
LABORATORY MANUAL

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

EC3501 WIRELESS COMMUNICATION

Semester - 05

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Vision

To excel in providing value based education in the field of Electronics and
Communication Engineering, keeping in pace with the latest technical developments
through commendable research, to raise the intellectual competence to match global
standards and to make significant contributions to the society upholding the ethical
standards.

Mission

 To deliver Quality Technical Education, with an equal emphasis on theoretical
and practical aspects.

 To provide state of the art infrastructure for the students and faculty to upgrade
their skills and knowledge.

 To create an open and conducive environment for faculty and students to carry
out research and excel in their field of specialization.

 To focus especially on innovation and development of technologies that is
sustainable and inclusive, and thus benefits all sections of the society.

 To establish a strong Industry Academic Collaboration for teaching and research,
that could foster entrepreneurship and innovation in knowledge exchange.

 To produce quality Engineers who uphold and advance the integrity, honour and
dignity of the engineering.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

1. To provide the students with a strong foundation in the required sciences in order
to pursue studies in Electronics and Communication Engineering.

2. To gain adequate knowledge to become good professional in electronic and
communication engineering associated industries, higher education and
research.

3. To develop attitude in lifelong learning, applying and adapting new ideas and
technologies as their field evolves.

4. To prepare students to critically analyze existing literature in an area of
specialization and ethically develop innovative and research oriented
methodologies to solve the problems identified.

5. To inculcate in the students a professional and ethical attitude and an ability to
visualize the engineering issues in a broader social context.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1: Design, develop and analyze electronic systems through application of relevant

electronics, mathematics and engineering principles.

PSO2: Design, develop and analyze communication systems through application of

fundamentals from communication principles, signal processing, and RF System Design
& Electromagnetics.

PSO3: Adapt to emerging electronics and communication technologies and develop

innovative solutions for existing and newer problems.

LIST OF EXPERIMENTS:

1. Modeling of wireless communication systems using Matlab(Two ray channel and
Okumura –Hata model)

2. Modeling and simulation of Multipath fading channel

3. Design, analyze and test Wireless standards and evaluate the performance
measurements such as BER, PER, BLER, throughput, capacity, ACLR, EVM for 4G and
5G using Matlab

4. Modulation: Spread Spectrum – DSSS Modulation & Demodulation

5. Wireless Channel equalization: Zero-Forcing Equalizer (ZFE), MMSE
Equalizer(MMSEE),Adaptive Equalizer (ADE),Decision Feedback Equalizer (DFE)

6. Modeling and simulation of TDMA, FDMA and CDMA for wireless communication

EX.NO :1 MODELLING OF WIRELSS COMMUNICATION SYSTEMS USING
DATE : MATLAB

a) Two ray channel

AIM:

To model and simulate wireless communication system for two ray channel and okumura hata model

using matlab

Software Required:

Matlab version 2014a

THEORY:

The two-rays ground-reflection model is a multipath radio propagation model which predicts

the path losses between a transmitting antenna and a receiving antenna when they are in line of sight

(LOS). Generally, the two antenna each have different height. The received signal having two

components, the LOS component and the reflection component formed predominantly by a single

ground reflected wave. When the distance between antennas is less than the transmitting antenna

height, two waves are added constructively to yield bigger power. As distance increases, these waves

add up constructively and destructively, giving regions of up-fade and down-fade. As the distance

increases beyond the critical distance or first Fresnel zone, the power drops proportionally to an

inverse of fourth power of an approximation to critical distance may be obtained by setting Δφ to π

as the critical distance to a local maximum.

PROCEDURE:

1. Start the MATLAB program.

2. Open new M-file

3. Type the program

4. Save in current directory

5. Compile and Run the program

6. If any error occurs in the program correct the error and run it again

7. For the output see command window\ Figure window

8.Stop the program.

PROGRAM:

lambda = 0.3;

ht100=100;

ht30=30;

ht2=2;

hr=2;

axis=[];

p100=[];

p30=[];

p2=[];

pfsl=[];

for i=1000:5000

d=10^(i/1000);

axis =[axis d];

fspower = (lambda/(4*3.1415*d))^2 ;

power100 = fspower * 4 *(sin(2*3.1415*hr*ht100/(lambda*d)))^2;

power30 = fspower* 4 *(sin(2*3.1415*hr*ht30/(lambda*d)))^2;

power2 = fspower * 4 *(sin(2*3.1415*hr*ht2/(lambda*d)))^2;

p100 =[p100, 10*log10(power100)];

p30 =[p30, 10*log10(power30)];

p2 =[p2, 10*log10(power2)];

pfsl=[pfsl, 10*log10(fspower)];

end

text('FontSize',18)

semilogx(axis,p100, 'g-',axis,p30, 'b-',axis,p2, 'r-',axis,pfsl,'y-')

xlabel('distance in m');

ylabel('pathloss');

text(1000,-66,'blue : hr=30m');

text(1000,-74,'red : hr=2m');

text(1000,-58,'red : hr=100m');

text(1000,-50,'yellow: free space');

text(50,-180,'lambda = 0.30 m');

text(50,-190,'hr = 2 m');

OUTPUT:

b) OKUMURA-HATA MODEL

PROGRAM

clc;

close all;

clear all;

hte=30:1:100;

hre=input('Enter the receiver antenna height 3m<hre<10m :');

d=input('Enter the distance from base station 1km<d<100km :');

f=input('Enter the frequency 150Mhz<f<1920Mhz :');

c=3*10^8;

lamda=c/(f*10^6);

lf=10*log((lamda^2)/((4*pi)^2));

amu=35;

garea=9;

ghte=20*log(hte/200);

if(hre>3)

ghre=20*log(hre/3);

else

ghre=10*log(hre/3);

end

l50=lf+amu-ghte-ghre-garea;

display('propagation path loss is: ');

disp(l50);

plot(hte,l50,'Linewidth',1.5);

title('okumura model analysis');

xlabel('transmitter antenna height (km)');

ylabel('propagation path loss(db) at 50 km');

grid on;

comparison between okumura and hata model:

OUTPUT:

RESULT:

Thus modeling and Simulation of wireless communication system for two ray channel and okumura -

hata model was done using matlab.

EX.NO 2 MODELLING AND SIMULATION OF MULTIPATH FADING CHANNEL

DATE:

AIM:

To model and simulate multipath fading channel and display the spectral characteristics of the
channel using Rayleigh and Rician multipath fading channel System objects

SOFTWARE REQUIRED:
Matlab version 2014

THEORY:

In wireless communication, fading is a phenomenon in which the strength and quality of a radio

signal fluctuate over time and distance. Fading is caused by a variety of factors, including

multipath propagation, atmospheric conditions, and the movement of objects in the transmission

path. Fading can have a significant impact on the performance of wireless communication systems,

particularly those that operate in high-frequency bands.

 Multipath delay spread is a type of small-scale fading that occurs when a transmitted signal

takes multiple paths to reach the receiver.

 The different components of the signal can arrive at the receiver at different times, causing

interference and rapid variations in signal amplitude and phase.

 Multipath delay spread can cause Inter-Symbol Interference (ISI), where symbols in the

transmitted signal overlap and interfere with each other, leading to errors in the received signal.

 The root means square (RMS) delay spread is a measure of the dispersion of the signal and

determines the frequency-selective characteristics of the channel.

 A higher RMS delay spread indicates a more frequency-selective channel, while a lower RMS

delay spread indicates a flatter, more frequency-invariant channel.

 Multipath delay spread can be mitigated by using techniques such as equalization, diversity,

and adaptive modulation.

 Equalization techniques are used to compensate for the time dispersion caused by multipath

delay spread.

 Diversity techniques are used to combine multiple signal paths to mitigate the effects of fading.

 Adaptive modulation techniques are used to adjust the modulation scheme and data rate based

on the channel conditions, allowing the system to adapt to changes in the channel and maintain

a reliable communication link.

PROCEDURE:

1. Start the MATLAB program.

2. Open new M-file

3. Type the program

4. Save in current directory

5. Compile and Run the program

6. If any error occurs in the program correct the error and run it again

7. For the output see command window\ Figure window

8.Stop the program.

PROGRAM:

%Rayleigh PDF

%Input section

N=1000000;%nUMBER OF SAMPLES TO GENERATE

variance=0.2;

x=randn(1,N);

y=randn(1,N);

%Raleigh feeding envelope with the desired variance

r=sqrt(variance*(x.^2+y.^2));

%Define bin steps and range for histogram plotting

step=0.1;range=0:step:3;

%Get histogram values and approximate it to get the pdf curve

h=hist(r,range);

approxPDF=h/(step*sum(h));%simulation of PDF from the x and y saqmples

%Theoritical PDF from the rayleigh fading equation

theoritical=(range/variance).*exp(-range.^2/(2*variance));

plot(range,approxPDF,'b',range,theoritical,'r');

title('simulated and theoritical Rayleigh PDF from variance=0.5')

legend('simulated PDF,Theoritical PDF')

xlabel('r >');

ylabel('p(r).. >');

grid;

%PDF of phase of the rayleigh envelope

theta=atan(y./x);

figure(2)

hist(theta);%plot histogram of the phase

%Approximate the histogram of the phase par tto a nice PDF curve

[counts,range]=hist(theta,100);

step=range(2)*range(1);

approx PDF=counts(step*sum(counts));%simulated PDF from x and y samples

bar(range,approxPDF,'b');

holdon

plotHandle=plot(range,approxPDF,'r');

set (plotHandle,'Linewidth',3.5);

axis([-2 2 0 max(approxPDF)+0.2])

holdoff

title('simulated PDF of phase of Rayleigh Distribution');

xlabel('theta >');

ylabel('p(\theta) ... >');

grid;

OUTPUT:

Result:

Thus the modeling and simulation of multipath fading channel using Rayleigh and Rician channel

system was simulated successfully.

EX.NO:5 WIRELESS CHANNEL EQUALIZATION

DATE: Zero-Forcing Equalizer (ZFE)

AIM:

To simulate Wireless Channel Equalization using MATLAB.

APPARATUS REQUIRED :

PC with MATLAB Software

THEORY:

If the modulation bandwidth exceeds the coherent bandwidth of the radio channel ISI occur and

modulation pulses are spread in time. Equalization compensates for ISI(Inter symbol

interference)created by multipath within time dispersive channels. An equalizer within a receiver

compensates for the average range of expected channel amplitude and delay characteristics.

Equalizers can be classified as linear equalizer, non linear equalizer, zero forcing equalizer,

Adaptive equalizer,(MMSE)Minimum mean square error equalizer and decision feedback

equalizer.In zero forcing equalization the equalizer gk attempts to completely inverse the channel

by forcing ck*gk =₰(k-ko).

PROCEDURE:

1. Start the MATLAB program.

2. Open new M-file

3. Type the program

4. Save in current directory

5. Compile and Run the program

6. If any error occurs in the program correct the error and run it again

7. For the output see command window\ Figure window

8.Stop the program.

ALGORITHM

Simulate the link by following these steps:

1.Generate the number of bits and Eb/No value

2.Modulate BPSK Signal

ZERO FORCING EQUALIZER OUTPUT:

RESULT:

Thus channel equalization for wireless channel using zero forcing equalizer has been simulated

using matlab.

EX.NO 4 MODULATION AND DEMODULATION OF DSSS
DATE:

AIM:

To modulate and demodulate Direct sequence spread spectrum using Matlab.

SOFTWARE REQUIRED:

Matlab version 2014

THEORY:

Direct-sequence spread spectrum in Wireless Networks is a technique that transmits a data signal

over a range of frequencies, spreading it uniformly across the allocated spectrum. Direct-sequence

spread spectrum is used to ensure that a particular frequency band (and its corresponding range of

frequencies) is kept free from interference. This technique can be related to escaping the problem

of co-channel interference (like two different wireless networks transmitting on the same

frequency band) and cross-talk interference. Direct-sequence spread spectrum can also be used as

an alternative approach to orthogonal frequency division multiplexing, where the baseband signal

is encoded and transmitted across a quantity of fixed, predetermined channels. In this situation,

each channel may carry different information, data signals, or time slots for different applications

within the same network. Direct-sequence spread spectrum has also been used to transmit data that

is encrypted and, in some processes, it is used to transmit non-data signals like power signaling or

control signals.

Direct Sequence Spread Spectrum (DSSS) is a communication system that divides the bandwidth

of a radio channel into wide frequency bands and transmits these signals over separate frequencies.

In this frequency-hopping process, each signal is assigned a different orthogonal sequence of

frequencies.All other radios in the range must gain each signal sequentially and then transmit it,

which significantly reduces the risk of interference from outside sources or jamming. The time

required for this process is proportional to the number of frequencies used for transmission. When

security agencies need to be ready to communicate secretly, DSSS can be implemented so that

their transmissions cannot be spied upon by other parties who are monitoring broadcasts on a

shorter wavelength or through tapping devices.

PROCEDURE:

1. Start the MATLAB program.

2. Open new M-file

3. Type the program

4. Save in current directory

5. Compile and Run the program

6. If any error occurs in the program correct the error and run it again

7. For the output see command window\ Figure window

8.Stop the program.

PROGRAM:

Clc;

Close all;

Clear all;

%b=input(‘Enter the input bits:’);

b =[1 0 1 0 1 0 1 0 1 0];

ln=length(b);

%converting bit 0 to -1

For i=1:in

If b(i) = = 0

b (i) = -1;

end

end

%Generating the bit sequence with each bit 8 samples long

K=1

for i=1:ln

for j=1:8

bb(k)=b(i);

j=j+1;

k=k+1;

end

i=i+1;

end

len=length(bb);

subplot(2,1,1);

stairs(bb,’Linewidth’,2);

axis([0 len -2 3];

title(‘ORIGINAL BIT SEQUENCE b(t)’);

%Generating the pseudo random bit pattern for spreading

pr_sig=round(rand(1,len));

for i=1:len

if pr_sig(i)==0

pr_sig(i)= -1;

end

end

subplot(2,1,2);

stairs(pr_sig,’Linewidth’,2);

axis([0 len -2 3]);

title(‘PSEUDO RANDOM BIT SEQUENCE pr_sig(t)’);

%Multiplying bit sequence with pseudo random sequence

for i=1:len

bbs(i)=bb(i).*pr_sig(i);

end

%Modulating the hopped signal

class=[];

t=0:1/10:2*pi;

c1=cos(t);

c2=cos(t+pi);

for k=1:len

if bbs(1,k)==-1

dsss=[dsss c1];

else

dsss=[dsss c2];

end

end

figure

subplot(2,1,1);

stairs(bbs,’Linewidth’,2);

axis([0 len -2 3]);

title(‘MULTIPLIER OUTPUT SEQUENCE b(t)*pr_sig(t)’);

subplot(2,1,2);

plot(dsss);

title(‘DS-SS SIGNAL….’);

OUTPUT:

RESULT:

Thus modulation and demodulation of DSSS was done using matlab.

EX.NO 6 MODELING AND SIMULATION OF TDMA, FDMA AND CDMA FOR
DATE: WIRELESS COMMUNICATION

AIM:

To model and simulate TDMA,FDMA and CDMA accessing techniques in wireless communication

using Matlab.

SOFTWARE REQUIRED:

Matlab version 2014

THEORY:

Access methods are multiplexing techniques that provide communications services to multiple users

in a single-bandwidth wired or wireless medium. There are five basic access or multiplexing

methods: frequency division multiple access (FDMA), time division multiple access (TDMA), code

division multiple access (CDMA), orthogonal frequency division multiple access (OFDMA), and

spatial division multiple access (SDMA). Each one of these takes advantage of multiplexing

methods, dividing the bandwidth of the signal into different sub-bands, which are then assigned to

different users in order to allow multiple users to share a single channel. Multiplexing is a

communications technique that multiplexes, or combines, multiple signals into a single signal. The

reverse process is called demultiplexing.

In FDMA, the time slots are assigned to the users in a sequential fashion. In TDMA, the time slots

are assigned to the users in a random fashion. In CDMA, the time slots are assigned to the users

based on their code sequences.

FDMA:

FDMA is the process of dividing one channel or bandwidth into multiple individual bands, each for

use by a single user . Each individual band or channel is wide enough to accommodate the signal

spectra of the transmissions to be propagated. The data to be transmitted is modulated on to each

subcarrier, and all of them are linearly mixed together.

TDMA:

TDMA is a digital technique that divides a single channel or band into time slots. Each time slot is

used to transmit one byte or another digital segment of each signal in sequential serial data format.

This technique works well with slow voice data signals, but it’s also useful for compressed video

and other high-speed data.

CDMA:

CDMA is another pure digital technique. It is also known as spread spectrum because it takes the

digitized version of an analog signal and spreads it out over a wider bandwidth at a lower power

level. This method is called direct sequence spread spectrum (DSSS) as well as The digitized and

compressed voice signal in serial data form is spread by processing it in an XOR circuit along with a

chipping signal at a much higher frequency.

PROCEDURE:

1. Start the MATLAB program.

2. Open new M-file

3. Type the program

4. Save in current directory

5. Compile and Run the program

6. If any error occurs in the program correct the error and run it again

7. For the output see command window\ Figure window

8.Stop the program.

PROGRAM:

TDMA

clc

clear all;

close all;

num_node=input('Enter number of node for network=');

No_of_time_slots=num_node;
Bandwidth=200; %Khz
time_slots_length=input('Enter the length of time slot');%seconds

Guard_interval=input('Enter the value of guard interval');

for i=1:1:No_of_time_slots

pause(time_slots_length);

a(i)=time_slots_length;

end

endclc;

FDMA

fs=2000;

fm1=4;

fm2=5;

fm3=6;

fcm1=25;

fcm2=50;

fcm3=75;

tiv=1/fs;

t=0:tiv:1;

A=2;

mu=0;

sigma=10;

m1=A*cos(2*pi*fm1*t);

sound(m1,fs);

pause(5);

len=length(m1);

y=lognpdf(mu,sigma);

m1=m1+y';

m2=2*A*cos(2*pi*fm2*t);

m3=3*A*cos(2*pi*fm3*t);

c1=A*cos(2*pi*fcm1*t

c2=A*cos(2*pi*fcm2*t);

c3=A*cos(2*pi*fcm3*t);

x=m1.*c1+m2.*c2+m3.*c3;

x=awgn(x,.02);%adding awgn in channel

[num1,den1]=butter(5,[.5*(fcm1-

fm1),fcm1+fm1]*4/fs);

[num2,den2]=butter(5,[.5*(fcm2-

fm2),fcm2+fm2]*4/fs);

[num3,den3]=butter(5,[.5*(fcm3-

fm3),fcm3+fm3]*4/fs);

filtr1=filter(num1,den1,x);

filtr2=filter(num2,den2,x);

filtr3=filter(num3,den3,x);

lp1=filtr1.*c1;

lp2=filtr2.*c2;

lp3=filtr3.*c3;

[num11,den11]=butter(5,4*fm1/fs);

[num22,den22]=butter(5,4*fm2/fs);
[num33,den33]=butter(5,4*fm3/fs);

lpf_out1=filter(num11,den11,lp1);

lpf_out2=filter(num22,den22,lp2);

lpf_out3=filter(num33,den33,lp3);

subplot(3,3,1);

plot(t,m1);

title('messege signal 1');

grid on;

subplot(3,3,2);

plot(t,m2);title('messege signal 2');

grid on;

subplot(3,3,3);

plot(t,m3);title('messege signal 3');

grid on;

subplot(3,3,4);

plot(t,c1);title('carrier signal 1');

grid on;

subplot(3,3,5);

plot(t,c2);title('carrier signal 2');

grid on;

subplot(3,3,6);

plot(t,c3);title('carrier signal 3');

grid on;

OUTPUT:

CDMA:

close all;

clc;

%N=6;

%data=input('Enter Binary Data In Form of 0 and 1 in [] : ');

data=[1 0 0 1 1 0 1 1];

figure('Name','Message BPSK Modulation','NumberTitle','off')

subplot(2,2,1);

plot(rectpulse(data,100));

axis([0 length(rectpulse(data,100)) -0.2 1.2]);

title('Message Signal');

xlabel('n');

ylabel('x(n)');

grid on;

data(data(:)==0)=-1;

length_data=length(data);

fc1=10;

eb=2;

tb=1;

T=1;

msg=rectpulse(data,100);

subplot(2,2,2);

plot(msg);

title('Message Signal in NRZ form');

xlabel('n');

ylabel('x(n)');

axis([0 100*length_data -1.2 1.2]);

grid on;

N=length_data;

Tb = 0.0001;

nb=100;

br = 1/Tb;

Fc = br*10;

t2 = Tb/nb:Tb/nb:Tb;

t1=0.01:0.01:length_data;

bpskmod=sqrt(2/T)*cos(2*pi*fc1*t1);

bpsk_data=msg.*bpskmod;

subplot(2,2,3)

plot(bpsk_data)

title(' BPSK signal');

xlabel('Time Period(t)');

ylabel('x(t)');

axis([0 100*length_data -2 2]);

grid on;

subplot(2,2,4);

plot(real(fft(bpsk_data)));

title('FFT of BPSK signal');

xlabel('Frequency');

ylabel('PSD');

grid on;

sr=[1 -1 1 -1];

pn1=[];

for i=1:length_data

for j=1:10

pn1=[pn1 sr(4)];

if sr (4)==sr(3)

temp=-1;

else temp=1;

end

end

end

sr(4)=sr(3);

sr(3)=sr(2);

sr(2)=sr(1);

sr(1)=temp;

figure('Name','PN Generation and CDMA','NumberTitle','off');

subplot(2,2,1);

stem(pn1);

axis([0,length(pn1),-1.2,1.2])

title('PN sequence for data')

xlabel('n');

ylabel('x(n)');

grid on;

pnupsampled1=[];

len_pn1=length(pn1);

for i=1:len_pn1

for j=0.1:0.1:tb

pnupsampled1=[pnupsampled1 pn1(i)];

end

end

length_pnupsampled1=length(pnupsampled1);

subplot(2,2,2)

stem(pnupsampled1);

axis([0,length(pnupsampled1),-1.2,1.2])

title('PN sequence for data upsampled');

xlabel('n');

ylabel('x(n)');

grid on;

subplot(2,2,3);

sigtx1=bpsk_data.*pnupsampled1;

plot(sigtx1);

title('CDMA Signal');

xlabel('Time Period(t)');

ylabel('x(t)');

subplot(2,2,4);

plot(real(fft(sigtx1)));

title('FFT of spreaded CDMA Signal');

xlabel('Frequency');

ylabel('PSD');

grid on;

sigtonoise=20;

composite_signal=awgn(sigtx1,sigtonoise);

figure('Name','CDMA Reciever','NumberTitle','off')

subplot(2,2,1);

plot(sigtx1);

title(' Tx Signal');

xlabel('Time Period(t)');

ylabel('x(t)');

grid on;

subplot(2,2,2);

plot(composite_signal);

title(sprintf('Tx signal + noise\n SNR=%ddb',sigtonoise));

xlabel('Time Period(t)');

ylabel('x(t)');

grid on;

%Rx

rx=composite_signal.*pnupsampled1;

subplot(2,2,3);

plot(rx);

title('CDMA Demodulated signal');

xlabel('Time Period(t)');

ylabel('x(t)');

grid on;

%BPSK Demodulation

y=[];

bpskdemod=rx.*bpskmod;

for i=1:100:size(bpskdemod,2)

y=[y trapz(t1(i:i+99),bpskdemod(i:i+99))];

end

y(y(:)<=0)=-1;

y(y(:)>=0)=1;

rxdata=y;

subplot(2,2,4);

plot(rectpulse(rxdata,100));

axis([0 length(rectpulse(rxdata,100)) -1.2 1.2]);

title('Recieved Message Signal in NRZ');

xlabel('n');

ylabel('x(n)');

grid on;

rxdata(rxdata(:)==-1)=0;

rxdata(rxdata(:)==1)=1;

rxmsg=rxdata;

figure('Name','Diffrent SNR','NumberTitle','off')

subplot(3,1,1)

plot(rectpulse(rxmsg,100));

axis([0 length(rectpulse(rxmsg,100)) -0.2 1.2]);

title('Recieved Message Signal');

xlabel('n');

ylabel('x(n)');

grid on;

sigtonoise1=5;

composite_signal1=awgn(sigtx1,sigtonoise1);

subplot(3,1,2);

plot(composite_signal);

title(sprintf('Tx signal + noise\n SNR=%ddb',sigtonoise1));

xlabel('Time Period(t)');

ylabel('x(t)');

grid on;

sigtonoise2=0;

composite_signal2=awgn(sigtx1,sigtonoise2);

subplot(3,1,3);

plot(composite_signal2);

title(sprintf('Tx signal + noise\n SNR=%ddb',sigtonoise2));

xlabel('Time Period(t)');

ylabel('x(t)');

grid on;

scatterplot(composite_signal); grid minor;

title('Constellation Diagram of BPSK with Noise')

grid on

scatterplot(bpsk_data); grid minor;

title('Constellation Diagram of BPSK')

grid on

OUTPUT:

RESULT:

Thus multiple access techniques in wireless communication has been simulated using matlab.

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

EC3561 VLSI LABORATORY

Semester - 05

LABORATORY MANUAL

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Vision

To excel in providing value based education in the field of Electronics and
Communication Engineering, keeping in pace with the latest technical developments
through commendable research, to raise the intellectual competence to match global
standards and to make significant contributions to the society upholding the ethical
standards.

Mission

 To deliver Quality Technical Education, with an equal emphasis on theoretical
and practical aspects.

 To provide state of the art infrastructure for the students and faculty to upgrade
their skills and knowledge.

 To create an open and conducive environment for faculty and students to carry
out research and excel in their field of specialization.

 To focus especially on innovation and development of technologies that is
sustainable and inclusive, and thus benefits all sections of the society.

 To establish a strong Industry Academic Collaboration for teaching and research,
that could foster entrepreneurship and innovation in knowledge exchange.

 To produce quality Engineers who uphold and advance the integrity, honour and
dignity of the engineering.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

1. To provide the students with a strong foundation in the required sciences in order
to pursue studies in Electronics and Communication Engineering.

2. To gain adequate knowledge to become good professional in electronic and
communication engineering associated industries, higher education and
research.

3. To develop attitude in lifelong learning, applying and adapting new ideas and
technologies as their field evolves.

4. To prepare students to critically analyze existing literature in an area of
specialization and ethically develop innovative and research oriented
methodologies to solve the problems identified.

5. To inculcate in the students a professional and ethical attitude and an ability to
visualize the engineering issues in a broader social context.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1: Design, develop and analyze electronic systems through application of relevant

electronics, mathematics and engineering principles.

PSO2: Design, develop and analyze communication systems through application of

fundamentals from communication principles, signal processing, and RF System Design
& Electromagnetics.

PSO3: Adapt to emerging electronics and communication technologies and develop
innovative solutions for existing and newer problems.

LIST OF EXPERIMENTS:

1. Design of basic combinational and sequential (Flip-flops) circuits using HDL.
Simulate it using Xilinx/Altera Software and implement by Xilinx/Altera FPGA

2. Design an Adder ; Multiplier (Min 8 Bit) using HDL. Simulate it using Xilinx/Altera
Software and implement by Xilinx/Altera FPGA

3. Design and implement Universal Shift Register using HDL. Simulate it using
Xilinx/Altera Software

4. Design Memories using HDL. Simulate it using Xilinx/Altera Software and implement
by Xilinx/Altera FPGA

5. Design Finite State Machine (Moore/Mealy) using HDL. Simulate it using
Xilinx/Altera Software and implement by Xilinx/Altera FPGA

6. Design 3-bit synchronous up/down counter using HDL. Simulate it using
Xilinx/Altera Software and implement by Xilinx/Altera FPGA

7. Design 4-bit Asynchronous up/down counter using HDL. Simulate it using
Xilinx/Altera Software and implement by Xilinx/Altera FPGA

8. Design and simulate a CMOS Basic Gates & Flip-Flops. Generate
Manual/Automatic Layout.

9. Design and simulate a 4-bit synchronous counter using a Flip-Flops. Generate
Manual/Automatic Layout

10. Design and Simulate a CMOS Inverting Amplifier.

11. Design and Simulate basic Common Source, Common Gate and Common Drain
Amplifiers.

12. Design and simulate simple 5 transistor differential amplifier.

Exp No :01(a)
DESIGN AND IMPLEMENTATION OF FULL ADDER AND

SUBRACTOR Date :

AIM:

 To design a Full adder and subractor using Verilog Hardware Description Language, simulate it

using Xilinx software and implement by Xilinx.

APPARATUS REQUIRED:

1. PC with windows XP

2. Xilinx 12.1 ISE software

FULL ADDER:

 Full Adder is the adder which adds three inputs and produces two outputs. The first two inputs are A and B

and the third input is an input carry as C-IN. The output carry is designated as C-OUT and the normal output is

designated as S which is SUM. A full adder logic is designed in such a manner that can take eight inputs together to

create a byte-wide adder and cascade the carry bit from one adder to the another.

FULL ADDER TRUTH TABLE:

Logical Expression for SUM:

 = A’ B’ C-IN + A’ B C-IN’ + A B’ C-IN’ + A B C-IN

= C-IN (A’ B’ + A B) + C-IN’ (A’ B + A B’)

= C-IN XOR (A XOR B) = (1,2,4,7)

Logical Expression for C-OUT:

= A’ B C-IN + A B’ C-IN + A B C-IN’ + A B C-IN

= A B + B C-IN + A C-IN = (3,5,6,7)

Another form in which C-OUT can be implemented:

= A B + A C-IN + B C-IN (A + A’)

= A B C-IN + A B + A C-IN + A’ B C-IN

= A B (1 +C-IN) + A C-IN + A’ B C-IN

= A B + A C-IN + A’ B C-IN

= A B + A C-IN (B + B’) + A’ B C-IN

= A B C-IN + A B + A B’ C-IN + A’ B C-IN

= A B (C-IN + 1) + A B’ C-IN + A’ B C-IN

= A B + A B’ C-IN + A’ B C-IN

= AB + C-IN (A’ B + A B’)

Therefore

COUT = AB + C-IN (A EX – OR B)

Implementation of Full Adder using Half Adders :

 2 Half Adders and a OR gate is required to implement a Full Adder

PROGRAM:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity FullAdder is

 Port (A, B, Cin : in STD_LOGIC;

 Sum : out STD_LOGIC;

 Cout : out STD_LOGIC);

end FullAdder;

architecture Behavioral of FullAdder is

begin

 process (A, B, Cin)

 variable X, Y, Z : STD_LOGIC;

 begin

 X := A XOR B;

 Y := X XOR Cin;

 Z := (A AND B) OR (X AND Cin);

 Sum <= Y;

 Cout <= Z;

 end process;

end Behavioral;

Full Subtractor

 A full subtractor is a combinational circuit that performs subtraction of two bits, one is

minuend and other is subtrahend, taking into account borrow of the previous adjacent lower minuend bit.

This circuit has three inputs and two outputs. The three inputs A, B and Bin, denote the minuend,

subtrahend, and previous borrow, respectively. The two outputs, D and Bout represent the difference and

output borrow, respectively

TRUTH TABLE:

From above table we can draw the K-Map as shown for “difference” and “borrow”

Logical expression for difference –

D = A’B’Bin + A’BBin’ + AB’Bin’ + ABBin

= Bin(A’B’ + AB) + Bin’(AB’ + A’B)

 = Bin(A XNOR B) + Bin’(A XOR B)

 = Bin (A XOR B)’ + Bin’(A XOR B)

= Bin XOR (A XOR B)

= (A XOR B) XOR Bin

Logical expression for borrow –

Bout = A’B’Bin + A’BBin’ + A’BBin + ABBin

= A’B’Bin +A’BBin’ + A’BBin + A’BBin + A’BBin + ABBin

= A’Bin(B + B’) + A’B(Bin + Bin’) + BBin(A + A’)

= A’Bin + A’B + BBin OR Bout

= A’B’Bin + A’BBin’ + A’BBin + ABBin

= Bin(AB + A’B’) + A’B(Bin + Bin’)

= Bin(A XNOR B) + A’B

= Bin (A XOR B)’ + A’B

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity

 FullSubtractor is

 Port (A, B, Bin : in STD_LOGIC;

 Difference, Bout : out STD_LOGIC;

 Cout : out STD_LOGIC);

end FullSubtractor;

architecture Behavioral of FullSubtractor is

begin

process (A, B, Bin)

 variable Sum1, Sum2, Sum3 : STD_LOGIC;

 begin

 Sum1 := A XOR B;

 Sum2 := Sum1 XOR Bin;

 Difference <= Sum2;

 Sum3 := (A AND NOT B) OR (Bin AND NOT Sum1);

 Bout <= Sum3;

 Cout <= (A AND NOT B) OR (Bin AND NOT A) OR (Bin AND NOT B);

 end process;

end Behavioral;

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity FullSubtractor_TB is

end FullSubtractor_TB;

architecture Behavioral of FullSubtractor_TB is

 signal A, B, Bin, Difference, Bout, Cout : STD_LOGIC;

begin

 UUT: entity work.FullSubtractor

 port map (

 A => A,

 B => B,

 Bin => Bin,

 Difference => Difference,

 Bout => Bout,

 Cout => Cout

);

 process

 begin

 A <= '0';

 B <= '1';

 Bin <= '0';

 wait for 10 ns;

 A <= '1';

 B <= '0';

 Bin <= '1';

 wait for 10 ns;

 -- Add more test cases here

 wait;

 end process;

end Behavioral;

OUTPUT:

Exp No :01(b)
DESIGN AND IMPLEMENTATION OF MUX & DEMUX

Date :

AIM:

 To design an 4:1 multiplexer using Verilog Hardware Description Language, simulate it using

Xilinx software and implement by Xilinx FPGA Spartan 3E kit.

APPARATUS REQUIRED:

1.PC with windows XP

2.Xilinx 12.1 ISE software

3.Spartan 3E FPGA Kit

PROCEDURE:

Design Entry

1. Launch Xilinx by navigating to Xilinx ISE Design Suite 12.1 and select ISE Design Tools.

2. Create a New Project by going to the file menu and selecting “New Project”.

3. Now give the project a name, select a location where the files will be saved. Set “Verilog” as the

preferred language.

4. In the new window just opened, Select Verilog module from the left side and give it a name and

click “Next”.

5. In this window we can set a few parameters of our design as the type modeling we are going to

perform, the entity name and the list of ports. Set them appropriately and Click Next.

6. Now the Verilog module we just created will open. Edit this file (actual design entry), enter the

entity (already if not done) and the architecture.

Simulation

1. First select the “Verilog Test Fixture” in the design Hierarchy window.

2. Then in the process window expand ISIM Simulator and double click on “Simulate Behavioral

Window Model”. Wait till the simulation s complete and the simulation result window will open.

THEORY:

Multiplexer:

The multiplexer or MUX is a digital switch, also called as data selector.

It is a Combinational Logic Circuit with more than one input line, one output line and more than one select

line.

It accepts the binaryinformation from several input lines or sources and depending on the set of select lines,a

particular input line is routed onto a single output line. If there are m selection lines, then the number of

possible input lines is 2m. Alternatively, we can say that if the number of input lines is equal to 2m, then m

selection lines are required to select one of n (consider 2m = n) input lines. A 4-to-1 multiplexer consists four

data input lines as I0 to I3, two select lines as S0 and S1 and a single output line Y.

 The select lines S0 and S1 select one of the four input lines to connect the output line.

S0 S1 I0 I1 I2 I3 Y

0 0 0 X X X 0

0 0 1 X X X 1

0 1 X 0 X X 0

0 1 X 1 X X 1

1 0 X X 0 X 0

1 0 X X 1 X 1

1 1 X X X 0 0

1 1 X X X 1 1

Table 1: Truth Table of 4:1 MUX

Figure 1: Logic Diagram of 4:1 MUX

From the above truth table, we can write the output expressions as follows:

Y = S0’ S1’ I0 + S0’ S1 I1 + S0 S1’ I2 + S0 S1 I3

Demultiplexer:

Demultiplexer performs the reverse operation of the multiplexer i.e. it takes a single output and can

guide that single output through many outputs. The output to which the input signal is to be passed is

decided by the control logic. The 1:4 Demultiplexer consists of 1 input signal, 2 control signals and 4

output signals.

Table 2: Truth Table of 1:4 DeMUX

Selection Inputs Outputs

S1 S0 Y3 Y2 Y1 Y0

0 0 0 0 0 I

0 1 0 0 I 0

1 0 0 I 0 0

1 1 I 0 0 0

Figure 2: Logic Diagram of 1:4 DeMUX

Verilog Code for 4:1 MUX:

module mux_4to1(

input I0, // Input 0

input I1, // Input 1

input I2, // Input 2

input I3, // Input 3

input S0, // Select line 0

input S1, // Select line 1

output Y // Output

);

always @(S0,S1)

begin

// Behavioral modeling using if-else statements

if (S1 && S0) // S1 S0 = 11

Y = I3;

else if (S1 && !S0) // S1 S0 = 10

Y = I2;

else if (!S1 && S0) // S1 S0 = 01

Y = I1;

else // S1 S0 = 00

Y = I0;

end

endmodule

Verilog Code for 1:4 DeMUX:

module demux_1to4(

input I,

input S0,

input S1,

output Y0,

output Y1,

output Y2,

output Y3

);

// Behavioral modeling using assign statements

assign Y0 = I & ~S0 & ~S1;

assign Y1 = I & S0 & ~S1;

assign Y2 = I & ~S0 & S1;

assign Y3 = I & S0 & S1;

endmodule

RESULT:

Exp No :01(c) DESIGN AND IMPLEMENTATION OF SIMPLE

SEQUENTIAL CIRCUITS Date :

AIM:

To design various flip flops using Verilog Hardware Description Language, simulate it using

Xilinx software and implement by Xilinx FPGA Spartan 3E kit.

APPARATUS REQUIRED:

1. PC with windows XP

2. Xilinx 12.1 ISE software

3. Spartan 3E FPGA Kit

PROCEDURE:

Design Entry

1. Launch Xilinx by navigating to Xilinx ISE Design Suite 12.1 and select ISE Design Tools.

2. Create a New Project by going to the file menu and selecting “New Project”.

3. Now give the project a name, select a location where the files will be saved. Set “Verilog” as the

preferred language.

4. In the new window just opened, Select Verilog module from the left side and give it a name and

click “Next”.

5. In this window we can set a few parameters of our design as the type modeling we are going to

perform, the entity name and the list of ports. Set them appropriately and Click Next.

6. Now the Verilog module we just created will open. Edit this file (actual design entry), enter the

entity (already if not done) and the architecture.

Simulation

1. First select the “Verilog Test Fixture” in the design Hierarchy window.

2. Then in the process window expand ISIM Simulator and double click on “Simulate Behavioral

Window Model”. Wait till the simulation s complete and the simulation result window will open.

THEORY:

A flip-flop is a sequential digital electronic circuit having two stable states that can be used to store

one bit of binary data. Flip-flops are the fundamental building blocks of all memory devices. Types of

Flip–Flops are:

• S-R flip-flop

• J-K flip-flop

• D flip-flop

• T flip-flop

Table 3: Truth table of S-R flip-flop

S R Q State

0 0 0 No Change

0 1 0 Reset

1 0 1 Set

1 1 X

Figure 3: Logic diagram of SR FF

Table 4: Truth table of JK flip-flop

J K Q State

0 0 0 No Change

0 1 0 Reset

1 0 1 Set

1 1 Toggles Toggle

Table 5: Truth table of D flip-flop

D Q

0 0

1 1

Figure 4: Logic diagram of JK FF

Figure 5: Logic diagram of D FF

Table 6: Truth table of T flip-flop

T Q(t) Q(t+1)

0 0 0

0 1 1

1 0 1

1 1 0

Figure 6: Logic diagram of T FF

Verilog Code for Flip flops:

SR Flip Flop:

module SRFlipFlop(S, R, clk, Q, Qn);

input S; // Set input

input R; // Reset input

input clk; // Clock input

output Q; // Output Q

output Qn; // Complementary output Qn

reg Q, Qn;

always @(posedge clk)

begin

if (S && !R) // Only valid when S and R are not both 1 (invalid state)

begin

Q <= 1'b1; // Set Q to 1 when S=1, R=0 (Set condition)

Qn <= 1'b0; // Set Qn to 0 when S=1, R=0 (Set condition)

end

else if (!S && R) // Only valid when S and R are not both 1 (invalid state)

begin

Q <= 1'b0; // Set Q to 0 when S=0, R=1 (Reset condition)

Qn <= 1'b1; // Set Qn to 1 when S=0, R=1 (Reset condition)

end

// No change when S=0, R=0 or S=1, R=1 (No change condition)

end

endmodule

JK Flip Flop:

module JKFlipFlop(J, K, clk, Q, Qn);

input J; // J input

input K; // K input

input clk; // Clock input

output Q; // Output Q

output Qn; // Complementary output Qn

reg Q, Qn;

always @(posedge clk)

begin

if (J && !K) // Only valid when J and K are not both 1 (invalid state)

begin

Q <= 1'b1; // Toggle Q when J=1, K=0 (Toggle condition)

Qn <= 1'b0; // Set Qn to 0 when J=1, K=0 (Toggle condition)

end

else if (!J && K) // Only valid when J and K are not both 1 (invalid state)

begin

Q <= 1'b0; // Toggle Q when J=0, K=1 (Toggle condition)

Qn <= 1'b1; // Set Qn to 1 when J=0, K=1 (Toggle condition)

end

else if (J && K) // Only valid when J and K are not both 1 (invalid state)

begin

Q <= ~Q; // Toggle Q when J=1, K=1 (Toggle condition)

Qn <= ~Qn; // Toggle Qn when J=1, K=1 (Toggle condition)

end

// No change when J=0, K=0 (No change condition)

end

endmodule

D Flip Flop:

module RisingEdge_DFlipFlop(D,clk,Q);

input D; // Data input

input clk; // clock input

output Q; // output Q

always @(posedge clk)

begin

Q <= D;

end

endmodule

T Flip Flop:

module TFlipFlop(T, clk, Q, Qn);

input T; // T input

input clk; // Clock input

output Q; // Output Q

output Qn; // Complementary output Qn

reg Q, Qn;

always @(posedge clk)

begin

if (T) // Only valid when T is 1

begin

Q <= ~Q; // Toggle Q when T=1

Qn <= ~Qn; // Toggle Qn when T=1

end

// No change when T=0 (No change condition)

end

endmodule

RESULT:

Exp No : 02 (a) DESIGN AND IMPLEMENTATION OF

8 BIT ADDER Date :

AIM:

To design an 8 bit ripple carry adder using Verilog Hardware Description Language, simulate it

using Xilinx software and implement by Xilinx FPGA Spartan 3E kit.

APPARATUS REQUIRED:

1. PC with windows XP

2. Xilinx 12.1 software

3. Spartan 3E FPGA Kit

PROCEDURE:

Design Entry

1. Launch Xilinx by navigating to Xilinx ISE Design Suite 12.1 and select ISE Design Tools.

2. Create a New Project by going to the file menu and selecting “New Project”.

3. Now give the project a name, select a location where the files will be saved. Set “Verilog” as the

preferred language.

4. In the new window just opened, Select Verilog module from the left side and give it a name and

click “Next”.

5. In this window we can set a few parameters of our design as the type modeling we are going to

perform, the entity name and the list of ports. Set them appropriately and Click Next.

6. Now the Verilog module we just created will open. Edit this file (actual design entry), enter the

entity (already if not done) and the architecture.

Simulation

1. First select the “Verilog Test Fixture” in the design Hierarchy window.

2. Then in the process window expand ISIM Simulator and double click on “Simulate Behavioral

Window Model”. Wait till the simulation s complete and the simulation result window will open.

THEORY

Half Adder:

A half adder is a combinational digital circuit, which takes two 1 bit numbers and produces a sum

and carry as output.

Full Adder:

A one bit full adder is a device with three single bit binary inputs and two single bits binary

outputs. Having both carry in and carry out capabilities, the full adder is highly scalable and found in

many cascaded circuit implementations.

INPUT OUTPUT

A B SUM CARRY

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Ripple Carry Adder

Ripple Carry Adder works in different stages. Each full adder takes the carry-in as input and produces

carry-out and sum bit as output. The carry-out produced by a full adder serves as carry-in for its adjacent

most significant full adder. When carry-in becomes available to the full adder, it activates the full adder.

After full adder becomes activated, it comes into operation.

Boolean Expression of Half Adder:

Table 3: Truth Table of Half Adder

Figure 3: Logic Diagram of Half Adder

Boolean Expression of Full Adder:

Table 4: Truth Table of Full Adder

Figure 4: Logic Diagram of Full Adder

Figure 5: Block Diagram of 8 bit Ripple Carry Adder

Verilog code for an 8 bit Ripple Carry adder:

module ripplemod(a, b, cin, sum, cout);

input [07:0] a;

input [07:0] b;

input cin;

output [7:0]sum;

output cout;

wire[6:0] c;

fulladd a1(a[0],b[0],cin,sum[0],c[0]);

fulladd a2(a[1],b[1],c[0],sum[1],c[1]);

fulladd a3(a[2],b[2],c[1],sum[2],c[2]);

fulladd a4(a[3],b[3],c[2],sum[3],c[3]);

fulladd a5(a[4],b[4],c[3],sum[4],c[4]);

fulladd a6(a[5],b[5],c[4],sum[5],c[5]);

fulladd a7(a[6],b[6],c[5],sum[6],c[6]);

fulladd a8(a[7],b[7],c[6],sum[7],cout);

endmodule

module fulladd(a, b, cin, sum, cout);

input a;

input b;

input cin;

output sum;

output cout;

assign sum=(a^b^cin);

assign cout=((a&b)|(b&cin)|(a&cin));

endmodule

UCF File

net “a[0]” loc = “p71”; net “b[0]” loc = “p136”;

net “a[1]” loc = “p72”; net “b[1]” loc = “p142”;

net “a[2]” loc = “p91”; net “b[2]” loc = “p148”;

net “a[3]” loc = “p101”; net “b[3]” loc = “p154”;

net “a[4]” loc = “p110”; net “b[4]” loc = “p159”;

net “a[5]” loc = “p118”; net “b[5]” loc = “p169”;

net “a[6]” loc = “p124”; net “b[6]” loc = “p194”;

net “a[7]” loc = “p130”; net “b[7]” loc = “p174”;

net “sum[0]” loc = “p102”; net “sum[4]” loc = “p109”;

net “sum[1]” loc = “p106”; net “sum[5]” loc = “p112”;

net “sum[2]” loc = “p107”; net “sum[6]” loc = “p113”;

net “sum[3]” loc = “p108”; net “sum[7]” loc = “p115”;

net “cout” loc = “p116”;

RESULT:

Exp No : 02 (b)
DESIGN AND IMPLEMENT MULTIPLIER

Date :

AIM:

To design a 4 bit multiplier using Hardware Description Language, simulate it using Xilinx

software and implement by Xilinx FPGA Spartan 3E kit.

APPARATUS REQUIRED:

1. PC with windows XP

2. Xilinx 12.1 software

3. Spartan 3E FPGA Kit

PROCEDURE:

Design Entry

1. Launch Xilinx by navigating to Xilinx ISE Design Suite 12.1 and select ISE Design Tools.

2. Create a New Project by going to the file menu and selecting “New Project”.

3. Now give the project a name, select a location where the files will be saved. Set “Verilog” as the

preferred language.

4. In the new window just opened, Select Verilog module from the left side and give it a name and

click “Next”.

5. In this window we can set a few parameters of our design as the type modeling we are going to

perform, the entity name and the list of ports. Set them appropriately and Click Next.

6. Now the Verilog module we just created will open. Edit this file (actual design entry), enter the

entity (already if not done) and the architecture.

Simulation

1. First select the “Verilog Test Fixture” in the design Hierarchy window.

2. Then in the process window expand ISIM Simulator and double click on “Simulate Behavioral

Window Model”. Wait till the simulation s complete and the simulation result window will open.

Full Adder:

A one bit full adder is a device with three single bit binary inputs and two single bits binary

outputs. Having both carry in and carry out capabilities, the full adder is highly scalable and found in

many cascaded circuit implementations.

Multiplier

Array multiplier is well known due to its regular structure. Multiplier circuit is based on add and

shift algorithm. Each partial product is generated by the multiplication of the multiplicand with one

multiplier bit. The partial product are shifted according to their bit orders and then added. The addition can

be performed with normal carry propagate adder. N-1 adders are required where N is the multiplier length.

Verilog Code for 8 bit Multiplier

module array4x4(a,b,p);

//inputs

input [3:0]a,b;

//outputs

output [7:0]p;

//wires

wire [39:0]w;

//andgate instantiations

and a1(w[0],a[0],b[0]);

and a2(w[1],a[1],b[0]);

and a3(w[2],a[2],b[0]);

and a4(w[3],a[3],b[0]);

and a5(w[4],a[0],b[1]);

and a6(w[5],a[1],b[1]);

and a7(w[6],a[2],b[1]);

and a8(w[7],a[3],b[1]);

and a9(w[8],a[0],b[2]);

and a10(w[9],a[1],b[2]);

and a11(w[10],a[2],b[2]);

and a12(w[11],a[3],b[2]);

and a13(w[12],a[0],b[3]);

and a14(w[13],a[1],b[3]);

and a15(w[14],a[2],b[3]);

and a16(w[15],a[3],b[3]);

assign p[0]=w[0];

//full adders instatiations

fulladder a17(1'b0,w[1],w[4],w[16],w[17]);

fulladder a18(1'b0,w[2],w[5],w[18],w[19]);

fulladder a19(1'b0,w[3],w[6],w[20],w[21]);

fulladder a20(w[8],w[17],w[18],w[22],w[23]);

fulladder a21(w[9],w[19],w[20],w[24],w[25]);

fulladder a22(w[10],w[7],w[21],w[26],w[27]);

fulladder a23(w[12],w[23],w[24],w[28],w[29]);

fulladder a24(w[13],w[25],w[26],w[30],w[31]);

fulladder a25(w[14],w[11],w[27],w[32],w[33]);

fulladder a26(1'b0,w[29],w[30],w[34],w[35]);

fulladder a27(w[31],w[32],w[35],w[36],w[37]);

fulladder a28(w[15],w[33],w[37],w[38],w[39]);

//output assignments

assign p[1]=w[16];

assign p[2]=w[22];

assign p[3]=w[28];

assign p[4]=w[34];

assign p[5]=w[36];

assign p[6]=w[38];

assign p[7]=w[39];

endmodule

FULL ADDER

module fulladder(a,b,c,s,ca);

//inputs

input a,b,c;

//outputs

output s,ca;

//full adder assignments.

assign s=(a^b^c);

assign ca=((a&b)|(b&c)|(c&a));

endmodule

UCF File

net “a[0]” loc = “p71”; net “p[0]” loc = “p102”;

net “a[1]” loc = “p72”; net “p[1]” loc = “p106”;

net “a[2]” loc = “p91”; net “p[2]” loc = “p107”;

net “a[3]” loc = “p101”; net “p[3]” loc = “p108”;

net “b[0]” loc = “p110”; net “p[4]” loc = “p109”;

net “b[1]” loc = “p118”; net “p[5]” loc = “p112”;

net “b[2]” loc = “p124”; net “p[6]” loc = “p113”;

net “b[3]” loc = “p130”; net “p[7]” loc = “p115”;

RESULT:

Exp No : 03
DESIGN AND IMPLEMENT ALU

Date :

AIM:

To design a ALU using Hardware Description Language, simulate it using Xilinx software and

implement by Xilinx FPGA Spartan 3E kit.

APPARATUS REQUIRED:

1. PC with windows XP

2. Xilinx 12.1 software

3. Spartan 3E FPGA Kit

PROCEDURE:

Design Entry

1. Launch Xilinx by navigating to Xilinx ISE Design Suite 12.1 and select ISE Design Tools.

2. Create a New Project by going to the file menu and selecting “New Project”.

3. Now give the project a name, select a location where the files will be saved. Set “Verilog” as the

preferred language.

4. In the new window just opened, Select Verilog module from the left side and give it a name and

click “Next”.

5. In this window we can set a few parameters of our design as the type modeling we are going to

perform, the entity name and the list of ports. Set them appropriately and Click Next.

6. Now the Verilog module we just created will open. Edit this file (actual design entry), enter the

entity (already if not done) and the architecture.

Simulation

1. First select the “Verilog Test Fixture” in the design Hierarchy window.

2. Then in the process window expand ISIM Simulator and double click on “Simulate Behavioral

Window Model”. Wait till the simulation s complete and the simulation result window will open.

THEORY

An arithmetic logic unit (ALU) is a combinational digital electronic circuit that

performs arithmetic and bitwise operations on integer binary numbers. This is in contrast to a floating-

point unit (FPU), which operates on floating point numbers. An ALU is a fundamental building block of

many types of computing circuits, including the central processing unit (CPU) of computers, FPUs,

and graphics processing units (GPUs). A single CPU, FPU or GPU may contain multiple ALUs.

The inputs to an ALU are the data to be operated on, called operands, and a code indicating the operation

to be performed; the ALU's output is the result of the performed operation. In many designs, the ALU also

has status inputs or outputs, or both, which convey information about a previous operation or the current

operation, respectively, between the ALU and external status registers.

https://en.wikipedia.org/wiki/Combinational_logic
https://en.wikipedia.org/wiki/Digital_electronic_circuit
https://en.wikipedia.org/wiki/Arithmetic
https://en.wikipedia.org/wiki/Bitwise_operation
https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Binary_number
https://en.wikipedia.org/wiki/Floating-point_unit
https://en.wikipedia.org/wiki/Floating-point_unit
https://en.wikipedia.org/wiki/Floating_point
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Operand
https://en.wikipedia.org/wiki/Status_register

Verilog Code for ALU

module alu(a,b,alu_sel,alu_out,carryout);

input [3:0]a,b;

input [3:0]alu_sel;

output [3:0]alu_out;

output carryout;

reg [3:0] alu_result;

wire [4:0] tmp;

assign alu_out = alu_result;

assign tmp = {1'b0,a} + {1'b0,b};

assign carryout = tmp[4]; // Carryout flag

always @(*)

begin

case(alu_sel)

4'b0000:

alu_result =a+b;

4'b0001:

alu_result =a-b;

4'b0010:

alu_result =a*b;

4'b0011:

alu_result =a/b;

4'b0100:

alu_result =a<<1;

4'b0101:

alu_result =a>>1;

4'b0110:

alu_result = {a[2:0],a[3]};

4'b0111:

alu_result = {a[0],a[3:1]};

4'b1000:

alu_result =a&b;

4'b1001:

alu_result =a|b;

4'b1010:

alu_result =a^b;

4'b1011:

alu_result =~(a|b);

4'b1100:

alu_result =~(a&b);

4'b1101:

alu_result =~(a^b);

4'b1110:

alu_result = (a>b)?4'd1:4'd0 ;

4'b1111:

alu_result = (a==b)?4'd1:4'd0 ;

default: alu_result =a+b ;

endcase

end

endmodule

UCF File

net “a[0]” loc = “p71”; net “alu_sel[0]” loc = “p136”;

net “a[1]” loc = “p72”; net “alu_sel [1]” loc = “p142”;

net “a[2]” loc = “p91”; net “alu_sel [2]” loc = “p148”;

net “a[3]” loc = “p101”; net “alu_sel [3]” loc = “p154”;

net “b[0]” loc = “p110”; net “alu_out[0]” loc = “p102”;

net “b[1]” loc = “p118”; net “alu_out [1]” loc = “p106”;

net “b[2]” loc = “p124”; net “alu_out [2]” loc = “p107”;

net “b[3]” loc = “p130”; net “alu_out [3]” loc = “p108”;

net “carryout” loc = “p116”;

RESULT

Exp No : 04
DESIGN AND IMPLEMENT UNIVERSAL SHIFT REGISTER

Date :

AIM:

To design a Universal Shift Register using Hardware Description Language, simulate it using

Xilinx software and implement by Xilinx FPGA Spartan 3E kit.

APPARATUS REQUIRED:

1. PC with windows XP

2. Xilinx 12.1 software

3. Spartan 3E FPGA Kit

PROCEDURE:

Design Entry

1. Launch Xilinx by navigating to Xilinx ISE Design Suite 12.1 and select ISE Design Tools.

2. Create a New Project by going to the file menu and selecting “New Project”.

3. Now give the project a name, select a location where the files will be saved. Set “Verilog” as the

preferred language.

4. In the new window just opened, Select Verilog module from the left side and give it a name and

click “Next”.

5. In this window we can set a few parameters of our design as the type modeling we are going to

perform, the entity name and the list of ports. Set them appropriately and Click Next.

6. Now the Verilog module we just created will open. Edit this file (actual design entry), enter the

entity (already if not done) and the architecture.

Simulation

1. First select the “Verilog Test Fixture” in the design Hierarchy window.

2. Then in the process window expand ISIM Simulator and double click on “Simulate Behavioral

Window Model”. Wait till the simulation is complete and the simulation result window will

open.

THEORY

A register capable of shifting in one direction only is a unidirectional shift register & register that

can shift in both directions is bi-directional shift registers. If the register has both the shifts & parallel load

capabilities, it is referred to as universal shift register.

Verilog Code for Universal Shift Register

module universal_shift(a,s,clk,p);

input [3:0]a;

input [1:0]s;

input clk;

output reg [3:0]p;

initial

p<=4'b0110;

always@(posedge clk)

begin

case (s)

2'b00:

begin

p[3]<=p[3];

p[2]<=p[2];

p[1]<=p[1];

p[0]<=p[0];

end

2'b01:

begin

p[3]<=p[0];

p[2]<=p[3];

p[1]<=p[2];

p[0]<=p[1];

end

2'b10:

begin

p[0]<=p[3];

p[1]<=p[0];

p[2]<=p[1];

p[3]<=p[2];

end

2'b11:

begin

p[0]<=a[0];

p[1]<=a[1];

p[2]<=a[2];

p[3]<=a[3];

end

endcase

end

endmodule

UCF File

net “a[0]” loc = “p71”; net “p[0]” loc = “p102”;

net “a[1]” loc = “p72”; net “p[1]” loc = “p106”;

net “a[2]” loc = “p91”; net “p[2]” loc = “p107”;

net “a[3]” loc = “p101”; net “p[3]” loc = “p108”;

net “s[0]” loc = “p110”; net “clk” loc = “”;

net “s[1]” loc = “p118”;

RESULT

Exp No : 05
DESIGN AND IMPLEMENT FINITE STATE MACHINE

Date :

AIM:

To design a Finite State Machine using Hardware Description Language, simulate it using Xilinx

software and implement by Xilinx FPGA Spartan 3E kit.

APPARATUS REQUIRED:

1. PC with windows XP

2. Xilinx 12.1 software

3. Spartan 3E FPGA Kit

PROCEDURE:

Design Entry

1. Launch Xilinx by navigating to Xilinx ISE Design Suite 12.1 and select ISE Design Tools.

2. Create a New Project by going to the file menu and selecting “New Project”.

3. Now give the project a name, select a location where the files will be saved. Set “Verilog” as the

preferred language.

4. In the new window just opened, Select Verilog module from the left side and give it a name and

click “Next”.

5. In this window we can set a few parameters of our design as the type modeling we are going to

perform, the entity name and the list of ports. Set them appropriately and Click Next.

6. Now the Verilog module we just created will open. Edit this file (actual design entry), enter the

entity (already if not done) and the architecture.

Simulation

1. First select the “Verilog Test Fixture” in the design Hierarchy window.

2. Then in the process window expand ISIM Simulator and double click on “Simulate Behavioral

Window Model”. Wait till the simulation is complete and the simulation result window will

open.

THEORY

Basically a FSM consists of combinational, sequential and output logic. Combinational logic is

used to decide the next state of the FSM, sequential logic is used to store the current state of the FSM. The

output logic is a mixture of both combo and sequential logic.

• Mealy State Machine: Its output depends on current state and current inputs. In the above picture,

the blue dotted line makes the circuit a mealy state machine.

• Moore State Machine: Its output depends on current state only. In the above picture, when blue

dotted line is removed the circuit becomes a Moore state machine.

Mealy Machine – Block Diagram

Mealy Machine – Model

Moore Machine – Block Diagram

Moore Machine – Model

Verilog Code for Mealy FSM

module mealy_3processes(clk, reset, x, parity);

input clk,reset,x;

output parity;

reg parity;

reg state, nextstate;

parameter s0=0, s1=1;

always @(posedge clk or posedge reset) // always block to update state

if (reset)

state <= s0;

else

state <= nextstate;

always @(state or x) // always block to compute output

begin

parity = 1'b0;

case(state)

s0: if(x)

parity = 1;

s1: if(!x)

parity = 1;

endcase

end

always @(state or x) // always block to compute nextstate

begin

nextstate = s0;

case(state)

s0: if(x)

nextstate = s1;

s1: if(!x)

nextstate = s1;

endcase

end

endmodule

Verilog Code for Moore FSM

module moore_3processes(clk, reset, x, parity);

input clk,reset,x;

output parity;

reg parity;

reg state, nextstate;

parameter s0=0, s1=1;

always @(posedge clk or posedge reset) // always block to update state

if (reset)

state <= s0;

else

state <= nextstate;

always @(state) // always block to compute output

begin

case(state)

s0: parity = 0;

s1: parity = 1;

endcase

end

always @(state or x) // always block to compute nextstate

begin

nextstate = s0;

case(state)

s0: if(x)

nextstate = s1;

s1: if(!x)

nextstate = s1;

endcase

end

endmodule

UCF File

net “a” loc = “p71”; net “clk” loc = “”;

net “reset” loc = “”; net “parity” loc = “p106”;

RESULT

Exp No : 06
DESIGN AND IMPLEMENT MEMORIES

Date :

AIM:

To design a Finite State Machine using Hardware Description Language, simulate it using Xilinx

software and implement by Xilinx FPGA Spartan 3E kit.

APPARATUS REQUIRED:

1. PC with windows XP

2. Xilinx 12.1 software

3. Spartan 3E FPGA Kit

PROCEDURE:

Design Entry

1. Launch Xilinx by navigating to Xilinx ISE Design Suite 12.1 and select ISE Design Tools.

2. Create a New Project by going to the file menu and selecting “New Project”.

3. Now give the project a name, select a location where the files will be saved. Set “Verilog” as the

preferred language.

4. In the new window just opened, Select Verilog module from the left side and give it a name and

click “Next”.

5. In this window we can set a few parameters of our design as the type modeling we are going to

perform, the entity name and the list of ports. Set them appropriately and Click Next.

6. Now the Verilog module we just created will open. Edit this file (actual design entry), enter the

entity (already if not done) and the architecture.

Simulation

1. First select the “Verilog Test Fixture” in the design Hierarchy window.

2. Then in the process window expand ISIM Simulator and double click on “Simulate Behavioral

Window Model”. Wait till the simulation is complete and the simulation result window will

open.

THEORY

The memory block diagram is shown in Fig. It takes a few assumptions into consideration for

easing the operations of the circuit. While data input pin and address pin may have any value depending

on the specifications of memory used and your need, clock used in the circuit is active high.

Enable pin triggers the circuit when it is active high, and read operation is performed when

read/write pin is high, while write operation is performed when read/write pin is active low.

Block diagram of 64×8 bit memory

Verilog Code for Memories

module single_port_ram();

input [7:0] data;

input [5:0] addr;

input we, clk;

output [7:0] q;

reg [7:0] ram[63:0];

reg [5:0] addr_reg;

always @ (posedge clk)

begin

if (we)

ram[addr] <= data;

addr_reg <= addr;

end

assign q = ram[addr_reg];

endmodule

UCF File

net “data[0]” loc = “p71”; net “addr[0]” loc = “p136”;

net “data[1]” loc = “p72”; net “addr[1]” loc = “p142”;

net “data[2]” loc = “p91”; net “addr[2]” loc = “p148”;

net “data[3]” loc = “p101”; net “addr[3]” loc = “p154”;

net “data[4]” loc = “p110”; net “addr[4]” loc = “p159”;

net “data[5]” loc = “p118”; net “addr[5]” loc = “p169”;

net “data[6]” loc = “p124”; net “we” loc = “p194”;

net “data[7]” loc = “p130”; net “clk” loc = “p174”;

net “q[0]” loc = “p102”; net “q[4]” loc = “p109”;

net “q[1]” loc = “p106”; net “q[5]” loc = “p112”;

net “q[2]” loc = “p107”; net “q[6]” loc = “p113”;

net “q[3]” loc = “p108”; net “q[7]” loc = “p115”;

RESULT

Exp No : 07
DESIGN AND SIMULATE A CMOS INVERTER

Date :

AIM:

To design and simulate a CMOS inverter using Mentor Graphics EDA tool. Generate layout and

post layout extraction for CMOS inverter. Also analyze the power, area and timing by performing Pre

Layout and Post Layout Simulations.

APPARATUS REQUIRED:

1. PC with windows XP

2. Mentor Graphics EDA Tool

THEORY:

CMOS Inverter consists of nMOS and pMOS transistor in series connected between VDD and

GND. The gate of the two transistors are shorted and connected to the input. When the input to the

inverter A = 0, nMOS transistor is OFF and pMOS transistor is ON. The output is pull-up to VDD. When

the input A = 1, nMOS transistor is ON and pMOS transistor is OFF. The Output is Pull-down to GND.

PROCEDURE:

Schematic Design

1. Open in Terminal using csh, source /home/Setting/cshrc/hep.cshrc, sedit &.

2. Create new design, library path and name.

3. Right click on design name and add library.

4. Click on cell and select new view.

5. Type the name of the cell and select view type as schematic.

6. Add nMOS and pMOS transistors and connect using wires.

7. Click on cell and generate the symbol.

8. Click on cell and select new view.

9. Type the name of the cell and select view type as schematic. Press “I” to instance the symbol.

10. Make connect between Vin, Vout, Vdd, Gnd and Vdc

11. Click on Setup Simulation Icon and add libraries.

12. Enable the Transient Fourier analysis. Provide simulation stop time 100 ns, Step time 1ns, and

print time 1ns.

13. Save, run the simulation and check the Functionality of the Design in waveform window.

Layout Design

1. Open in Terminal using csh, source /home/Setting/cshrc/hep.cshrc, ledit &.

2. Create new design, library path and name.

3. Right click on design name and add library.

4. Click on cell and select new view.

5. Provide the Cell name same as the Schematic design cell name.

6. Go to Tools> SDL Navigator > Load Netlist.

7. Then click on Layout tab enable Metal1 Layer and Mention the Size in Microns.

8. Tool > SDL Navigator> route> route all.

9. Go to file > Export > GDSII and Click on DRC icon in Ledit window

10. Load the Rule file path, load input layout file and click on run DRC

11. For LVS, load Netlist file from Inverter test bench folder and run LVS.

12. run PEX and click on Start RVE

RESULT

Exp No : 08 DESIGN AND SIMULATE A CMOS BASIC GATES AND FLIP

FLOPS Date :

AIM:

To design and simulate a CMOS basic gates and flip flop using Mentor Graphics EDA tool.

Generate layout and post layout extraction for CMOS basic gates and flip flop. Also analyze the power,

area and timing by performing Pre Layout and Post Layout Simulations.

APPARATUS REQUIRED:

1. PC with windows XP

2. Mentor Graphics EDA Tool

THEORY:

NAND Gate

NAND and NOR gates are known as universal gates as any function can be implemented with

them NAND functionality can be implemented by parallel combination of PMOS and series combination

of NMOS transistor. When any one of the inputs is zero, then the output will be one and when both the

inputs are one the output will be low.

NOR Gate

NOR functionality can be implemented by parallel combination of NMOS and series combination

of PMOS transistor. When any one of the inputs is one, then the output will be one and when both the

inputs are zero the output will be low.

CMOS Negative Edge Triggered Flip Flop

PROCEDURE:

Schematic Design

1. Open in Terminal using csh, source /home/Setting/cshrc/hep.cshrc, sedit &.

2. Create new design, library path and name.

3. Right click on design name and add library.

4. Click on cell and select new view.

5. Type the name of the cell and select view type as schematic.

6. Add nMOS and pMOS transistors and connect using wires.

7. Click on cell and generate the symbol.

8. Click on cell and select new view.

9. Type the name of the cell and select view type as schematic. Press “I” to instance the symbol.

10. Make connect between Vin, Vout, Vdd, Gnd and Vdc

11. Click on Setup Simulation Icon and add libraries.

12. Enable the Transient Fourier analysis. Provide simulation stop time 100 ns, Step time 1ns, and

print time 1ns.

13. Save, run the simulation and check the Functionality of the Design in waveform window.

Layout Design

1. Open in Terminal using csh, source /home/Setting/cshrc/hep.cshrc, ledit &.

2. Create new design, library path and name.

3. Right click on design name and add library.

4. Click on cell and select new view.

5. Provide the Cell name same as the Schematic design cell name.

6. Go to Tools> SDL Navigator > Load Netlist.

7. Then click on Layout tab enable Metal1 Layer and Mention the Size in Microns.

8. Tool > SDL Navigator> route> route all.

9. Go to file > Export > GDSII and Click on DRC icon in Ledit window

10. Load the Rule file path, load input layout file and click on run DRC

11. For LVS, load Netlist file from Inverter test bench folder and run LVS.

12. run PEX and click on Start RVE

RESULT

Exp No : 09 DESIGN AND SIMULATE A 4-BIT SYNCHRONOUS

COUNTER USING A FLIP-FLOPS Date :

AIM:

To design and simulate a 4-bit synchronous counter using a flip-flops using Mentor Graphics EDA

tool. Generate layout and post layout extraction for a 4-bit synchronous counter using a flip-flops. Also

analyze the power, area and timing by performing Pre Layout and Post Layout Simulations.

APPARATUS REQUIRED:

1. PC with windows XP

2. Mentor Graphics EDA Tool

THEORY:

Synchronous Counter

Synchronous counter is the most popular type of counter. It typically consists of a memory

element, which is implemented using flip-flops and a combinational element, which is traditionally

implemented using logic gates. Logic gates are logic circuits with one or more input terminals and one

output terminal in which the output is switched between two voltage levels determined by a combination

of input signals. The use of logic gates for combinational logic typically reduces the cost of components

for counter circuits to an absolute minimum, so it remains a popular approach.

Synchronous counters have an internal clock, whereas asynchronous counters do not. As a result,

all the flip-flops in a synchronous counter are driven simultaneously by a single, common clock pulse. In

an asynchronous counter, the first flip-flop is driven by a pulse from an external clock and each successive

flip-flop is driven by the output of the preceding flip-flop in the sequence. This is the essential difference

between synchronous and asynchronous counters.

Inverter Schematic Diagram NAND Gate Schematic Diagram

AND Gate Schematic Diagram XOR Gate Schematic Diagram

Master Slave D Flip Flop Schematic Diagram

Synchronous 4 bit UP counter Schematic Diagram

PROCEDURE:

Schematic Design

1. Open in Terminal using csh, source /home/Setting/cshrc/hep.cshrc, sedit &.

2. Create new design, library path and name.

3. Right click on design name and add library.

4. Click on cell and select new view.

5. Type the name of the cell and select view type as schematic.

6. Add nMOS and pMOS transistors and connect using wires.

7. Click on cell and generate the symbol.

8. Click on cell and select new view.

9. Type the name of the cell and select view type as schematic. Press “I” to instance the symbol.

10. Make connect between Vin, Vout, Vdd, Gnd and Vdc

11. Click on Setup Simulation Icon and add libraries.

12. Enable the Transient Fourier analysis. Provide simulation stop time 100 ns, Step time 1ns, and

print time 1ns.

13. Save, run the simulation and check the Functionality of the Design in waveform window.

Layout Design

1. Open in Terminal using csh, source /home/Setting/cshrc/hep.cshrc, ledit &.

2. Create new design, library path and name.

3. Right click on design name and add library.

4. Click on cell and select new view.

5. Provide the Cell name same as the Schematic design cell name.

6. Go to Tools> SDL Navigator > Load Netlist.

7. Then click on Layout tab enable Metal1 Layer and Mention the Size in Microns.

8. Tool > SDL Navigator> route> route all.

9. Go to file > Export > GDSII and Click on DRC icon in Ledit window

10. Load the Rule file path, load input layout file and click on run DRC

11. For LVS, load Netlist file from Inverter test bench folder and run LVS.

12. run PEX and click on Start RVE

RESULT

Exp No : 10
DESIGN AND SIMULATE A CMOS INVERTING AMPLIFIER

Date :

AIM:

To design and simulate a CMOS inverting amplifier using Mentor Graphics EDA tool. Generate

layout and post layout extraction for CMOS inverting amplifier. Analyze the input impedance, output

impedance, gain and bandwidth by performing Schematic Simulations.

APPARATUS REQUIRED:

1. PC with windows XP

2. Mentor Graphics EDA Tool

THEORY:

CMOS Inverter consists of nMOS and pMOS transistor in series connected between VDD and

GND. The gate of the two transistors are shorted and connected to the input. When the input to the

inverter A = 0, nMOS transistor is OFF and pMOS transistor is ON. The output is pull-up to VDD. When

the input A = 1, nMOS transistor is ON and pMOS transistor is OFF. The Output is Pull-down to GND.

PROCEDURE:

Schematic Design

1. Open in Terminal using csh, source /home/Setting/cshrc/hep.cshrc, sedit &.

2. Create new design, library path and name.

3. Right click on design name and add library.

4. Click on cell and select new view.

5. Type the name of the cell and select view type as schematic.

6. Add nMOS and pMOS transistors and connect using wires.

7. Click on cell and generate the symbol.

8. Click on cell and select new view.

9. Type the name of the cell and select view type as schematic. Press “I” to instance the symbol.

10. Make connect between Vin, Vout, Vdd, Gnd and Vdc

11. Click on Setup Simulation Icon and add libraries.

12. Enable the Transient Fourier analysis. Provide simulation stop time 100 ns, Step time 1ns, and

print time 1ns.

13. Save, run the simulation and check the Functionality of the Design in waveform window.

Layout Design

1. Open in Terminal using csh, source /home/Setting/cshrc/hep.cshrc, ledit &.

2. Create new design, library path and name.

3. Right click on design name and add library.

4. Click on cell and select new view.

5. Provide the Cell name same as the Schematic design cell name.

6. Go to Tools> SDL Navigator > Load Netlist.

7. Then click on Layout tab enable Metal1 Layer and Mention the Size in Microns.

8. Tool > SDL Navigator> route> route all.

9. Go to file > Export > GDSII and Click on DRC icon in Ledit window

10. Load the Rule file path, load input layout file and click on run DRC

11. For LVS, load Netlist file from Inverter test bench folder and run LVS.

12. run PEX and click on Start RVE

RESULT

 Exp No : 11 DESIGN AND SIMULATE BASIC COMMON SOURCE,

COMMON GATE AND COMMON DRAIN AMPLIFIERS

Date :

AIM:

To design and simulate a basic Common Source, Common Gate and Common Drain Amplifiers

using Mentor Graphics EDA tool. Generate layout and post layout extraction for ommon Source,

Common Gate and Common Drain Amplifiers. Analyze the input impedance, output impedance, gain and

bandwidth by performing Schematic Simulations.

APPARATUS REQUIRED:

1. PC with windows XP

2. Mentor Graphics EDA Tool

THEORY:

Common Source Amplifier

In electronics, a common-source amplifier is one of three basic single-stage field-effect

transistor (FET) amplifier topologies, typically used as a voltage or transconductance amplifier.

Output Waveform

https://en.wikipedia.org/wiki/Electronics
https://en.wikipedia.org/wiki/Electronic_amplifier
https://en.wikipedia.org/wiki/Field-effect_transistor
https://en.wikipedia.org/wiki/Field-effect_transistor
https://en.wikipedia.org/wiki/Electronic_amplifier#Input_and_output_variables
https://en.wikipedia.org/wiki/Amplifier

Common Drain Amplifier

In electronics, a common-drain amplifier, also known as a source follower, is one of three basic

single-stage field effect transistor (FET) amplifier topologies, typically used as avoltage buffer. In this

circuit (NMOS) the gate terminal of the transistor serves as the input, the source is the output, and the

drain is common to both (input and output), hence its name.

Output Waveform

Common Gate Amplifier

In electronics, a common-gate amplifier is one of three basic single-stage field-effect

transistor (FET) amplifier topologies, typically used as a current buffer or voltage amplifier. In this circuit

the source terminal of the transistor serves as the input, the drain is the output and the gate is connected to

ground, or "common," hence its name

https://en.wikipedia.org/wiki/Electronics
https://en.wikipedia.org/wiki/Electronic_amplifier
https://en.wikipedia.org/wiki/Field_effect_transistor
https://en.wikipedia.org/wiki/Voltage
https://en.wikipedia.org/wiki/Buffer_amplifier
https://en.wikipedia.org/wiki/Electronics
https://en.wikipedia.org/wiki/Electronic_amplifier
https://en.wikipedia.org/wiki/Field-effect_transistor
https://en.wikipedia.org/wiki/Field-effect_transistor
https://en.wikipedia.org/wiki/Electric_current
https://en.wikipedia.org/wiki/Buffer_amplifier
https://en.wikipedia.org/wiki/Voltage
https://en.wikipedia.org/wiki/Amplifier

PROCEDURE:

Schematic Design

1. Open in Terminal using csh, source /home/Setting/cshrc/hep.cshrc, sedit &.

2. Create new design, library path and name.

3. Right click on design name and add library.

4. Click on cell and select new view.

5. Type the name of the cell and select view type as schematic.

6. Add nMOS and pMOS transistors and connect using wires.

7. Click on cell and generate the symbol.

8. Click on cell and select new view.

9. Type the name of the cell and select view type as schematic. Press “I” to instance the symbol.

10. Make connect between Vin, Vout, Vdd, Gnd and Vdc

11. Click on Setup Simulation Icon and add libraries.

12. Enable the Transient Fourier analysis. Provide simulation stop time 100 ns, Step time 1ns, and

print time 1ns.

13. Save, run the simulation and check the Functionality of the Design in waveform window.

Layout Design

1. Open in Terminal using csh, source /home/Setting/cshrc/hep.cshrc, ledit &.

2. Create new design, library path and name.

3. Right click on design name and add library.

4. Click on cell and select new view.

5. Provide the Cell name same as the Schematic design cell name.

6. Go to Tools> SDL Navigator > Load Netlist.

7. Then click on Layout tab enable Metal1 Layer and Mention the Size in Microns.

8. Tool > SDL Navigator> route> route all.

9. Go to file > Export > GDSII and Click on DRC icon in Ledit window

10. Load the Rule file path, load input layout file and click on run DRC

11. For LVS, load Netlist file from Inverter test bench folder and run LVS.

12. run PEX and click on Start RVE

RESULT

Exp No : 12
DESIGN AND SIMULATE A DIFFERENTIAL AMPLIFIER

Date :

AIM:

To design and simulate a differential amplifier using Mentor Graphics EDA tool. Generate layout

and post layout extraction for a 4 differential amplifier. Analyze Gain, Bandwidth and CMRR by

performing Schematic Simulations.

APPARATUS REQUIRED:

1. PC with windows XP

2. Mentor Graphics EDA Tool

THEORY:

A differential amplifier is a type of electronic amplifier that multiplies the difference between

two inputs by some constant factor (the differential gain). Many electronic devices use differential

amplifiers internally. The output of an ideal differential amplifier is given by:

Where Vin+ and Vin- are the input voltages and Ac is the differential gain. In practice, however,

the gain is not quite equal for the two inputs. This means that if Vin+ and Vin-are equal, the output will

not be zero, as it would be in the ideal case. A more realistic expression for the output of a differential

amplifier thus includes a second term.

Ac is called the common-mode gain of the amplifier. As differential amplifiers are often used when

it is desired to null out noise or bias-voltages that appear at both inputs, a low common-mode gain is

usually considered good.

The common-mode rejection ratio, usually defined as the ratio between differential-mode gain and

common-mode gain, indicates the ability of the amplifier to accurately cancel voltages that are common to

both inputs. Common-mode rejection ratio (CMRR):

Differential Amplifier Schematic Diagram

Output Waveform

PROCEDURE:

Schematic Design

1. Open in Terminal using csh, source /home/Setting/cshrc/hep.cshrc, sedit &.

2. Create new design, library path and name.

3. Right click on design name and add library.

4. Click on cell and select new view.

5. Type the name of the cell and select view type as schematic.

6. Add nMOS and pMOS transistors and connect using wires.

7. Click on cell and generate the symbol.

8. Click on cell and select new view.

9. Type the name of the cell and select view type as schematic. Press “I” to instance the symbol.

10. Make connect between Vin, Vout, Vdd, Gnd and Vdc

11. Click on Setup Simulation Icon and add libraries.

12. Enable the Transient Fourier analysis. Provide simulation stop time 100 ns, Step time 1ns, and

print time 1ns.

13. Save, run the simulation and check the Functionality of the Design in waveform window.

Layout Design

1. Open in Terminal using csh, source /home/Setting/cshrc/hep.cshrc, ledit &.

2. Create new design, library path and name.

3. Right click on design name and add library.

4. Click on cell and select new view.

5. Provide the Cell name same as the Schematic design cell name.

Go to Tools> SDL Navigator > Load Netlist.

6. Then click on Layout tab enable Metal1 Layer and Mention the Size in Microns.

7. Tool > SDL Navigator> route> route all.

8. Go to file > Export > GDSII and Click on DRC icon in Ledit window

9. Load the Rule file path, load input layout file and click on run DRC

10. For LVS, load Netlist file from Inverter test bench folder and run LVS.

11. run PEX and click on Start RVE

RESULT

Exp No : 13 DESIGN AND IMPLEMENT PRBS GENERATOR AND

ACCUMULATOR Date :

AIM:

To design a PRBS generator and accumulator using Hardware Description Language, simulate it

using Xilinx software and implement by Xilinx FPGA Spartan 3E kit.

APPARATUS REQUIRED:

1. PC with windows XP

2. Xilinx 12.1 software

3. Spartan 3E FPGA Kit

PROCEDURE:

Design Entry

1. Launch Xilinx by navigating to Xilinx ISE Design Suite 12.1 and select ISE Design Tools.

2. Create a New Project by going to the file menu and selecting “New Project”.

3. Now give the project a name, select a location where the files will be saved. Set “Verilog” as the

preferred language.

4. In the new window just opened, Select Verilog module from the left side and give it a name and

click “Next”.

5. In this window we can set a few parameters of our design as the type modeling we are going to

perform, the entity name and the list of ports. Set them appropriately and Click Next.

6. Now the Verilog module we just created will open. Edit this file (actual design entry), enter the

entity (already if not done) and the architecture.

Simulation

1. First select the “Verilog Test Fixture” in the design Hierarchy window.

2. Then in the process window expand ISIM Simulator and double click on “Simulate Behavioral

Window Model”. Wait till the simulation is complete and the simulation result window will

open.

THEORY

A pseudorandom binary sequence (PRBS) is a binary sequence that, while generated with a

deterministic algorithm, is difficult to predict and exhibits statistical behavior similar to a truly random

sequence. PRBS generators are used in telecommunication, but also

in encryption, simulation, correlation technique and time-of-flight spectroscopy.

https://en.wikipedia.org/wiki/Binary_sequence
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Telecommunication
https://en.wikipedia.org/wiki/Encryption
https://en.wikipedia.org/wiki/Simulation
https://en.wikipedia.org/wiki/Correlation
https://en.wikipedia.org/wiki/Spectroscopy

Verilog Code for Accumulator

moduleupaccm(clk,reset,q,d);

input reset;input clk;input [5:0]d;output reg [5:0]q;

always @(posedgeclk or negedge reset)

begin

if(~reset)

q=4'b0000;

else

q=q+d;

end

endmodule

Testbench
moduletestaccum;

regclk;reg reset;reg [5:0] d;

wire [5:0] q;

upaccmuut (.clk(clk), .reset(reset), .q(q), .d(d));

initial begin

clk = 0;

reset = 0;

d = 0;

#100;

reset = 1;

50 d=4'b0010;

#200 reset = 0;

#50 reset = 1;

end

always #50 clk = ~clk;

endmodule

Verilog Code for PRBS Generator

moduleprbsGenerator(rand,clk,reset);

inputclk,reset;output rand;wire rand;reg[3:0]temp;

always@(posedge reset)

temp<=4'hf;

always@(posedgeclk)

Testbench

begin

if(~reset)

temp<={temp[0]^temp[1],temp[3],temp[2],temp[1]};

end

assign rand=temp[0];

endmodule

modulemainprbs;

regclk,reset;wire rand;

prbsGeneratorpr(rand,clk,reset);

initial begin

forever begin

forever begin

clk<=0;#5clk<=1;#5clk<=0;

end

end

end

initial begin

reset=1;#12reset=0;#90reset=1;#12reset=0;

end

endmodule

RESULT

Exp No : 14 DESIGN AND SIMULATE A TRANSMISSION AND PASS

TRANSISTOR GATE Date :

AIM:

To design and simulate a transmission gate and pass transmission gate using Mentor Graphics

EDA tool. Analyze Gain, Bandwidth and CMRR by performing Schematic Simulations.

APPARATUS REQUIRED:

1. PC with windows XP

2. Mentor Graphics EDA Tool

THEORY:

Transmission Gate

It’s a parallel combination of pmos and nmos transistor with the gates connected to a

complementary input. The disadvantages weak 0 and weak 1 can be overcome by using a TG instead of

pass transistors. Working of transmission gate can be explained better with the following equation. An

important advantage of TGs is that the reduction in the resistance because two transistors will come in

parallel. When phi =’0’ n and p device off, Vin=0 or 1, Vo=’Z’ When phi =’1’ n and p device on, Vin=0

or 1, Vo=0 or 1 , where ‘Z’ is high impedance.

Transmission Gate Schematic Diagram

Output Waveform

Pass Transistor Logic

When an nMOS or pMOS is used alone as an imperfect switch, then it is called a pass transistor.

An nMOS transistor is an almost perfect switch when passing a 0 and thus we say it passes a strong 0.

However, the nMOS transistor is imperfect at passing a 1. The high voltage level is somewhat less than

VDD. We say it passes a degraded or weak 1. A pMOS transistor again has the opposite behavior, passing

strong 1s but degraded 0s. The disadvantage with the pass transistors is that, they will not be able to

transfer the logic levels properly.

Pass Transistor Logic Schematic Diagram

Output Waveform

PROCEDURE:

Schematic Design

1. Open in Terminal using csh, source /home/Setting/cshrc/hep.cshrc, sedit &.

2. Create new design, library path and name.

3. Right click on design name and add library.

4. Click on cell and select new view.

5. Type the name of the cell and select view type as schematic.

6. Add nMOS and pMOS transistors and connect using wires.

7. Click on cell and generate the symbol.

8. Click on cell and select new view.

9. Type the name of the cell and select view type as schematic. Press “I” to instance the symbol.

10. Make connect between Vin, Vout, Vdd, Gnd and Vdc

11. Click on Setup Simulation Icon and add libraries.

12. Enable the Transient Fourier analysis. Provide simulation stop time 100 ns, Step time 1ns, and

print time 1ns.

13. Save, run the simulation and check the Functionality of the Design in waveform window.

RESULT

	LIST OF EXPERIMENTS:
	comparison between okumura and hata model:
	Vision
	Mission
	APPARATUS REQUIRED:
	AIM:
	APPARATUS REQUIRED:
	PROCEDURE:
	Simulation
	THEORY:
	Table 1: Truth Table of 4:1 MUX
	Demultiplexer:
	Table 2: Truth Table of 1:4 DeMUX
	Verilog Code for 4:1 MUX:
	Verilog Code for 1:4 DeMUX:
	RESULT:
	APPARATUS REQUIRED:
	PROCEDURE:
	Simulation
	THEORY:
	Table 3: Truth table of S-R flip-flop
	Table 4: Truth table of JK flip-flop
	Figure 4: Logic diagram of JK FF
	Table 6: Truth table of T flip-flop
	Verilog Code for Flip flops: SR Flip Flop:
	JK Flip Flop:
	D Flip Flop:
	T Flip Flop:
	RESULT:
	APPARATUS REQUIRED:
	PROCEDURE:
	Simulation
	THEORY
	Full Adder:
	Ripple Carry Adder
	Table 3: Truth Table of Half Adder
	Table 4: Truth Table of Full Adder
	Verilog code for an 8 bit Ripple Carry adder:
	UCF File
	AIM:
	APPARATUS REQUIRED:
	PROCEDURE:
	Simulation
	Full Adder:
	Multiplier
	Verilog Code for 8 bit Multiplier
	AIM:
	APPARATUS REQUIRED:
	PROCEDURE:
	Simulation
	THEORY
	Verilog Code for ALU
	UCF File
	AIM:
	APPARATUS REQUIRED:
	PROCEDURE:
	Simulation
	THEORY
	Verilog Code for Universal Shift Register
	UCF File
	AIM:
	APPARATUS REQUIRED:
	PROCEDURE:
	Simulation
	THEORY
	Mealy Machine – Block Diagram
	Moore Machine – Block Diagram
	Verilog Code for Mealy FSM
	Verilog Code for Moore FSM
	UCF File
	AIM:
	APPARATUS REQUIRED:
	PROCEDURE:
	Simulation
	THEORY
	Verilog Code for Memories
	UCF File
	AIM:
	APPARATUS REQUIRED:
	THEORY:
	PROCEDURE:
	Layout Design
	RESULT
	APPARATUS REQUIRED:
	THEORY:
	NOR Gate
	CMOS Negative Edge Triggered Flip Flop
	Schematic Design
	Layout Design
	RESULT
	APPARATUS REQUIRED:
	THEORY:
	PROCEDURE:
	Layout Design
	RESULT
	APPARATUS REQUIRED:
	THEORY:
	PROCEDURE:
	Layout Design
	RESULT
	Output Waveform
	PROCEDURE:
	Layout Design
	RESULT
	APPARATUS REQUIRED:
	THEORY:
	Differential Amplifier Schematic Diagram
	PROCEDURE:
	Layout Design
	RESULT
	APPARATUS REQUIRED:
	PROCEDURE:
	Simulation
	THEORY
	Verilog Code for Accumulator
	Testbench
	Verilog Code for PRBS Generator
	Testbench
	RESULT
	APPARATUS REQUIRED:
	THEORY:
	Transmission Gate Schematic Diagram
	Pass Transistor Logic
	Pass Transistor Logic Schematic Diagram
	PROCEDURE:
	RESULT

