play button.

Then start the simulation if there are any errors the

simulation must be fail and give error messages.

93

Check the output by inspecting the status of the LED.

Post Lab Questions
1. What is mode selector tool bar

2. What is orientation tool bar

3. What is the need for simulation tool bar?

4. What is the frequency of the output obtained in simulation?

5. What is the name of the library under which 555IC is located?

Result

Thus the Multivibrator is simulated using Proteus Software and the output is

observed.

94

95

13. SIMULATION OF CALCULATOR USING 8051

MICROCONTROLLER IN PROTEUS

SOFTWARE

Aim

To simulate a simple calculator using 8051microcontroller in Proteus Software.

Pre Lab Questions
1. List some of the microprocessor supported by proteus software

2. List the required arithmetic operations to be performed by the calculator?

3. Write down the features of 8051 microcontroller

4. What is the difference between microprocessor and microcontroller?

5. What is the size of the data bus in 8051 microcontroller?

Procedure

The calculator we are going to design is quite basic calculator, it will only perform 4 tasks, which

are as follows:

 When you press the (+) button then it will add the two digits. For example, you want to

add 2 and 3 then you need to press 2 + 2 = these four buttons in sequence and when you

press the = button it will automatically will give you the sum.

 When you press (-) button it will subtract the two digits like 3 – 2 = and it will give you

the result.

 When you press (x) button it will multiply the two digits.

 When you press the (/) button it will simply divide the two digits.

 Whenever you press the (=) button, it will give you the output

 depending on the function you used before and if you press (=) in the start then it will give

“Wrong Input”.

 Finally,there’s(ON/C)button on the Calculator, when you press this it will simply reset the

code and will clear theLCD.

 So,that’show this calculator is goanna work. More over, it will always reset when you try

to calculate new value.

 As its a simple calculator, so its only limited to 1 digit, means it will only apply the

operation on single digit input like 2+3 but it won’t work on more than 1 digit like 12 +13.

 After that, we will do the coding part for calculator with 8051 Microcontroller.

 So, now let’s get started with Proteus Simulation.

96

 ProteusSimulation

 TheProteusSimulationofthisCalculatorwith8051 Microcontroller and is shown in

belowfigure:

 ProgrammingCode

1 while(1)

2 {

3 //getnumb1

4 key =get_key();

5 writecmd(0x01); //cleardisplay
6 writedata(key); //Echo the key pressed toLCD

7 num1=get_num(key); //Get int number from char value, it checksfor
8

9 wrong input as well

10 if(num1!=Error) //if correct input then proceed,num1==Error
11 means wrong input
12 {
13 //getfunction
14 key =get_key();

15 writedata(key); //Echo the key pressed toLCD
16 func=get_func(key); //it checks for wrong func 17
18 if(func!='e') //if correct input thenproceed,

19 func=='e' means wrong input 20
{

21 //getnumb2

22 key =get_key();

23 writedata(key); //Echo the key pressed toLCD
24 num2=get_num(key); //Get int number fromchar
25 value, it checks for wrong input as well 26
27 if(num2!=Error) //if correct inputthen

28 proceed, num2==Error means wronginput

97

29
30

31
32
33

34
35 proceed
36

37
38
39
40
41
42
43

44
45

{
//get equal sign key =
get_key();

writedata(key); //Echo the key pressed to LCD if(key=='=')

//if = is pressedthen

{
switch(func) //switch onfunction
{
case '+': disp_num(num1+num2); break; case '-':
disp_num(num1-num2); break; case 'x':

disp_num(num1*num2); break; case '/':
disp_num(num1/num2); break;
}

}
else //key other then=

46 here means error wronginput 47 {
48

49 pressed then clear screen andreset

input error

if(key=='C') //if clear screenis

writecmd(0x01); //Clear Screen DispError(0);

else
//Displaywrong

}
}

}

}
}

 As you can see in the above function, first check for thefirst keypress.

 When you pressed the first key on keypad then I get this key and converter it tointeger.

 AfterthatIwaitedforthenextkeywhichmustbesomeoperation keylike+–

Xor/otherwiseitwillgeneratetheerrormessage.

 After that code is waiting for the third key which should be

somenumericaldigitandthenItconvertsittointegeragainand if you entered some invalid key

then it will generate theerror.

 Finally waiting for the = sign. When you press the = sign it will automatically perform the

required operation which Iplaced in the switch caseloop.

 It will calculate the value and then print out the result and

onnextkeypressitwillfirstclearthescreenandthengetthe value and willcontinue.

 Below is the detailed code for the project withcomments

1 #include<reg51.h>

2 #include<string.h>3
4 //DefineMacros

5 #defineError 13 // Any value other than 0 to 9 is good here 6

7 //Functiondeclarations

8 voidcct_init(void);

9 voiddelay(int);

10 voidlcdinit(void);

98

11 voidwritecmd(int);

12 voidwritedata(char);

13 voidwriteline(char[]);

14 voidReturnHome(void);

15 charREAD_SWITCHES(void);

16 charget_key(void);

17 intget_num(char);
18 charget_func(char);

19 voidDispError(int);

20 voiddisp_num(int);

21 void WebsiteLogo();

22 22
23 /
24 //Pindescription

25 /*

26 P2 is databus

27 P3.7 isRS

28 P3.6 isE

29 P1.0 to P1.3 are keypad rowoutputs
30 P1.4 to P1.7 are keypad column inputs 31

*/
32 //********************

33 // DefinePins

34 //********************
35 sbit RowA = P1^0; //RowA
36 sbit RowB = P1^1; //RowB
37 sbit RowC = P1^2; //RowC
38 sbit RowD = P1^3; //RowD
39

40 sbit C1 = P1^4; //Column1
41 sbit C2 = P1^5; //Column2
42 sbit C3 = P1^6; //Column3
43 sbit C4 = P1^7; //Column4
44

45 sbit E = P3^6; //E pin for LCD
46 sbit RS = P3^7; //RS pin for LCD
47

48 //***
49 // Mainprogram

50 //

51 intmain(void)

52 {

53 charkey; //key char for keeping record ofpressed
54 key
55 int num1=0; //Firstnumber
56 char func='+'; //Function to be performed amongtwo

57 numbers

58 int num2=0; //Second number 59

60 cct_init(); //Make input and output pins asrequired

61 lcdinit(); //InitilizeLCD

62 WebsiteLogo();

63 while(1)

64 {

65 WebsiteLogo();

66 //getnumb1

67 key =get_key();

68 writecmd(0x01); //cleardisplay

69 WebsiteLogo();

70 writedata(key); //Echo the key pressed toLCD

71 num1=get_num(key); //Get int number from char value, itchecks

72 for wrong input as well 73

74 if(num1!=Error) //if correct input then proceed,num1==Error

75 means wrong input 76

 {

77 //getfunction

78 key =get_key();

79 writedata(key); //Echo the key pressed toLCD

80 func=get_func(key); //it checks for wrong func 81

99

82 if(func!='e') //if correct input thenproceed,
83 func=='e' means wrong input
84 {
85 //get numb2
86 key = get_key();
87 writedata(key); //Echo the key pressed toLCD
88 num2=get_num(key); //Get int number fromchar
89 value, it checks for wrong input as well
90

91 if(num2!=Error) //if correct inputthen
92 proceed, num2==Error means wrong input
93 {
94 //get equal sign
95 key = get_key();
96 writedata(key); //Echo the key pressedto
97 LCD
98

99 if(key=='=') //if = is pressedthen
100 proceed
101 {
102 switch(func) //switch onfunction
103 {
104 case '+': disp_num(num1+num2); break;
105 case '-': disp_num(num1-num2); break;
106 case 'x': disp_num(num1*num2); break;
107 case '/': disp_num(num1/num2); break;
108 }
109 }
110 else //key other then=
111 here means error wrong input
112 {
113 if(key=='C') //if clear screenis

123 WebsiteLogo();

124 }

125 }

126 }

127 }

128 }

129 }

130 }

131

132 void WebsiteLogo()

133 {

134 writecmd(0x95);

135 writedata('w'); //write
136 writedata('w'); //write
137 writedata('w'); //write
138 writedata('.'); //write
139 writedata('T'); //write
140 writedata('h'); //write
141 writedata('e'); //write
142 writedata('E'); //write
143 writedata('n'); //write
144 writedata('g'); //write
145 writedata('i'); //write
146 writedata('n'); //write
147 writedata('e'); //write
148 writedata('e'); //write
149 writedata('r'); //write
150 writedata('i'); //write
151 writedata('n'); //write
152 writedata('g'); //write

114 pressed then clear screen and reset
115 {

116 writecmd(0x01); //Clear Screen

117 WebsiteLogo();

118 }

119 else

120 {

121 DispError(0); //Display wrong
122 input error

100

153

154 writecmd(0xd8);

155

156 writedata('P'); //write

157 writedata('r'); //write

158 writedata('o'); //write

159 writedata('j'); //write

160 writedata('e'); //write

161 writedata('c'); //write

162 writedata('t'); //write

163 writedata('s'); //write

164 writedata('.'); //write

165 writedata('c'); //write

166 writedata('o'); //write

167 writedata('m'); //write

168 writecmd(0x80);
169 }

170

171 voidcct_init(void)
172 {
173 P0=0x00; //notused

174 P1=0xf0; //used for generating outputs and taking inputs fromKeypad

175 P2=0x00; //used as data port forLCD

176 P3=0x00; //used for RS andE
177 }

178

179 void delay(inta)

180 {

181 inti;

182 for(i=0;i<a;i++); //nullstatement
183 }

184

185 void writedata(chart)

186 {

187 RS=1; // This isdata

188 P2=t; //Datatransfer

189 E =1; // => E = 1
190 delay(150);

191 E =0; // => E = 0

192 delay(150);

193 }

194

195

196 void writecmd(int z)

197 {

198 RS = 0; // This is command
199 P2=z; //Datatransfer
200 E =1; // => E =1
201 delay(150);

202 E =0; // => E =0
203 delay(150);

204 }

205

206 void lcdinit(void)

207 {

208 ///////////// Reset process from datasheet /////////
209 delay(15000);

210 writecmd(0x30);

211 delay(4500);

212 writecmd(0x30);

213 delay(300);

214 writecmd(0x30);

215 delay(650);

216 ///

217 writecmd(0x38); //functionset
218 writecmd(0x0c); //display on,cursor off,blinkoff
219 writecmd(0x01); //cleardisplay
220 writecmd(0x06); //entry mode, setincrement
221 }

222 voidReturnHome(void) /* Return to 0 cursor location*/

101

223

224 {

225 writecmd(0x02);

226 delay(1500);

227 WebsiteLogo();

228 }

229

230 void writeline(char Line[])

231 {

232 int i;

233 for(i=0;i<strlen(Line);i++)

234 {

235 writedata(Line[i]); /* Write Character*/
236 }

237

238 ReturnHome(); /* Return to 0 cursor position*/
239 }

240

241 char READ_SWITCHES(void)

242 {

243 RowA = 0; RowB = 1; RowC = 1; RowD = 1; //Test Row A

244

245 if (C1 == 0) { delay(10000); while (C1==0); return '7'; }
246 if (C2 == 0) { delay(10000); while (C2==0); return '8'; }
247 if (C3 == 0) { delay(10000); while (C3==0); return '9'; }
248 if (C4 == 0) { delay(10000); while (C4==0); return '/'; }
249

250 RowA = 1; RowB = 0; RowC = 1; RowD = 1; //Test Row B
251 if (C1 == 0) { delay(10000); while (C1==0); return '4'; }
252 if (C2 == 0) { delay(10000); while (C2==0); return '5'; }
253 if (C3 == 0) { delay(10000); while (C3==0); return '6'; }
254 if (C4 == 0) { delay(10000); while (C4==0); return 'x'; }
255

256

257 RowA = 1; RowB = 1; RowC = 0; RowD = 1; //Test Row C

258

259 if (C1 == 0) { delay(10000); while (C1==0); return '1'; }
260 if (C2 == 0) { delay(10000); while (C2==0); return '2'; }
261 if (C3 == 0) { delay(10000); while (C3==0); return '3'; }
262 if (C4 == 0) { delay(10000); while (C4==0); return '-'; }
263

264 RowA = 1; RowB = 1; RowC = 1; RowD = 0; //Test Row D

265

266 if (C1 == 0) { delay(10000); while (C1==0); return 'C'; }
267 if (C2 == 0) { delay(10000); while (C2==0); return '0'; }
268 if (C3 == 0) { delay(10000); while (C3==0); return '='; }
269 if (C4 == 0) { delay(10000); while (C4==0); return '+'; }
270

271 return'n'; // Means no key has beenpressed

272 }

273
274 charget_key(void) //get key fromuser
275 {

276 char key='n'; //assume no key pressed 277

278 while(key=='n') //wait untill a key ispressed

279 key=READ_SWITCHES(); //scan the keys again and again 280
281 returnkey; //when key pressed then return itsvalue
282 }

283
284 int get_num(char ch) //convert char into int
285 {

286 switch(ch)

287 {

288 case '0': return 0; break;
289 case '1': return 1; break;
290 case '2': return 2; break;
291 case '3': return 3; break;
292 case '4': return 4; break;
293 case '5': return 5; break;
294 case '6': return 6; break;

102

Post Lab Questions
1. What is the need for LCD in the project?

2. What is the need for ADC in the Project?

3. What are the arithmetic operations done in the simulation?

4. What is the need for RESET button in the project?

5. What is the operating frequency of the microcontroller?

Result

Thus the calculator was simulated using8051microcontroller in Proteus Software.

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

EC8711 EMBEDDED LABORATORY

Semester - 07

LABORATORY MANUAL

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Vision

To excel in providing value based education in the field of Electronics and
Communication Engineering, keeping in pace with the latest technical developments
through commendable research, to raise the intellectual competence to match global
standards and to make significant contributions to the society upholding the ethical
standards.

Mission

 To deliver Quality Technical Education, with an equal emphasis on theoretical
and practical aspects.

 To provide state of the art infrastructure for the students and faculty to upgrade
their skills and knowledge.

 To create an open and conducive environment for faculty and students to carry
out research and excel in their field of specialization.

 To focus especially on innovation and development of technologies that is
sustainable and inclusive, and thus benefits all sections of the society.

 To establish a strong Industry Academic Collaboration for teaching and research,
that could foster entrepreneurship and innovation in knowledge exchange.

 To produce quality Engineers who uphold and advance the integrity, honour and
dignity of the engineering.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

1. To provide the students with a strong foundation in the required sciences in order
to pursue studies in Electronics and Communication Engineering.

2. To gain adequate knowledge to become good professional in electronic and
communication engineering associated industries, higher education and
research.

3. To develop attitude in lifelong learning, applying and adapting new ideas and
technologies as their field evolves.

4. To prepare students to critically analyze existing literature in an area of
specialization and ethically develop innovative and research oriented
methodologies to solve the problems identified.

5. To inculcate in the students a professional and ethical attitude and an ability to
visualize the engineering issues in a broader social context.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1: Design, develop and analyze electronic systems through application of relevant

electronics, mathematics and engineering principles.

PSO2: Design, develop and analyze communication systems through application of

fundamentals from communication principles, signal processing, and RF System Design
& Electromagnetics.

PSO3: Adapt to emerging electronics and communication technologies and develop
innovative solutions for existing and newer problems.

Page 3 of 73

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

VII SEM – E.C.E.

EC 8761- ADVANCED COMMUNICATION LABORATORY

CYCLE I

1. Measurement of connector, bending and fiber attenuation losses

2. Numerical Aperture and Mode Characteristics of fibers

3. DC Characteristics of LED and PIN Photo diode

4. i) Fiber optic Analog Characterization- frequency response(analog)

ii) Fiber optic Digital Link Characterization -eye diagram and BER (digital)

5. Wireless Channel Simulation including fading and Doppler effects

CYCLE II

6. Simulation of Channel estimation, Synchronization& Equalization techniques

7. Analyzing Impact of Pulse Shaping and Matched filtering using MATLAB.

8. OFDM Signal Transmission and Reception using MATLAB.

9. VSWR and Impedance Measurement and Impedance Matching.

10. Characterization of Directional couplers, Isolators and Circulators.

11. Gunn diode Characteristics

Page 4 of 73

EXP. NO: 1

DATE:

MEASUREMENT OF CONNECTOR, BENDING AND FIBER ATTENUATION LOSSES

AIM:

 To measure the bending and connector and fiber attenuation losses of optical fibers.

APPARATUS REQUIRED:

Sl.No Equipments Quantity

1. Power Supply 1

2. Link B kit 1

3. 1 & 3 Meter Fiber cable 1

THEORY:

Optical fibers are available in different variety of materials. These materials are usually selected by

taking into account their absorption characteristics for different wavelengths of light. In case of optical fiber,

since the signal is transmitted in the form of light, which is completely different in nature as that of elections,

one has to consider the interaction of matter with the radiation to study the losses in fiber.

Losses are introduced in fiber due to various reasons. As light propagates from one end of fiber to

another end, part of it is absorbed in the material exhibiting absorption loss. Also part of the light is reflected

back of in some other directions from the impurity particles present in the material contributing to the loss of

the signal at the other end of the fiber.

In general terms it is known as propagation loss. Plastic fibers have higher loss of the order of 180

dB/Km. whenever the condition for angle of incidence of the incident light is violated the losses are

introduced due to reflection of light. This occurs when fiber is subjected to bending. Lower the radius of

curvature more is the loss. Another losses are due to the coupling of fiber at LED & photo detector ends with

fibers.

Page 5 of 73

MEASUREMENT OF CONNECTION LOSS

PROCEDURE:

1. Connections are made as per circuit diagram.

2. Slightly unscrew the cab of IR LED 450V (960nm) from kit1. Do not remove the cap from the

connector. Once the cap is loosened, insert the fiber into the cap and assure that the fiber is properly

fixed. Now tighten the cap by screwing back.

Page 6 of 73

3. Connect the power supply cables with proper polarity to Transmitter kit and lit 2. While connecting

this, ensure that the power supply is OFF.

4. Connect the on board signal generator between the AMP I/P and GND posts in Transmitter kit to

feed the analog to the amplifier.

5. Keep the signal generator in sine wave mode and select the frequency =1 KHz with amplitude =2V p-

p.

6. Switch on the power supply.

7. Check the output signal of the amplifier at the post AMP O/P in Transmitter kit.

8. Now rotate the Optical Power Control Pot P1 located below power supply connector in kit1 in

anticlock wise direction. This ensures minimum current flow through LED.

9. Short the following posts in kit1 with the links provided.

A. +9V and +9V – This ensures supply to the transmitter

B. AMP O/P and TRANSMITTER I/P.

10. Connect the other end of the fiber to detector SFH 250V (Analog Detector) in kit2 very carefully as

per the instructions in step 1.

11. Ensure that the jumper located just above IC U1 I Receiver kit is shorted to pins 2 and 3. Shorting of

the jumper allows connection of PIN photodiode to the transimpedance amplifier input.

12. Observe the output signal from the detector at AC OUTPUT post in kit2 on CRO. Adjust Optical

Power Control pot P1 in kit1. You should get the reproduction of the original transmitted signal. Also

adjust the amplitude of received signal as that of the transmitted one. Mark this amplitude level as V1.

13. Now move the position of connecting fibers for 1 cm length from the source.

14. Switch on the power supply and signal generator.

15. Observe the output signal from the detector at AC OUTPUT post in Receiver kit on CRO.

16. Now again move the connecting position of the fiber 2 cm away from fiber source . Measure the

amplitude level at the receiver side again.

17. Plot the graph connecting distance versus output amplitude.

TABULATION

Connecting distance

(mm)

Input Amplitude

V

Output Amplitude

V

Page 7 of 73

MEASUREMENT OF BENDING LOSSES:

PROCEDURE:

1. Repeat all the steps from. 1 to 11 as above.

2. Bend the fiber in loop. Measure the amplitude of the received signal.

3. Keep reducing the diameter to about 1-2 cm & take corresponding output voltage readings. (Do not

reduce loop diameter less than 2 cm.)

4. Plot a graph of the received signal amplitude versus the loop diameter.

TABULATION:

Bending

Radius

Input Amplitude Output

Amplitude

RESULT:

Thus the Connector loss and bending loss are measured.

Page 8 of 73

EXP. NO: 2A NUMERICAL APERATURE OF OPTICAL FIBER

 DATE:

AIM:

 To measure the numerical aperture of the plastic fiber provided with the kit using 660nm wavelength

LED.

APPARATUS REQUIRED:

Sl.No Equipments Quantity

1. Power Supply 1

2. AL-01 KIT 1

3. 1-meter fiber cable 1

4. NA JIG 1

5. Ruler 1

THEORY:

 Numerical aperture refers to the maximum angel at which the light incident on the fiber end is

totally internally reflected and is transmitted properly along the fiber. The cone formed by the rotation of this

angle along the axis of the fiber is the cone of acceptance on the fiber. The light ray should strike the fiber

end within its cone of acceptance; else it is refracted out of the fiber core.

Considerations in Measurement:

1. It is very important that the optical source should be properly aligned with the cable & the distance

from the launched point & the cable the property selected to ensure that the maximum amount of

optical power is transferred to the cable.

2. This experiment is best performed in a less illuminated room.

Page 9 of 73

Numerical aperture measurement in optical fiber

PROCEDURE:

1. Connections are made as per circuit diagram.

2. Slightly unscrew the cap of LED SFH756V (660nm). Do not remove the cap from the connector.

Once the cap is loosened, insert the fiber into the cap. Now tighten the cap by screwing it back

3. Now short the jumpers as show in the jumper diagram

4. Connect the power cord to the kit & switch on the power supply.

5. Insert the other end of the fiber into the numerical aperture measurement jig. Hold the white sheet

facing the fiber. Adjust the fiber that the cut face is perpendicular to the axis of the fiber.

6. Keep the distance of about 10nm between the fiber tip and the screen. Gently tighten the screw and

thus fix the fiber in the place.

7. Now observe the illuminated circular patch of light on the screen.

8. Measure exactly the distance d and also the vertical horizontal diameters MR and PN.

Page 10 of 73

9. Mean radius is calculated using the following formula. r = (MR + PN) / 4.

10. Find the numerical aperture of the fiber using the formula.

NA = sinθmax = r / √ d2 + r2

Where θmaxmis the maximum angle at which the light incident is properly transmitted through the

fiber.

TABULATION:

Sl.No Distance

d(mm)

MR

(mm)

NP

(mm)

r = (MR+NP)/4

(mm)

Numerical

Aperture

= r/(r2+d2)

Θmax = Sin-1(NA)

RESULT

Thus the numerical aperture of the given fiber optic is measured.

Page 11 of 73

EXP.NO:2B MODE CHARACTERISTICS OF OPTICAL FIBER

DATE:

AIM:

 To study the mode characteristics of fiber optic cable and observe the lower order Linearly Polarized (LP)

modes.

APPARATUS REQUIRED:

1. LASER Source (633 nm – 1mW)

2. Source to Fiber Coupler

3. Single Mode Fiber

4. Fiber Holding Stand

5. Opaque Screen

THEORY :

The central spot carries 95% of the intensity for laser beams with Gaussian

profile. I = Ioe-2(r / w) ^2 where e = 2.718 is the base of the natural logarithm. An

accepted definition of a radius of a Gaussian beam is the distance at which the beam

intensity has dropped to 1/e2 = 0.135 times its peak value Io. This radius is called spot

size. The spot diameter is w.

Spot Diameter (d) micron = Focal length of the Lens (f) mm x Laser beam full

divergence angle (DA) mrad.

In order to achieve maximum coupling efficiency, the fiber core diameter has to

be bigger than the spot diameter.

NA rays = Laser Beam Diameter (B.D.)

2 x Lens Focal Length (f)

The source coupler is comprised of two base plates. One of the base plates

contains a focusing lens and a female connector receptacle. The other base plate is

attached onto the laser. An O-ring is sandwiched between the base plates. Threaded

screws interconnect the two base plates. A screw driver to alter the angular orientation of

one base plate relative to the other can then adjust the screws.

The number of modes propagating through the fiber depends on V-number. If the

fiber whose V-number is less than 2.045, it allows to propagate single mode through it, so

it is called as Single Mode fiber. For a Multimode fiber, V-number is slightly greater than

2.045 but the number of allowed modes is small enough so that they may be individually

identified when the output of the fiber is examined.

Page 12 of 73

When V < 2.045, then only a single mode may propagate in the fiber waveguide.

This mode is HE11 mode or LP01 – Linearly Polarized mode.

When V > 2.045, other modes may propagate, when V is slightly greater than

2.045 i.e. V = 4.91 then 4 Linearly Polarized modes will propagate through fiber.

 PROCEDURE

1. Keep optical bread board onto original and flat table surface, so that it will not

toggle.

2. Fix the pre-fitted cylindrical head of the He-Ne laser source on to the surface

of the bread board from the bottom side with the help of Allen screws

provided with it. Confirm the rigid ness of the mount.

3. Fix the laser to the fiber coupler mount on to the bread board with base plate

orientation of it towards He-Ne laser exit.

4. Turn on the He-Ne laser and locate the beam spot on the central portion of the

laser-fiber coupling lens assembly by adjusting the vertical and horizontal

travel arrangement provided with the mount. Tighten the screws of the vertical

and horizontal slots.

5. Now look for the back reflection of the He-Ne laser spot from the rod lens of

the coupler. In case if you found the back spot, away from the exit of the

cylindrical laser head of the laser, adjust the back-reflected spot going back in

exit hole by slowly moving the four screws provided for the laser mount.

6. Confirm the central alignment of the laser beam at the exit of the laser fiber

coupler by putting a white card sheet and zooming the spot on to it. In case the

spot is found of center, adjust it to the center by slightly moving the screws of

the laser mount.

7. Put the multimode optical patch cord on to the laser fiber coupler exit and fix

the other end of the fiber in the fiber holding stand by moving the grub screws

provided with the holder.

8. Notice the bright laser beam spot coming out of the fiber. Adjust the height of

exit tip of the fiber to about 50mm. Min. from the white sheet of the paper.

9. Observe the bright round shape circular spot with laser speckle pattern on to

the screen. Multimode pattern can be refined by screws provided with laser-

fiber coupler. Slightly adjusting or moving the screws on the laser mount,

view the change in pattern of this multimode spot.

10. After observing the multimode pattern, change multimode fiber optic patch

cord with single mode fiber patch cord.

11. For single mode patch cord, the blur pattern of the various single mode

Page 13 of 73

patterns will appear on the screen. That is, single circular two lobes, three

lobes and four lobes patterns can be very well observed by slightly adjusting

the Allen screws of the laser-fiber coupler.

OBSERVATION & CALCULATION :

Parameter of given fiber are,

A = 4.5μm (core radius), N.A = 0.11, λ = 633nm

V = 2 π x A x N.A / λ = 4.91

From fig. shows only 4 LP modes propagates.

Total number of modes = V
2
 / 2 = 4.91

2
 / 2 = 12

RESULT

 Thus the mode characteristics of fiber optic cable are studied and the lower order Linearly Polarized modes

are observed

Page 14 of 73

EXP. NO: 3 DC CHARACTERISTICS OF LED AND PIN PHOTODETECTOR

 DATE:

AIM

 To determine the characteristics of fiber optic LED and Photo detector.

APPARATUS REQUIRED:

Sl.No Equipments Quantity

1. Power Supply 1

2. Link B Kit 1

3. 20 MHz Dual Trace Oscilloscope 1

4. Volt Meter 1

5. Ammeter 1

6. Jumper to crocodile wires. 1

THEORY:

In optical fiber communication system, electrical signal is first converted into optical signal

with the help of E / O conversion device as LED. After this optical signal is transmitted through

optical fiber, it is retrieved in its original electrical form with the help O / E conversion device as photo

detector.

Different technologies employed in chip fabrication lead to significant version in parameters

for the various emitter diodes. All the emitters distinguish themselves in offering high output power

coupled into the plastic fiber. Data sheets for LEDs usually specify electrical and optical

characteristics, out of which are important peak wavelength of emission, conversion efficiency

(usually specified in terms of power launched in optical fiber for specified forward current), optical

rise and fall lies which put the limitation on operating frequency, maximum forward current through

Led and typical forward voltages across LED.

Photo detectors usually comes in variety of forms like photoconductive, photovoltaic,

transistor type output and diode type output. Here also characteristics to be taken into account are

response time of the detector which puts the limitation on the operating frequency, wavelength

sensitivity and responsivity.

Page 15 of 73

PROCEDURE:

1. Connections are made as per circuit diagram.

2. Confirm that the power switch is in OFF position.

3. Make the jumper settings as shown in the jumper diagram.

4. Insert the jumper connecting wires (Provided along with the kit) in jumpers JP 17 and JP 16 at

positions shown in the diagram.

Page 16 of 73

5. Connect the current-meter and volt-meter with the jumper wires connected to JP 17 and JP 16

as shown in the diagram.

6. Keep the potentiometer Pr10 in its maximum position (anti-clockwise rotation) and Pr9 in its

minimum position (clockwise rotation). Pr 10 is used to control current flowing through the

LED and Pr 9 is used to vary the amplitude of the received signal at phototransistor.

7. To get the IV characteristics of LED, rotate slowly and measure forward current and

corresponding forward voltage. Take number of such readings for various current values and

plot IV characteristics graph for the Led.

8. For each reading taken above, find out the power which is product of I and V. This is the

electrical power coupled into plastic fiber when forward current was 10 mA as 200µW of

optical energy. Hence the efficiency of the LED comes out to be approx. 1.15%.

9. With this efficiency assumed, find out optical power coupled into plastic optical fiber for each

of the reading in step 7. Plot the graph of forward current v/s output optical power of the LED.

10. Data sheets for the phototransistor detector specified responsivity as 0.8 mA for 10 µW of

incident optical energy. In our experimental kit, when Pr9 is at its minimum position, 100Ω of

resistance is in series of emitter and ground of phototransistor.

11. Connect the 30 cm optical fiber cable supplied with kit between LED SFH576V (660nm) and

phototransistor SFH350V (Analog Detector).

12. From the transfer characteristics obtained in step 8, launched known optical energy into plastic

fiber and measure output voltage at ANALOG OUTPUT terminal. Find out the current flowing

through phototransistor with this voltage value and 100Ω of resistance.

13. Repeat step 11 for various launched optical energy values and plot the graph for the

responsivity of phototransistor. Find out the portion where detector response is linear.

V-I CHARACTERISTIC OF FIBER OPTIC LED & DETECTOR

Vf

(V)

If

(mA)

Pi

(mW)

Po

(µW)

V

(V)

I

(mA)

R

Vf = Forward voltage of LED

If = Forward current of LED Pi = V * I(Electrical Power)

Po = Pi*1.615% (Optical power of LED 756)

V = Output voltage of SFH 350

I = V/R = V/100 ohm (O/P Current)

R = 0.8mA*PO / 10μw (Responsivity)

Page 17 of 73

MODEL GRAPH:

RESULT:

Thus the LED and photo diode characteristic has been verified and output is calculated and

graph is plotted.

Page 18 of 73

EXP.NO: 4A FIBER OPTIC ANALOG LINK CHARACTERIZATION

DATE:

AIM

To establish 950 nm Fiber Optic Analog Link and find its frequency response.

APPARATUS REQUIRED

Sl.No Equipments Quantity

1. Power Supply 1

2. Kit 4 1

3. 20 MKz Dual Trace Oscilloscope 1

4. 1 Meter Fiber Cable 1

THEORY:

Fiber Optic Analog Links can be used for transmission of digital as well as analog signals.

Basically, a fiber optic link contains three main elements, a transmitter, an optical fiber & a receiver.

The transmitter module takes the input signal in electrical form & then transforms it into optical (light)

energy containing the same information. The optical fiber is the medium, which carries this energy to

the receiver. At the receiver, light the converted back into electrical form with the same pattern an

originally fed to the transmitter.

PROCEDURE:

1. Connections are made as per circuit diagram.

2. Slightly unscrew the cap of IRLED SFH 450V (950nm) from Transmitter kit. Do not remove

the cap from the connector. Once the cap is loosened, insert the fiber into the cap and and

assure that the fiber is properly fixed. Now tighten the cap by screwing it back.

3. Connect the power supply cables with proper polarity to Transmitter kit and Receiver kit.

While connecting this, ensure that the power supply if OFF.

4. Connect the 1KHz on board sine wave to the AMP I/P posts in Transmitter kit to feed the

analog signal to the amplifier.

5. Keep the signal generator in sine wave and select the frequency of 1 switch with amplitude of

1V p-p.

6. Switch on the power supply

7. Check the output signal of the amplifier at the post AMP O/P in Transmitter kit.

Page 19 of 73

8. Now rotate the Optical Power Control pot P1 located below power supply connector in

Transmitter kit in anticlockwise direction. This ensures minimum current flow through LED.

9. Short the following posts in kit1 with the links provided.

a. +9V and +9V – This ensures supply to the transmitter

b. AMP O/P and TRANSMITTER I/P.

Connect the other end of the fiber to detector SFH 250V (Analog Detector) in kit2

very carefully as per the instructions in step 1.

10. Ensure that the jumper located just above IC U1 I Receiver kit is shorted to pins 2 and 3.

Shorting of the jumper allows connection of PIN photodiode to the trans impedance amplifier

stage.

11. Observe the output signal from the detector at DETECTOR O/P post on CRO by adjusting

Optical Power Control pot P1 in kit1 and you should get the reproduction of the original

transmitted signal.

NOTE: Same output signal is available at post AC O/P in Receiver kit without any DC

Component.

12. To measure the analog bandwidth of the link, keep the same connections and amplitude of the

received signal for each frequency reading.

13. Plot a graph of Gain/Frequency. Measure the frequency range for which the response if flat.

Page 20 of 73

TABULATION:

Frequency Input amplitude Output amplitude

RESULT:

Thus the analog link has been established and the frequency response is determined.

Page 21 of 73

EXP.NO: 4B FIBER OPTIC DIGITAL LINK CHARACTERIZATION

DATE:

AIM:

To establish 950 nm fiber optic digital link and to transmit the digital signal through optical

fiber and to study eye pattern using fiber optic link

APPARATUS REQUIRED:

Sl.No Equipments Quantity

1. Power Supply 1

2. Link-B kit 1

3. 20 MHz Dual Trace Oscilloscope 1

4. 1 MHz Function Generator 1

5. 1m Fiber Cable 1

THEORY

EYE PATTERN

The eye-pattern technique is a simple but powerful measurement method of assessing the data-

handling ability of a digital transmission system. This method has been used extensively for evaluating

the performance of wire systems and can also be applied to optical fiber data links. The eye-pattern

measurements are made in the time domain and allow the effects of waveform distortion to be shown

immediately on an oscilloscope.

A great deal of system performance information can be deduced from the eye-pattern display. To

interpret the eye pattern, follow the procedure ahead

PROCEDURE:

1. Make the connections as shown in fig.12.1. Connect the power supply cables with proper

polarity to Link-B kit. While connecting this, ensure that the power supply is OFF.

2. Keep switch SW7 as shown in fig.12.1 to generate PRBS signal.

3. Keep switch SW8 towards TX position.

4. Keep switch SW9 towards TX1 position.

5. Keep switch SW10 to EYE PATTERN position.

Page 22 of 73

6. Select PRBS generator clock at 32 KHz by keeping jumper JP4 at 32k position.

7. Keep jumper JP5 towards +5V position.

8. Keep jumper JP6 shorted.

9. Keep jumper JP8 towards TTL position.

10. Switch ON the power supply

11. Connect the post DATA OUT of PRBS Generator to the IN post of digital buffer.

12. Connect OUT post of digital buffer. to TX IN post

13. Slightly unscrew the cap of LED SFH756V (660nm). Do not remove the cap from the

connector. Once the cap is loosened, insert the one-meter fiber into the cap. Now tighten the

cap by screwing it back.

14. Slightly unscrew the cap of RX1 photo transistor with TTL logic output SFH551V. Do not

remove the cap from the connector. Once the cap is loosened, insert the other end of fiber into

the cap by screwing it back.

15. Connect CLK OUT of PRBS Generator to EXT, TRIG of oscilloscope.

16. Connect detected signal TTL OUT to vertical channel Y input of oscilloscope. Then observe

EYE PATTERN by selecting EXT. TRIG KNOB on oscilloscope as shown in Fig.12.2.

Observe the Eye pattern for different clock frequencies. As clock frequency increases the EYE

opening becomes smaller.

Page 23 of 73

Page 24 of 73

RESULT:

 Thus the fiber optic digital link has been established also the eye pattern is obtained.

Page 25 of 73

EXP. NO: 4C DETERMINATION OF BIT ERROR RATE USING DIGITAL LINK
DATE:

AIM:

 To establish 950 nm fiber optic digital link and to transmit the digital signal through optical fiber to

determine the bit error rate.

APPARATUS REQUIRED:

Sl.No Equipments Quantity

1. Power Supply 1

2. Link-B kit 1

3. 20 MHz Dual Trace Oscilloscope 1

4. 1 MHz Function Generator 1

5. 1m Fiber Cable 1

THEORY:

Bit Error rate

In telecommunication transmission, the bit error rate (BER) is a ratio of bits that have errors

related to the total number of bits received in a transmission. The BER is an indication of how often a

packet or other data unit has to be retransmitted because of an error. Too high BER may indicate that a

slower data rate would actually improve overall transmission time for a given amount of transmitted

data since the BER might be reduced, lowering the number of packets that had to be present.

Measuring bit error rate:

A BERT (bit error rate tester) is a procedure or device that measure the BER for a given

transmission .The BER or quality of the digital link is calculated from the number of bits received in

error divided by the number of bits transmitted.

Using the bench setup, this is easily measured by means of a comparator in which the

transmitted bits are matched in an XOR gate with the received bits. Figure shows the schematic of the

device used for the following measurements.

Page 26 of 73

If the bits are alike at the XOR gate input, when clocked in from the D flip flop, the output is low. If

they are different, the XOR output goes high, causing an event count. The event counter can be set for

various time periods. the more accurate is the count.

A random character generator and white noise source should be used for these measurements.

The number of bit error is dependent upon the amount of noise entering the system. White noise or

background noise has an average or RMS value that is exceeded periodically by peaks that rise many

times that level. These peaks exist for a very short period of time.

When the peak equals or exceeds the signal level that is noise energy =bit energy , there is a

Page 27 of 73

50/50 chance of error. The peak time periods can be calculated statically from the error function. In

LinkB , PRBS sequence is generated by using a 4 bit right shift register whose feedback is completed

by the XOR gate. Let initially 1001 be the 4 bit switch setting on the SW7.

Clock states D1 D2 D3

A

D4

B

C

1 1 0 0 1 1

2 1 1 0 0 0

3 0 1 1 0 1

4 1 0 1 1 0

5 0 1 0 1 1

6 1 0 1 0 1

7 1 1 0 1 1

8 1 1 1 0 1

9 1 1 1 1 0

10 0 1 1 1 0

11 0 0 1 1 0

12 0 0 0 1 1

13 1 0 0 0 0

14 0 1 0 0 0

15 0 0 1 0 1

16 1 0 0 1 1

 Thus the sequences repeat constantly with a period corresponding to 16 clock states.

 Length of sequence = 24 = 16

 Now the pseudorandom random sequence pattern is C=1010111100010011

NOTE:KEEP ALL SWITCH ES IN OFF POSITION

PROCEDURE:

1. Make connection as shown in figure.Connect the power supply cables with proper polarity to linkB

kit.While connecting this,ensure that the ppower supply is OFF.

2. Keep PRBS switch as shown in Figure to generate PRBS signal..

3. Keep switch SW8 towards TX position.

4. Keep switch SW9 towards TX1 position.

5. Keep the switch SW10 at fiber optic receiver output to TTL position.

Page 28 of 73

6. Select PRBS generator clock at 32KHz by keeping jumper JP4 at 32K position

7.Keep jumper JP5 towards +5v position.

8. Keep Jumper JP6 shorted.

9. Keep Jumper JP8 towards pulse position.

10.Switch on the Power supply.

11. Connect the post DATAOUT PRBS generator to the IN post of Digital buffer and also to the

DATA IN post of Bit error rate event counter.

12. Connect the OUT post Digital buffer TX IN post transmitter.

13. Slightly unscrew the cap of LEDSFH756v (660nm).Do not remove the cap from the connector.

Once the cap is loosened, insert the one meter fiber into the cap. Now tighten the cap by screwing it

back.

14. Slightly unscrew the gap of RX1 photo transistor with TTL logic output SFH551v.Do not remove

the cap from the connector. Once the cap is loosened, insert the other end of fiber into the cap. Now

tighten the cap by screwing it back.

15. Connected digital signal TTL OUT to post IN of noise source.

16. Connect post OUT of noise source to post RXDATAIN of bit error rate event counter.

17. Connect post CLKOUT of PRBS generator to post CLKIN of bit error rate event counter.

18. Press switch SW11 to start counter.

19. Vary POT P3 for noise level to observe the effect of noise level on the error count.

20. Observe the error count in received signal in time 10 seconds as shown in figure.

Page 29 of 73

BER MEASUREMENT

As per the definition the BER is a ratio of Errored bits (Eb) to the total bits transmitted (Tb) in a

period of time t seconds.

ie

For example in this experiment if PRBS data is transmitted at 32K bits per second (jumper selection

Page 30 of 73

at 32KHz) for a period of 10 seconds.so total bits transmitted in 10 seconds(Tb)

=320Kbits.

The TTL OUT data and data with noise is fed to BER counter which compares the the two data

inputs at each clock input.

The counter displays the Error count(Eb) on LED in 10 bit binary form.(eg.0000001010) which has

to be converted in decimal form. (it becomes 10) so the BER ratio then becomes

= 0.00003125

ie.the channel bit error ratio is 3.1x10E-5(3/100000) or in other words we can say that out of 100000 bits

transmitted through the channel gives 3 bits in error.

RESULT

Thus the bit error rate was measured using digital link .

Page 31 of 73

EXP. NO: 5

 DATE:

WIRELESS CHANNEL SIMULATION INCLUDING FADING AND DOPPLER

EFFECTS

 AIM:

To simulate and verify output in wireless Channel including Doppler and fading effects.

APPARATUS REQUIRED:

 Personal Computer

 MATLAB Software

THEORY:

 Rayleigh and Rician fading channels are useful models of real-world phenomena in wireless

 communication. These phenomena include multipath scattering effects, time dispersion, and Doppler

 shifts that arise from relative motion between the transmitter and receiver.

STEPS INVOLVED:

Processing a signal using a fading channel involves the following steps:

1. Create a channel System object™ that describes the channel that you want to use. A channel object

is a type of MATLAB variable that contains information about the channel, such as the maximum

Doppler shift.

2. Adjust properties of the System object, if necessary, to tailor it to your needs. For example, you

can change the path delays or average path gains.

3. Apply the channel System object to your signal using the step method, which generates random

discrete path gains and filters the input signal.

4. The characteristics of a channel can be shown with the built-in visualization support of the System

object.

Model and Parameters

modelname = 'commmultipathfading';

rayleighBlock = [modelname '/Rayleigh Channel'];

ricianBlock = [modelname '/Rician Channel'];

rayleighCD = [modelname '/Rayleigh Constellation Diagram'];

pathGainBlock = [modelname '/Path Gains (dB)'];

open_system(modelname);

Page 32 of 73

bitRate % Transmission rate (b/s)

bitsPerFrame % Number of bits per frame

bitRate = 10000000

bitsPerFrame = 2000

delayVector % Discrete path delays (s)

gainVector % Average path gains (dB)

delayVector =

 1.0e-06 *

 0 0.2000 0.4000 0.8000

gainVector = 0 -3 -6 -9

maxDopplerShift % Maximum Doppler shift of diffuse components (Hz)

maxDopplerShift = 200

LOSDopplerShift % Doppler shift of line-of-sight component (Hz)

KFactor % Ratio of specular power to diffuse power (linear)

LOSDopplerShift = 100

KFactor =

 10

Page 33 of 73

Wideband or Frequency-Selective Fading

set_param(rayleighBlock,'Visualization','Impulse response');

set_param(modelname,'SimulationCommand','start');

set_param(modelname,'SimulationCommand','pause');

set_param(modelname,'SimulationCommand','stop');

set_param(rayleighBlock,'Visualization','Frequency response');

set_param(rayleighBlock,'SamplesToDisplay','50%');

set_param(modelname,'SimulationCommand','start');

set_param(modelname,'SimulationCommand','pause');

Page 34 of 73

Multipath Fading Channel Simulink

set_param(modelname,'SimulationCommand','stop');

set_param(rayleighBlock,'Visualization','Doppler spectrum');

set_param(modelname,'StopTime','3');

set_param(modelname,'SimulationCommand','start');

set_param(modelname,'SimulationCommand','pause');

while get_param(modelname,'SimulationTime') < 2

 set_param(modelname,'SimulationCommand','continue');

 pause(1);

 set_param(modelname,'SimulationCommand','pause');

end

Page 35 of 73

set_param(modelname,'SimulationCommand','stop');

maxDopplerShift = 5;

set_param(rayleighBlock,'Visualization','Off');

set_param(rayleighCD,'openScopeAtSimStart','on')

sim(modelname,0.2);

Page 36 of 73

Narrowband or Frequency-Flat Fading

bitRate = 1e6 % 50 kb/s transmission

bitRate =

 1000000

close_system(rayleighCD);

set_param(rayleighCD,'openScopeAtSimStart','off')

maxDopplerShift = 200; % Change back to the original value

set_param(rayleighBlock,'Visualization','Impulse and frequency responses');

set_param(modelname,'SimulationCommand','start');

set_param(modelname,'SimulationCommand','pause');

Page 37 of 73

set_param(modelname,'SimulationCommand','stop');

delayVector = 0; % Single fading path with zero delay

gainVector = 0; % Average path gain of 0 dB

set_param(modelname,'SimulationCommand','start');

set_param(modelname,'SimulationCommand','pause');

Page 38 of 73

set_param(modelname,'SimulationCommand','stop');

delayVector = [0 2 4 8]*1e-7; % Change back to original value

gainVector = (0:-3:-9); % Change back to original value

maxDopplerShift = 5; % Reduce to slow down channel dynamics

set_param(rayleighBlock,'Visualization','Off');

set_param(rayleighCD,'openScopeAtSimStart','on')

sim(modelname,0.15);

Rician Fading

delayVector = 0; % Single fading path with zero delay

gainVector = 0; % Average path gain of 0 dB

maxDopplerShift = 200; % Change back to the original value

close_system(rayleighCD);

set_param(rayleighCD,'openScopeAtSimStart','off')

set_param(pathGainBlock,'OpenAtSimulationStart','on');

sim(modelname,0.1);

RESULT:

The simulation of wireless channel using fading effect and Doppler effects were verified.

Page 39 of 73

EXP.NO:6 SIMULATION OF CHANNEL ESTIMATION, SYNCHRONIZATION &

EQUALIZATION TECHNIQUES

DATE:

AIM:

To simulate and verify output in -wireless Channel for channel estimation, synchronization and

Equalization Techniques.

APPARATUS REQUIRED:

 Personal Computer

 MATLAB Software

THEORY:

Channel Estimation OFDM communication system consists of channel model through which data

symbols are transmitted to the receiver. This channel model produces line of sight communication and

also various reflections due to which multipath effect come to picture. To minimize the multipath

effect and noise introduced by the channel, we go for channel estimation.

Synchronization and Channel Equalization In OFDM communication systems, at the

transmitter digital to analog conversion and at the receiver, analog to digital conversion is carried out.

DAC and ADC never have exactly the same sampling period. Due to this, intercarrier interference and

the slow shift of the symbol timing point occurs and so orthogonality is lost. This results in need of

Synchronization and Channel Equalization.

Cell-Wide Settings

enb.NDLRB = 15; % Number of resource blocks

enb.CellRefP = 1; % One transmit antenna port

enb.NCellID = 10; % Cell ID

enb.CyclicPrefix = 'Normal'; % Normal cyclic prefix

enb.DuplexMode = 'FDD'; % FDD

SNR Configuration

SNRdB = 22; % Desired SNR in dB

SNR = 10^(SNRdB/20); % Linear SNR

Page 40 of 73

rng('default'); % Configure random number generators

Channel Model Configuration

cfg.Seed = 1; % Channel seed

cfg.NRxAnts = 1; % 1 receive antenna

cfg.DelayProfile = 'EVA'; % EVA delay spread

cfg.DopplerFreq = 120; % 120Hz Doppler frequency

cfg.MIMOCorrelation = 'Low'; % Low (no) MIMO correlation

cfg.InitTime = 0; % Initialize at time zero

cfg.NTerms = 16; % Oscillators used in fading model

cfg.ModelType = 'GMEDS'; % Rayleigh fading model type

cfg.InitPhase = 'Random'; % Random initial phases

cfg.NormalizePathGains = 'On'; % Normalize delay profile power

cfg.NormalizeTxAnts = 'On'; % Normalize for transmit antennas

Channel Estimator Configuration

cec.PilotAverage = 'UserDefined'; % Pilot averaging method

cec.FreqWindow = 9; % Frequency averaging window in REs

cec.TimeWindow = 9; % Time averaging window in REs

cec.InterpType = 'Cubic'; % Cubic interpolation

cec.InterpWinSize = 3; % Interpolate up to 3 subframes

 % simultaneously

cec.InterpWindow = 'Centred'; % Interpolation windowing method

Subframe Resource Grid Size

gridsize = lteDLResourceGridSize(enb);

K = gridsize(1); % Number of subcarriers

L = gridsize(2); % Number of OFDM symbols in one subframe

P = gridsize(3); % Number of transmit antenna ports

Transmit Resource Grid

txGrid = [];

Payload Data Generation

% Number of bits needed is size of resource grid (K*L*P) * number of bits

% per symbol (2 for QPSK)

numberOfBits = K*L*P*2;

% Create random bit stream

inputBits = randi([0 1], numberOfBits, 1);

% Modulate input bits

inputSym = lteSymbolModulate(inputBits,'QPSK');

Frame Generation

% For all subframes within the frame

for sf = 0:10

Page 41 of 73

 % Set subframe number

 enb.NSubframe = mod(sf,10);

 % Generate empty subframe

 subframe = lteDLResourceGrid(enb);

 % Map input symbols to grid

 subframe(:) = inputSym;

 % Generate synchronizing signals

 pssSym = ltePSS(enb);

 sssSym = lteSSS(enb);

 pssInd = ltePSSIndices(enb);

 sssInd = lteSSSIndices(enb);

 % Map synchronizing signals to the grid

 subframe(pssInd) = pssSym;

 subframe(sssInd) = sssSym;

 % Generate cell specific reference signal symbols and indices

 cellRsSym = lteCellRS(enb);

 cellRsInd = lteCellRSIndices(enb);

 % Map cell specific reference signal to grid

 subframe(cellRsInd) = cellRsSym;

 % Append subframe to grid to be transmitted

 txGrid = [txGrid subframe]; %#ok

end

OFDM Modulation

 [txWaveform,info] = lteOFDMModulate(enb,txGrid);

txGrid = txGrid(:,1:140);

Fading Channel

cfg.SamplingRate = info.SamplingRate;

% Pass data through the fading channel model

rxWaveform = lteFadingChannel(cfg,txWaveform);

% Calculate noise gain

N0 = 1/(sqrt(2.0*enb.CellRefP*double(info.Nfft))*SNR);

% Create additive white Gaussian noise

noise = N0*complex(randn(size(rxWaveform)),randn(size(rxWaveform)));

% Add noise to the received time domain waveform

rxWaveform = rxWaveform + noise;

Page 42 of 73

offset = lteDLFrameOffset(enb,rxWaveform);

rxWaveform = rxWaveform(1+offset:end,:);

OFDM Demodulation

rxGrid = lteOFDMDemodulate(enb,rxWaveform);

Channel Estimation

enb.NSubframe = 0;

[estChannel, noiseEst] = lteDLChannelEstimate(enb,cec,rxGrid);

MMSE Equalization

eqGrid = lteEqualizeMMSE(rxGrid, estChannel, noiseEst);

% Calculate error between transmitted and equalized grid

eqError = txGrid - eqGrid;

rxError = txGrid - rxGrid;

% Compute EVM across all input values

% EVM of pre-equalized receive signal

EVM = comm.EVM;

EVM.AveragingDimensions = [1 2];

preEqualisedEVM = EVM(txGrid,rxGrid);

fprintf('Percentage RMS EVM of Pre-Equalized signal: %0.3f%%\n', ...

 preEqualisedEVM);

Percentage RMS EVM of Pre-Equalized signal: 124.133%

% EVM of post-equalized receive signal

postEqualisedEVM = EVM(txGrid,eqGrid);

fprintf('Percentage RMS EVM of Post-Equalized signal: %0.3f%%\n', ...

 postEqualisedEVM);

Percentage RMS EVM of Post-Equalized signal: 15.598%

% Plot the received and equalized resource grids

hDownlinkEstimationEqualizationResults(rxGrid, eqGrid);

Page 43 of 73

SYNCHRONIZATION

message = 'Live long and prosper, from the Communications Toolbox Team at MathWorks!';

numFrames = 1e2;

% Adjustable channel parameters

EbN0dB = 12; % Channel noise level (dB)

frequencyOffset = 1e4; % Frequency offset (Hz)

phaseOffset = 15; % Phase offset (Degrees)

delay = 80; % Initial sample offset for entire data stream (samples)

% Display recovered messages

displayRecoveredMsg = false;

% Enable scope visualizations

useScopes = true;

% Check for MATLAB Coder license

useCodegen = checkCodegenLicense;

if useCodegen

 fprintf(['--MATLAB Coder license found. ',...

 'Transmitter and receiver functions will be compiled for ',...

 'additional simulation acceleration.--\n']);

end

% By default the transmitter and receiver functions will be recompiled

% between every run, which is not always necessary. To disable receiver

% compilation, change "compileIt" to false.

compileIt = useCodegen;

% Compile transmitter with MATLAB Coder

if compileIt

 codegen generateOFDMSignal -args {coder.Constant(message),

coder.Constant(numFrames)}

end

% Generate transmission signal

if useCodegen

 [txSig, frameLen] = generateOFDMSignal_mex(message, numFrames);

else

 [txSig, frameLen] = generateOFDMSignal(message, numFrames);

end

% Pass signal through channel

rxSig = applyOFDMChannel(txSig, EbN0dB, delay, frequencyOffset, phaseOffset);

% Compile receiver with MATLAB Coder

Page 44 of 73

if compileIt

 codegen receiveOFDMSignal -args {rxSig, coder.Constant(frameLen),

coder.Constant(displayRecoveredMsg), coder.Constant(useScopes)}

end

% Recover signal

if useCodegen

 [decMsgInBits, numFramesDetected] = receiveOFDMSignal_mex(rxSig, frameLen,

displayRecoveredMsg, useScopes);

else

 [decMsgInBits, numFramesDetected] = receiveOFDMSignal(rxSig, frameLen,

displayRecoveredMsg, useScopes);

end

% Calculate average BER

[FER, BER] = calculateOFDMBER(message, decMsgInBits, numFramesDetected);

fprintf('\nAt EbNo = %5.2fdB, %d frames detected among the %d transmitted frames with

FER = %f and BER = %f\n', ...

 EbN0dB, numFramesDetected, numFrames, FER, BER);

At EbNo = 12.00dB, 100 frames detected among the 100 transmitted frames with FER = 0.010000 and

BER = 0.000098

Page 45 of 73

RESULT:

Thus the Wireless Channel Simulation of channel estimation, synchronization and Equalization

Techniques were implemented by using MATLAB.

Page 46 of 73

EXP. NO: 7 ANALYSIS THE IMPACT OF PULSE SHAPING AND MATCHED

 FILTERING

DATE:

AIM:

To analyze the impact of pulse shaping and matched filter using MatLab.

TOOLS REQURIED:

 PC

 MATLAB

THEORY

 At the transmitter, we focus on pulse shaping; while at the receiver, we focus on matched

filtering. Pulse shaping is the process of shaping pulses to be transmitted based on the symbols generated via

modulation. The goal is to make the signal suitable to be transmitted through the communication channel

mainly by limiting its effective bandwidth

PROGRAM

Establish Simulation Framework

M = 16; % Modulation order

k = log2(M); % Number of bits per symbol

numBits = 3e5; % Number of bits to process

sps = 4; % Number of samples per symbol (oversampling factor)

filtlen = 10; % Filter length in symbols

rolloff = 0.25; % Filter rolloff factor

Use the rcosdesign function to create an RRC filter.

rrcFilter = rcosdesign(rolloff,filtlen,sps);

fvtool(rrcFilter,'Analysis','Impulse')

Page 47 of 73

Compute System BER

rng default; % Use default random number generator

dataIn = randi([0 1],numBits,1); % Generate vector of binary data

dataInMatrix = reshape(dataIn,length(dataIn)/k,k); % Reshape data into binary 4-tuples

dataSymbolsIn = bi2de(dataInMatrix); % Convert to integers

dataMod = qammod(dataSymbolsIn,M);

txFiltSignal = upfirdn(dataMod,rrcFilter,sps,1);

EbNo = 10;

snr = EbNo + 10*log10(k) - 10*log10(sps);

rxSignal = awgn(txFiltSignal,snr,'measured');

rxFiltSignal = upfirdn(rxSignal,rrcFilter,1,sps); % Downsample and filter

rxFiltSignal = rxFiltSignal(filtlen + 1:end - filtlen); % Account for delay

dataSymbolsOut = qamdemod(rxFiltSignal,M);

dataOutMatrix = de2bi(dataSymbolsOut,k);

dataOut = dataOutMatrix(:); % Return data in column vector

 [numErrors,ber] = biterr(dataIn,dataOut);

fprintf('\nFor an EbNo setting of %3.1f dB, the bit error rate is %5.2e, based on %d errors.\n',

...

 EbNo,ber,numErrors)

Visualize Filter Effects

EbNo = 20;

snr = EbNo + 10*log10(k) - 10*log10(sps);

rxSignal = awgn(txFiltSignal,snr,'measured');

rxFiltSignal = upfirdn(rxSignal,rrcFilter,1,sps); % Downsample and filter

rxFiltSignal = rxFiltSignal(filtlen + 1:end - filtlen); % Account for delay

eyediagram(txFiltSignal(1:2000),sps*2);

Page 48 of 73

Displaying the eye diagram of the signal after the channel noise shows the signal with RRC filtering and noise.

The noise level causes further narrowing of the eye diagram eye-opening.

eyediagram(rxSignal(1:2000),sps*2);

Displaying the eye diagram of the signal after the matched receive filtering is applied shows the signal with

raised cosine filtering. The wider eye diagram eye-openings, the signal has less ISI with raised cosine filtering

as compared to the signal with RRC filtering.

eyediagram(rxFiltSignal(1:2000),2);

Page 49 of 73

.

scatplot = scatterplot(sqrt(sps)*...

 rxSignal(1:sps*5e3),...

 sps,0,'g.');

hold on;

scatterplot(rxFiltSignal(1:5e3),1,0,'kx',scatplot);

title('Received Signal, Before and After Filtering');

legend('Before Filtering','After Filtering');

axis([-5 5 -5 5]); % Set axis ranges

hold off;

Page 50 of 73

Matched Filtering of Linear FM Waveform

waveform = phased.LinearFMWaveform('PulseWidth',1e-4,'PRF',5e3,...

 'SampleRate',1e6,'OutputFormat','Pulses','NumPulses',1,...

 'SweepBandwidth',1e5);

wav = getMatchedFilter(waveform);
Create a matched filter with no spectrum weighting, and a matched filter that uses a Taylor window for spectrum weighting.

filter = phased.MatchedFilter('Coefficients',wav);

taylorfilter = phased.MatchedFilter('Coefficients',wav,...

 'SpectrumWindow','Taylor');
Create the signal and add noise.

sig = waveform();

rng(17)

x = sig + 0.5*(randn(length(sig),1) + 1j*randn(length(sig),1));
Filter the noisy signal separately with each of the filters.

y = filter(x);

y_taylor = taylorfilter(x);
Plot the real parts of the waveform and noisy signal.

t = linspace(0,numel(sig)/waveform.SampleRate,...

 waveform.SampleRate/waveform.PRF);

subplot(2,1,1)

plot(t,real(sig))

Page 51 of 73

title('Input Signal')

xlim([0 max(t)])

grid on

ylabel('Amplitude')

subplot(2,1,2)

plot(t,real(x))

title('Input Signal + Noise')

xlim([0 max(t)])

grid on

xlabel('Time (sec)')

ylabel('Amplitude')

Plot the magnitudes of the two matched filter outputs.

plot(t,abs(y),'b--')

title('Matched Filter Output')

xlim([0 max(t)])

grid on

hold on

plot(t,abs(y_taylor),'r-')

ylabel('Magnitude')

xlabel('Seconds')

legend('No Spectrum Weighting','Taylor Window')

hold off

Page 52 of 73

Matched Filtering to Improve SNR for Target Detection

antenna = phased.IsotropicAntennaElement('FrequencyRange',[5e9 15e9]);

transmitter = phased.Transmitter('Gain',20,'InUseOutputPort',true);

fc = 10e9;

target = phased.RadarTarget('Model','Nonfluctuating',...

 'MeanRCS',1,'OperatingFrequency',fc);

txloc = [0;0;0];

tgtloc = [5000;5000;10];

transmitterplatform = phased.Platform('InitialPosition',txloc);

targetplatform = phased.Platform('InitialPosition',tgtloc);

[tgtrng,tgtang] = rangeangle(targetplatform.InitialPosition,...

 transmitterplatform.InitialPosition);

waveform = phased.RectangularWaveform('PulseWidth',25e-6,...

 'OutputFormat','Pulses','PRF',10e3,'NumPulses',1);

c = physconst('LightSpeed');

maxrange = c/(2*waveform.PRF);

SNR = npwgnthresh(1e-6,1,'noncoherent');

Pt = radareqpow(c/fc,maxrange,SNR,...

 waveform.PulseWidth,'RCS',target.MeanRCS,'Gain',transmitter.Gain);

transmitter.PeakPower = Pt;

radiator = phased.Radiator('PropagationSpeed',c,...

 'OperatingFrequency',fc,'Sensor',antenna);

channel = phased.FreeSpace('PropagationSpeed',c,...

 'OperatingFrequency',fc,'TwoWayPropagation',false);

collector = phased.Collector('PropagationSpeed',c,...

 'OperatingFrequency',fc,'Sensor',antenna);

Page 53 of 73

receiver = phased.ReceiverPreamp('NoiseFigure',0,...

 'EnableInputPort',true,'SeedSource','Property','Seed',2e3);

filter = phased.MatchedFilter(...

 'Coefficients',getMatchedFilter(waveform),...

 'GainOutputPort',true);

wf = waveform();

 [wf,txstatus] = transmitter(wf);

wf = radiator(wf,tgtang);

wf = channel(wf,txloc,tgtloc,[0;0;0],[0;0;0]);

wf = target(wf);

wf = channel(wf,tgtloc,txloc,[0;0;0],[0;0;0]);

wf = collector(wf,tgtang);Receive target echo.

rx_puls = receiver(wf,~txstatus);

[mf_puls,mfgain] = filter(rx_puls);

Gd = length(filter.Coefficients)-1;

mf_puls=[mf_puls(Gd+1:end); mf_puls(1:Gd)];

subplot(2,1,1)

t = unigrid(0,1e-6,1e-4,'[)');

rangegates = c.*t;

rangegates = rangegates/2;

plot(rangegates,abs(rx_puls))

title('Received Pulse')

ylabel('Amplitude')

hold on

plot([tgtrng, tgtrng], [0 max(abs(rx_puls))],'r')

subplot(2,1,2)

plot(rangegates,abs(mf_puls))

title('With Matched Filtering')

xlabel('Meters')

ylabel('Amplitude')

hold on

plot([tgtrng, tgtrng], [0 max(abs(mf_puls))],'r')

hold off

Page 54 of 73

RESULT

The Pulse shaping and Matched filtering are analyzed using MATLAB.

Page 55 of 73

EXP. NO: 8 SIMULATION OF OFDM SIGNAL TRANSMISSION AND RECEPTION

 DATE:

AIM:

To simulate the OFDM signal transmission and reception.

TOOLS REQURIED:

 PC

 MATLAB

THEORY

 OFDM is a form of multicarrier modulation. An OFDM signal consists of a number of closely spaced

modulated carriers. When modulation of any form - voice, data, etc. is applied to a carrier, then sidebands

spread out either side. It is necessary for a receiver to be able to receive the whole signal to be able to

successfully demodulate the data. As a result when signals are transmitted close to one another they must be

spaced so that the receiver can separate them using a filter and there must be a guard band between them. This

is not the case with OFDM. Although the sidebands from each carrier overlap, they can still be received

without the interference that might be expected because they are orthogonal to each another. This is achieved

by having the carrier spacing equal to the reciprocal of the symbol period.

The OFDM scheme differs from traditional FDM in the following interrelated ways:

 Multiple carriers (called subcarriers) carry the information stream

 The subcarriers are orthogonal to each other.

 A guard interval is added to each symbol to minimize the channel delay spread and intersymbol interference.

BLOCK DIAGRAM

Page 56 of 73

%code for OFDM signal transmission and reception

in AWGN channel

n = 256; % Number of bits to process

x = randint(n,1); % Random binary data stream

M = 16; % Size of signal constellation

k = log2(M); % Number of bits per symbol

xsym = bi2de(reshape(x,k,length(x)/k).‟,‟left-msb‟);

% Convert the bits in x into k-bit symbols.

y = modulate(modem.qammod(M),xsym); % Modulate using QAM

tu=3.2e-6;%useful symbol period

tg=0.8e-6;%guard interval length

ts=tu+tg;%total symbol duration

nmin=0;

nmax=64;%total number of subcarriers

scb=312.5e3;%sub carrier spacing

fc=3.6e9;%carrier frequency

Rs=fc;

tt=0: 6.2500e-008:ts-6.2500e-008;

c=ifft(y,nmax);%IFFT

s=real(c‟.*(exp(1j*2*pi*fc*tt)));%bandpass modulation

figure;

plot(real(s),‟b‟);

title(„OFDM signal transmitted‟);figure;

plot(10*log10(abs(fft(s,nmax))));title(„OFDM spectrum‟);

xlabel(„frequency‟)

ylabel(„power spectral density‟)

title(„Transmit spectrum OFDM‟);

snr=10;%signal to noise ratio

ynoisy = awgn(s,snr,‟measured‟);%awgn channel figure;

plot(real(ynoisy),‟b‟);title(„received OFDM signal with noise‟);

z=ynoisy.*exp(j*2*pi*fc*tt);%Bandpass demodulation

z=fft(z,nmax);%FFT

zsym=demodulate(modem.qamdemod(M),z);%demodulation of bandpass data.

z = de2bi(zsym,‟left-msb‟); %Convert integers to bits.

z = reshape(z.‟,prod(size(z)),1);%matrix to vector conversion

[noe,ber] = biterr(x,z) ;%BER calculation figure;

subplot(211);stem(x(1:256));

title(„Original Message‟);

subplot(212);stem(z(1:256));

title(„recovered Message‟);

Page 57 of 73

RESULT:

The simulation of OFDM Signal was verified.

Page 58 of 73

EXP. NO: 9A VSWR MEASUREMENT

 DATE:

AIM:

 To determine the standing-wave ratio and reflection coefficient.

EQUIPMENTS REQUIRED:

1. Klystron tube (2k25)

2. Klystron power supply (skps - 610)

3. VSWR meter (SW 115)

4. Klystron mount (XM – 251)

5. Isolator (XF 621)

6. Frequency meter (XF 710)

7. Variable attenuator (XA – 520)

8. Slotted line (X 565)

9. Wave guide stand (XU 535)

10. Movable short/termination XL 400

11. BNC CableS-S Tuner (XT – 441)

THEORY:

 Any mismatched load leads to reflected waves resulting in standing waves along the length of the line.

The ratio of maximum to minimum voltage gives the VSWR. Hence minimum value of S is unity. If S<10

then VSWR is called low VSWR. If S>10 then VSWR is called high VSWR. The VSWR values more than 10

are very easily measured with this setup. It can be read off directly on the VSWR meter calibrated. The

measurement involves simply adjusting the attenuator to give an adequate reading on the meter which is a D.C.

mill volt meter. The probe on the slotted wave guide is moved t get maximum reading on the meter. The

attenuation is now adjusted to get full scale reading. Next the probe on the slotted line is adjusted to get

minimum, reading on the meter. The ratio of first reading to the second gives the VSWR. The meter itself can

be calibrated in terms of VSWR. Double minimum method is used to measure VSWR greater than 10. In this

method, the probe is inserted to a depth where the minimum can be read without difficulty. The probe is then

moved to a point where the power is twice the minimum.

Page 59 of 73

PROCEDURE:

1. Set up equipment as shown in figure.

2. Keep variable attenuator in minimum attenuation position.

3. Keep control knobs of VSWR meter as below

Range dB = 40db / 50db Input

switch = low impedance Meter

switch = Normal

Gain (coarse fine) = Mid position approximately

4. Keep control knobs of klystron power supply as below. Beam

Voltage = OFF

Mod-Switch = AM

Beam Voltage Knob = fully anti clock wise Reflection

voltage knob = fully clock wise

AM-Amplitude knob = around fully clock wise AM

frequency and amplitude knob = mid position

5. Switch „ON‟ the klystron power supply, VSWR meter and cooling fan.

6. Switch „ON” the beam voltage switch position and set (down) beam voltage at 300V.

7. Rotate the reflector voltage knob to get deflection in VSWR meter.

8. Tune the O/P by turning the reflector voltage, amplitude and frequency of AM modulation.

9. Tune plunges of klystron mount and probe for maximum deflection in VSWR meter.

10. If required, change the range db-switch variable attenuator position and (given) gain control knob to

Page 60 of 73

get deflection in the scale of VSWR meter.

11. As your move probe along the slotted line, the deflection will change.

A. Measurement of low and medium VSWR:

1. Move the probe along the slotted line to get maximum deflection in VSWR meter.

2. Adjust the VSWR meter gain control knob or variable attenuator until the meter indicates 1.0 on

normal VSWR scale.

3. Keep all the control knob as it is move the probe to next minimum position. Read the VSWR on

scale.

4. Repeat the above step for change of S-S tuner probe depth and record the corresponding SWR.

5. If the VSWR is between 3.2 and 10, change the range 0dB switch to next higher position and read

the VSWR on second VSWR scale of 3 to 10.

B. Measurement of High VSWR: (double minimum method)

1. Set the depth of S-S tuner slightly more for maximum VSWR.

2. Move the probe along with slotted line until a minimum is indicated.

3. Adjust the VSWR meter gain control knob and variable attenuator to obtain n a

reading of 3db in the normal dB scale (0 to 10db) of VSWR meter.

4. Move the probe to the left on slotted line until full scale deflection is obtained on 0-10 db scale.

Note and record the probe position on slotted line. Let it be d1.

5. Repeat the step 3 and then move the probe right along the slotted line until full scale deflection is

obtained on 0-10db normal db scale. Let it be d2.

6. Replace S-S tuner and termination by movable short.

7. Measure distance between 2 successive minima positions of probe. Twice this distance is guide

wave length λg.

8. Compute SWR from following equation

OBSERVATION TABLE:

LOW VSWR

VSWR =

Page 61 of 73

HIGH VSWR

Beam

Voltage

(v)

x1

(cm)

x2

(cm)

x1

(cm)

x2

(cm)

Avg (x1-x2) = x

(cm)

λg=2x

(cm)

λg = 6cm

d1

(cm)

d2

(cm)

d1-d2

(cm)
VSWR = λg / (d1-d2)

RESULT: .

 Thus the VSWR meter has been used to measure standing wave ratio.

Page 62 of 73

1 R

1 R

EXP. NO: 9B IMPEDANCE MEASUREMENT

DATE:

AIM

 To measure an unknown impedance using the Reflex klystron.

EQUIPMENT REQUIRED:

1. Klystron tube 2k25

2. Klystron power supply Skps-610

3. Klystron mount XM-251

4. Isolator XF 62

5. Frequency meter XF 710

6. Variable attenuator XA – 520

7. Slotted line XS 565

8. Tunable probe XP 655

9. VSWR meter

10. Wave guide stand SU 535

11. S-S tuner (XT 441)

12. Movable short/termination

THEORY

The impedance at any point on a transmission line can be written in the form R+jx. For

comparison SWR can be calculated as

S where reflection coefficient „R

Given as

R
Z Z0

Z Z0

Zo = characteristics impedance of wave guide at operating frequency. Z is

the load impedance

The measurement is performed in the following way.

Page 63 of 73

The unknown device is connected to the slotted line and the position of one minima is

determined. The unknown device is replaced by movable short to the slotted line. Two successive

minima portions are noted. The twice of the difference between minima position will be guide wave

length. One of the minima is used as reference for impedance measurement. Find the difference of

reference minima and minima position obtained from unknown load. Let it be „d‟. Take a smith chart,

taking „1‟ as centre, draw a circle of radius equal to S. Mark a point on circumference of smith chart

towards load side at a distance equal to d/λg.

Join the center with this point. Find the point where it cut the drawn circle. The co- ordinates of

this point will show the normalized impedance of load.

PROCEDURE:

1. Calculate a set of Vmin values for short or movable short as load.

2. Calculate a set of Vmin values for S-S Tuner + Matched termination as a load.

Note: Move more steps on S-S Tuner

3. From the above 2 steps calculate d = d1~d2

4. With the same setup as in step 2 but with few numbers of turns (2 or 3). Calculate low VSWR.

Note: High VSWR can also be calculated but it results in a complex procedure.

5. Draw a VSWR circle on a smith chart.

6. Draw a line from center of circle to impedance value (d/λg) from which calculate admittance and

Reactance (Z = R+jx)

Page 64 of 73

Load (S.S. Tuner + Matched Termination)

OBSERVATION TABLE:

Load (short or movable short)

x1

(cm)

x2

(cm)

x1

(cm)

x2

(cm)

x1

(cm)

x2

(cm)

x = λg =

S.S Tuner + Matched Termination Short or Movable Short

d1= , d2 =

d = d1 ~ d2 = Z =

d/λg =

RESULT

 Thus the unknown impedance has been measured by using Reflex klystron.

Page 65 of 73

EXP.NO:10A DIRECTIONAL COUPLER CHARACTERISTICS

DATE:

AIM:

 To study the function of multi-hole directional coupler by measuring the following parameters.

1. The Coupling factor, Insertion Loss and Directivity of the Directional coupler

EQUIPMENT REQUIRED:

1. Microwave Source (Klystron or Gunn-Diode)

2. Isolator, Frequency Meter

3. Variable Attenuator

4. Slotted Line

5. Tunable Probe

6. Detector Mount Matched Termination

7. MHD Coupler

8. Waveguide Stand

9. Cables and Accessories

10. CRO.

THEORY:

A directional coupler is a device with which it is possible to measure the incident and reflected

wave separately. It consist of two transmission lines the main arm and auxiliary arm,

electromagnetically coupled to each other Refer to the Fig.1. The power entering, in the main- arm gets

divided between port 2 and 3, and almost no power comes out in port (4) Power entering at port 2 is

divided between port 1 and 4.

The coupling factor is defined as

Coupling (db) = 10 log10 [P1/P3] where port 2 is terminated, Isolation (dB) = 10 log10 [P2/P3] where P1

is matched.

With built-in termination and power entering at Port 1, the directivity of the coupler is a measure

of separation between incident wave and the reflected wave. Directivity is measured indirectly as

follows:

Hence Directivity D (db) = I-C = 10 log10 [P2/P1]

Main line VSWR is SWR measured, looking into the main-line input terminal when the matched

loads are placed at all other ports.

Auxiliary live VSWR is SWR measured in the auxiliary line looking into the output terminal when the

matched loads are placed on other terminals.

Page 66 of 73

Main line insertion loss is the attenuation introduced in the transmission line by insertion of coupler, it

is defined as:

Insertion Loss (dB) = 10 log10 [P1/P2]

BLOCKDIAGRAM:

EXPERIMENTAL PROCEDURE:

1. Set up the equipments as shown in the Figure.

2. Energize the microwave source for particular operation of frequency .

3. Remove the multi hole directional coupler and connect the detector mount to the slotted section.

4. Set maximum amplitude in CRO with the help of variable attenuator, Let it be X.

5. Insert the directional coupler between the slotted line and detector mount. Keeping port 1 to slotted

line, detector mount to the auxiliary port 3 and matched termination to port 2 without changing the

position of variable attenuator.

6. Note down the amplitude using CRO, Let it be Y.

7. Calculate the Coupling factor X-Y in dB.

8. Now carefully disconnect the detector mount from the auxiliary port 3 and matched termination

from port 2 , without disturbing the setup.

9. Connect the matched termination to the auxiliary port 3 and detector mount to port 2 and measure

Page 67 of 73

the amplitude on CRO, Let it be Z.

10. Compute Insertion Loss= X – Z in dB.

11. Repeat the steps from 1 to 4.

12. Connect the directional coupler in the reverse direction i.e., port 2 to slotted section, matched

termination to port 1 and detector mount to port 3, without disturbing the position of the variable

attenuator.

13. Measure and note down the amplitude using CRO, Let it be Y0.

Compute the Directivity as Y-Y0 in dB.

RESULT:

Thus the Characteristics of Directional coupler were measured.

Page 68 of 73

EXP.NO:10B SCATTERING PARAMETERS OF CIRCULATOR

DATE:

AIM:

To study the Isolator and circulators and measure the Insertion Loss and Isolation of Circulator.

EQUIPMENT REQUIRED:

1. Microwave Source (Klystron or Gunn-Diode)

2. Isolator, Frequency Meter

3. Variable Attenuator

4. Slotted Line

5. Tunable Probe

6. Detector Mount Matched Termination

7. Circulator

8. Waveguide Stand

9. Cables and Accessories

10. VSWR Meter.

CIRCULATOR:

Circulator is defined as device with ports arranged such that energy entering a port is coupled to an

adjacent port but not coupled to the other ports. This is depicted in figure circulator can have any

number of ports.

ISOLATOR:

An Isolator is a two-port device that transfers energy from input to output with little attenuation and

from output to input with very high attenuation.

Page 69 of 73

The isolator, shown in Fig. can be derived from a three-port circulator by simply placing a matched load

(reflection less termination) on one port.

The important circulator and isolator parameters are:

A. Insertion Loss

Insertion Loss is the ratio of power detected at the output port to the power supplied by source to the

input port, measured with other orts terminated in the matched Load. It is expressed in dB.

B. Isolation

Isolation is the ratio of power applied to the output to that measured at the input. This ratio is expressed

in db. The isolation of a circulator is measured with the third port terminated in a matched load.

BLOCK DIAGRAM:

Page 70 of 73

EXPERIMENTAL PROCEDURE:

Measurement of insertion

1. Remove the isolator or circulator from slotted line and connect the detector mount to the slotted

section. The output of the detector mount should be connected with CRO.

2. Energize the microwave source for maximum output for a particular frequency of operation. Tune

the detector mount for maximum output in the CRO.

3. Set any reference level of output in CRO with the help of variable attenuator, Let it be V1.

4. Carefully remove the detector mount from slotted line without disturbing the position of the set up.

Insert the isolator/circulator between slotted line and detector mount. Keep input port to slotted line

and detector its output port. A matched termination should be placed at third port in case of

Circulator.

5. Record the output in CRO, Let it be V2.

6. Compute Insertion loss given as V1-V2 in db.

Measurement of Isolation:

7. For measurement of isolation, the isolator or circulator has to be connected in reverse i.e. output port

to slotted line and detector to input port with other port terminated by matched termination (for

circulator).

8. Record the output of CRO and let it be V3.

9. Compute Isolation as V1-V3 in db.

10. The same experiment can be done for other ports of circulator.

11. Repeat the above experiment for other frequency if needed.

RESULT:

Thus the Characteristics of Circulator and Isolator were measured.

Page 71 of 73

EXP.NO:11 GUNN DIODE CHARACTERISTICS

DATE:

AIM:

 To measure the V-I characteristics of Gunn diode.

EQUIPMENT REQUIRED:

1. Gunn power supply

2. Gunn oscillator

3. PIN Modulator

4. Isolator

5. Frequency Meter

6. Variable attenuator

7. Slotted line

8. Detector mount and CRO.

THEORY:

 Gunn diode oscillator normally consist of a resonant cavity, an arrangement for coupling diode to the

cavity a circuit for biasing the diode and a mechanism to couple the RF power from cavity to external

circuit load. A co-axial cavity or a rectangular wave guide cavity is commonly used.

 The circuit using co-axial cavity has the Gunn diode at one end at one end of cavity along with the

central conductor of the co-axial line. The O/P is taken using a inductively or capacitive coupled probe. The

length of the cavity determines the frequency of oscillation. The location of the coupling loop or probe within

the resonator determines the load impedance presented to the Gunn diode. Heat sink conducts away the heat

due to power dissipation of the device.

 BLOCK DIAGRAM

Page 72 of 73

EXPERIMENTAL PROCEDURE:

Voltage-Current Characteristics:

1. Set the components and equipments as shown in Figure.

2. Initially set the variable attenuator for minimum attenuation.

3. Keep the control knobs of Gunn power supply as below Meter

switch – “OFF”

Gunn bias knob – Fully anti clock wise PIN

bias knob – Fully anti clock wise PIN mode

frequency – any position

4. Set the micrometer of Gunn oscillator for required frequency of operation.

5. Switch “ON” the Gunn power supply.

6. Measure the Gunn diode current to corresponding to the various Gunn bias voltage through the

digital panel meter and meter switch. Do not exceed the bias voltage above 10 volts.

7. Plot the voltage and current readings on the graph.

8. Measure the threshold voltage which corresponding to max current.

MODEL GRAPH

Page 73 of 73

OBSERVATION TABLE

Gunn bias voltage

(v)

Gunn diode current

(mA)

RESULT

Thus the V-I Characteristics of Gunn diode has been measured.

	Vision
	Mission
	SYLLABUS
	0 0 4 2
	TOTAL: 60 PERIODS
	Pre Lab Questions
	Theory
	LPC2148 specification
	APPENDIX-II: CONNECTORS & CONNECTION DETAILS
	Connection Details for LCD(16 pin RMC):

	Post Lab Questions
	Result
	2. INTERFACING ADC & DAC
	Pre Lab Questions (1)
	Apparatus & Software Required
	Theory (1)
	Procedure
	/**/
	/**/ (1)

	DAC PROGRAM
	/**/ DAC.C
	/**/

	Post Lab Questions (1)
	Result :
	3. INTERFACING LED & PWM
	Pre Lab Questions (2)
	Apparatus & Software Required (1)
	Theory (2)
	Procedure (1)
	/* Place lcd.c file into following directories C:\Keil\ARM\INC\Philips.*/
	***/

	Post Lab Questions (2)
	Result (1)
	4. INTERFACING REAL TIME CLOCK PROGRAM
	Aim
	Pre Lab Questions (3)
	Apparatus & Software Required (2)
	Procedure (2)
	/**/
	/* This program is used to interface the RTC.You can change the date and time*/
	/* Battery backup for continuous Running. ************************************/
	/**/ (1)

	Post Lab Questions (3)
	Result (2)
	5.INTERFACING KEYBOARD ANDLCD MATRIX KEYBOARD PROGRAM
	Pre Lab Questions (4)
	Apparatus & Software Required (3)
	Theory (3)
	Procedure (3)
	/**/ LCD.h
	/**/
	/**/ (1)
	/***/

	Post Lab Questions (4)
	Result (3)
	6. INTERFACING EPROM AND INTERRUPT
	Pre Lab Questions (5)
	Apparatus & Software Required (4)
	Theory (4)
	Procedure (4)
	/**/ I2C .C
	/***/ ExtDriver.C

	Post Lab Questions (5)
	Result (4)
	7. MAILBOX
	Pre Lab Questions (6)
	Apparatus & Software Required (5)
	Theory (5)
	Post Lab Questions (6)
	Result (5)
	8. Interrupt Performance Characteristics ofARM andFPGA
	Pre Lab Questions (7)
	Apparatus & Software Required (6)

	UART implementation FPGA & ARM7
	Why we are doing this experiment?
	What is hardware software partitioning on performancecharacteristics?
	Objective of the Experiment:
	Design of the system:
	Data driving logic:
	Data packing/unpacking logic:
	/***/

	Post Lab Questions
	Result
	9. Flashing of LEDS
	Pre Lab Questions
	Apparatus & Software Required
	Theory
	Procedure
	Post Lab Questions (1)
	Result (1)
	10. INTERFACING STEPPER MOTOR
	Aim
	Pre Lab Questions (1)
	Apparatus & Software Required (1)
	Theory (1)
	Procedure (1)
	/***/ MAIN ADC TEST
	/**/

	Post Lab Questions (2)
	Result (2)
	Aim (1)
	Pre Lab Questions (2)
	Apparatus & Software Required (2)
	Theory (2)
	Procedure (2)
	Post Lab Questions (3)
	Result (3)
	12. SIMULATION USING PROTEUS SOFTWARE –AN INTRODUCTION
	Pre Lab Questions (3)
	Procedure (3)
	Step1:
	Note:
	Command Toolbars
	Orientation Toolbar
	The Components needed are,
	IC NE555 LED
	Step 3
	Step 4
	Step 5

	Post Lab Questions (4)
	Result (4)
	13. SIMULATION OF CALCULATOR USING 8051 MICROCONTROLLER IN PROTEUS
	Aim (2)
	Pre Lab Questions (4)
	Procedure (4)
	ProgrammingCode

	Post Lab Questions (5)
	Result (5)

	Vision
	Mission

