

1

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COMMON FOR: DEPARTMENT OF INFORMATION

TECHNOLOGY

CS8451 – DESIGN AND ANALYSIS OF ALGORITHMS

YEAR / SEM : II / III

R – 2017

LECTURE NOTES

2

CS8451- DESIGN AND ANALYSIS OF ALGORITHMS

SYLLABUS

UNIT I INTRODUCTION 9
Notion of an Algorithm – Fundamentals of Algorithmic Problem Solving – Important Problem Types
– Fundamentals of the Analysis of Algorithmic Efficiency –Asymptotic Notations and their
properties. Analysis Framework – Empirical analysis - Mathematical analysis for Recursive and Non-

recursive algorithms – Visualization

UNIT II FORCE AND DIVIDE-AND-CONQUER 9
Brute Force – Computing an – String Matching - Closest-Pair and Convex-Hull Problems -

Exhaustive Search - Travelling Salesman Problem - Knapsack Problem - Assignment problem.

Divide and Conquer Methodology – Binary Search – Merge sort – Quick sort – Heap Sort -
Multiplication of Large Integers – Closest-Pair and Convex - Hull Problems.

UNIT III DYNAMIC PROGRAMMING AND GREEDY TECHNIQUE 9
Dynamic programming – Principle of optimality - Coin changing problem, Computing a Binomial

Coefficient – Floyd‘s algorithm – Multi stage graph - Optimal Binary Search Trees – Knapsack
Problem and Memory functions. Greedy Technique – Container loading problem - Prim‘s algorithm

and Kruskal's Algorithm – 0/1 Knapsack problem, Optimal Merge pattern - Huffman Trees.

UNIT IV ITERATIVE IMPROVEMENT 9

The Simplex Method - The Maximum-Flow Problem – Maximum Matching in Bipartite Graphs,

Stable marriage Problem.

UNIT V COPING WITH THE LIMITATIONS OF ALGORITHM POWER 9

Lower - Bound Arguments - P, NP NP- Complete and NP Hard Problems. Backtracking – n-Queen

problem - Hamiltonian Circuit Problem – Subset Sum Problem. Branch and Bound – LIFO Search
and FIFO search - Assignment problem – Knapsack Problem – Travelling Salesman Problem -

Approximation Algorithms for NP-Hard Problems – Travelling Salesman problem – Knapsack

problem.

TOTAL: 45 PERIODS

TEXT BOOKS:

1. Anany Levitin, ―Introduction to the Design and Analysis of Algorithms‖, Third Edition, Pearson

Education, 2012.

2. Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran, Computer Algorithms/ C++, Second
Edition, Universities Press, 2007.

REFERENCES:

1. Thomas H.Cormen, Charles E.Leiserson, Ronald L. Rivest and Clifford Stein, ―Introduction to

Algorithms‖, Third Edition, PHI Learning Private Limited, 2012.

2. Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, ―Data Structures and Algorithms‖,

Pearson Education, Reprint 2006.

3. Harsh Bhasin, ―Algorithms Design and Analysis‖, Oxford university press, 2016.

4. S. Sridhar, ―Design and Analysis of Algorithms‖, Oxford university press, 2014.

5. http://nptel.ac.in/

http://nptel.ac.in/

3

UNIT I

PART A

1. What is an algorithm? Or Define an algorithm. (Apr\May- 2017) Or

Define algorithm with its properties.(April/May 2021)

 An algorithm is a finite set of instructions that, if followed, accomplishes a

particular task.

 In addition, all algorithms must satisfy the following criteria:

 input

 Output

 Definiteness

 Finiteness

 Effectiveness.

2. Define Program.

A program is the expression of an algorithm in a programming language.

3. What is performance measurement?

Performance measurement is concerned with obtaining the space and the time

requirements of a particular algorithm.

4. Write the For LOOP general format.

The general form of a for Loop is

For variable : = value 1 to value 2

Step do

{

<statement 1>

<statement n >

}

5. What is recursive algorithm?

 Recursive algorithm makes more than a single call to itself is known as recursive call.

 An algorithm that calls itself is Direct recursive.

 Algorithm A is said to be indeed recursive if it calls another algorithm,which in turn calls

A

6. What is space complexity?

The space complexity of an algorithm is the amount of memory it needs to run to

completion.

7. What is time complexity?

The time complexity of an algorithm is the amount of time it needs to run to

completion.

8. Give the two major phases of performance evaluation.

Performance evaluation can be loosely divided into two major phases:

 a prior estimates (performance analysis)

 a posterior testing (performance measurement)

9. Define input size.

The input size of any instance of a problem is defined to be the number of elements

needed to describe that instance.

10. Define best-case step count.

The best-case step count is the minimum number of steps that can be

4

executed for the given parameters.

11. Define worst-case step count.

The worst-case step count is the maximum number of steps that can be executed for

the given parameters.

12. Define average step count.

The average step count is the average number of steps executed an instances with the

given parameters.

13. Define the asymptotic notation “Big oh” (0)

A function t(n) is said to be in O(g(n)) (t(n) Є O(g(n))), if t(n) is bounded above by constant

multiple of g(n) for all values of n, and if there exist a positive constant c and non negative

integer n0 such that

t(n) ≤ c*g(n) for all n ≥ n0.

14. Define the asymptotic notation “Omega” (Ω). NOV/DEC 2021

A function t(n) is said to be in Ω(g(n)) (t(n) Є Ω(g(n))), if t(n) is bounded below by constant

multiple of g(n) for all values of n, and if there exist a positive constant c and non negative

integer n0 such that t(n) ≥ c*g(n) for all n ≥ n0.

15. Define the asymptotic notation “theta” (Θ)

A function t(n) is said to be in Θ(g(n)) (t(n) Є Θ(g(n))), if t(n) is bounded both above and

below by constant multiple of g(n) for all values of n, and if there exist a positive constant c1

and c2 and non negative integer n0 such that C2*g(n) ≤ t(n) ≤ c1*g(n) for all n ≥ n0.

5

16. What is a Computer Algorithm?

An algorithm is a sequence of unambiguous instructions for solving a problem, i.e., for

obtaining a required output for any legitimate input in a finite amount of time.

17. What are the features of an algorithm?

More precisely, an algorithm is a method or process to solve a problem satisfying the

following properties:

Finiteness-Terminates after a finite number of steps

Definiteness-Each step must be rigorously and unambiguously specified.

Input-Valid inputs must be clearly specified.

Output-Can be proved to produce the correct output given a valid input.

Effectiveness-Steps must be sufficiently simple and basic.

18. Show the notion of an algorithm. Dec 2009 / May 2013

An algorithm is a sequence of unambiguous instructions for solving a problem in a finite

amount of time.

19. What are different problem types?

o Sorting

o Searching

o String Processing

o Graph problems

o Combinatorial Problems

o Geometric problems

o Numerical problems

20. What are different algorithm design techniques/strategies?

o Brute force

o Divide and conquer

o Decrease and conquer

o Transform and conquer

6

o Space and time tradeoffs

o Greedy approach

o Dynamic programming

o Backtracking

o Branch and bound

21. How to measure an algorithm’s running time? Nov/Dec 2017

Unit for measuring the running time is the algorithms basic operation. The running time is

measured by the count of no. of times the basic operations is executed.

Basic operation: the operation that contributes the most to the total running time.

Example: the basic operation is usually the most time-consuming operation in the

algorithm’s innermost loop.

22. How time efficiency is analyzed?

Let cop – execution time of algorithms basic operation on a particular computer.

c(n) – no. of times this operation need to be executed.

T(n) – running time.

Running time is calculated using the formula

T(n) ≈ cop c(n)

23. What are orders of growth?

Orders of Growth

24. What are basic efficiency classes?

Basic Efficiency classes

1 Constant

log n Logarithmic

n Linear

n log n Linearithmic

n2 Quadratic

n3 Cubic

2n Exponential

n! Factorial

25. Give an example for basic operations.

Input size and basic operation examples

Problem Input size measure Basic operation

Searching for key in a list

of n items
Number of list’s items,

i.e. n

Key comparison

Multiplication of two

matrices

Matrix dimensions or total

number of elements

Multiplication of two

numbers

7

Checking primality of a

given integer n

size = number of digits

(in binary representation)
Division

Typical graph problem
Number of vertices and/or

edges

Visiting a vertex or

traversing an edge

26. What are six steps processes in algorithmic problem solving? Dec 2009

1. Understanding the problem.

2. Ascertaining the capabilities of a computational device.

3. Choosing between exact and approximate problem solving.

4. Deciding on appropriate data structures.

5. Algorithm Design Techniques.

6. Methods of specifying an algorithm

7. Proving an algorithm's correctness.

8. Analysing an algorithm.

9. Coding an algorithm.

27. What do you mean by Amortized Analysis?

 Amortized analysis finds the average running time per operation over a worst case

sequence of operations.

 Amortized analysis differs from average-case performance in that probability is not

involved; amortized analysis guarantees the time per operation over worst-case

performance.

28. Define order of an algorithm.

Measuring the performance of an algorithm in relation with the input size n is known as order

of growth.

29. How is the efficiency of the algorithm defined? Or . How do you measure the efficiency of

an algorithm? May/June 2019

The efficiency of an algorithm is defined with the components.

(i) Time efficiency -indicates how fast the algorithm runs

(ii) Space efficiency -indicates how much extra memory the algorithm

needs

30. What are the characteristics of an algorithm?

Every algorithm should have the following five characteristics

(i) Input

(ii) Output

(iii) Definiteness

(iv) Effectiveness

(v) Termination

31. What are the different criteria used to improve the effectiveness of algorithm?

(i) The effectiveness of algorithm is improved, when the design, satisfies the

following constraints to be minimum.

Time efficiency - how fast an algorithm in question runs.

Space efficiency – an extra space the algorithm requires.

(ii) The algorithm has to provide result for all valid inputs.

32. Analyse the time complexity of the following segment:

for(i=0;i<N;i++)

for(j=N/2;j>0;j--)

sum++;

Time Complexity= N * N/2 = N2 /2 Є O(N2)

8

33. Write general plan for analysing non-recursive algorithms.

i. Decide on parameter indicating an input’s size.

ii. Identify the algorithm’s basic operation

iii. Check the no. of times basic operation executed depends on size of input. if it depends

on some additional property, then best, worst, average cases need to be investigated

iv. Set up sum expressing the no. of times the basic operation is executed. (establishing order

of growth)

34. How will you measure input size of algorithms?

The time taken by an algorithm grows with the size of the input. So the running time of the

program depends on the size of its input. The input size is measured as the number of items

in the input that is a parameter n is indicating the algorithm’s input size.

35. Write general plan for analysing recursive algorithms.

i. Decide on parameter indicating an input’s size.

ii. Identify the algorithm’s basic operation

iii. Checking the no. of times basic operation executed depends on size of

input. if it depends on some additional property, then best, worst, average

cases need to be investigated

iv. Set up the recurrence relation, with an appropriate initial condition, for the

number of times the basic operation is executed

v. Solve recurrence (establishing order of growth)

36. What do you mean by Combinatorial Problem?

Combinatorial Problems are problems that ask to find a combinatorial object-such as

permutation, a combination, or a subset-that satisfies certain constraints and has some

desired properties.

37. Define Little “oh”.

The function f(n) = 0(g(n)) if and only if

Lim f(n) / g(n) = 0

n →∞

38. Define Little Omega.

The function f(n) = ω (g(n)))) if and only if

Lim f(n) / g(n) = 0

n →∞

39. Write algorithm using iterative function to fine sum of n numbers.

Algorithm

sum(a, n)

{

S := 0.0

For i=1 to n

do

S : - S + a[i];

Return S;

}

40. Write an algorithm using Recursive function to fine sum of n numbers.

Algorithm

Rsum (a, n)

{

If(n≤0) then

Return 0.0;

Else

}

Return Rsum(a, n- 1) + a(n);

41. Describe the recurrence relation for merge sort?

9

If the time for the merging operation is proportional to n, then the computing time of merge

sort is described by the recurrence relation

42. What is time and space complexity? Dec 2012 Part A – Refer Q. No. 6 & 7

43. Define Algorithm validation. Dec 2012

The process of measuring the effectiveness of an algorithm before it is coded to know

whether the algorithm is correct for every possible input. This process is called validation.

44. Differentiate time complexity from space complexity. May 2010

Part A – Refer Q. No. 6 & 7

45. What is a recurrence equation? May 2010

A recurrence [relation] is an equation or inequality that describes a function in terms of its

values on smaller inputs.

Examples:

Factorial: multiply n by (n –1)!

T(n) = T(n – 1) + O(1) -> O(n)

Fibonacci: add fibonacci(n – 1) and fibonacci(n – 2)

T(n) = T(n – 1) + T(n – 2) -> O(2n)

46. What do you mean by algorithm? May 2013 Part A – Refer Q. No. 1, 16 & 18

47. Define Big Oh Notation. May 2013 Part A – Refer Q. No. 13

48. What is average case analysis? May 2014

The average case analysis of an algorithm is analysing the algorithm for the average input of

size n, for which the algorithm runs at an average between the longest and the fastest time.

49. Define program proving and program verification. May 2014

 Given a program and a formal specification, use formal proof techniques (e.g.

induction) to prove that the program behaviour fits the specification.

 Testing to determine whether a program works as specified.

50. Define asymptotic notation. May 2014

Asymptotic notations are mathematical tools to represent time complexity of algorithms for

measuring their efficiency.

Types :

 Big Oh notation - 'O'

 Omega notation - 'Ω'

 Theta notation - ’Θ’

 Little Oh notation - 'o '

 Little Omega notation - 'Ω'

51. What do you mean by recursive algorithm? May 2014 Part A – Refer Q. No. 5

52. Establish the relation between O and Ω Dec 2010

f(n) ∈ Ω(g(n)) ⟺ g(n) ∈ O(f(n))

Proof:

O(f(n))={g:N→N | ∃c,n0∈N ∀n≥n0:g(n)≤c⋅f(n)}

Ω(g(n))={f:N→N | ∃c,n0∈N ∀n≥n0:f(n)≥c⋅g(n)}

Step 1/2: f(n) ∈ Ω(g(n)) ⟺ g(n) ∈ O(f(n))

10

∃c,n0∈N ∀n≥n0: f(n)≥c⋅g(n)⇒f(n)g(n)≥c⇒1g(n)≥cf(n)⇒g(n)≤1c⋅f(n)

And this is exactly the definition of O(f(n)).

Step 2/2: f(n)∈Ω(g(n))⇐g(n)∈O(f(n))

∃c,n0∈N ∀n≥n0: g(n)≤c⋅f(n)⇒...⇒f(n)≥1c⋅g(n)

Hence proved.

53. If f(n) = amnm + ... + a1n + a0. Prove that f(n)=O(nm). Dec 2010 Refer Class note.

54. What is best case analysis? Or Best case efficiency.

The best case analysis of an algorithm is analysing the algorithm for the best case input of

size n, for which the algorithm runs the fastest among all the possible inputs of that size.

55. what do you mean worst case efficiency of algorithm.Nov/Dec 2017

The worst case analysis of an algorithm is analysing the algorithm for the worst case input of

size n, for which the algorithm runs the longest among all the possible inputs of that size.

56. Consider an algorithm that finds the number of binary digits in the binary

representation ofa positive decimal integer. (AU april/may 2015)

Number of major comparisons=⌊log2n⌋+ 1∈log2n.
Algorithm 3: Finding the number of binary digits in the binary representation of a positive

decimal integer.

Algorithm Binary(n)

count:=1;

whilen >1

do

count:=count+ 1;

n:=⌊n/2⌋;
end

return count;

57. write doun the properties of asymptotic notations.(AU april/may 2015)

The following property is useful in analyzing algorithms that comprise two consecutively

executed parts.

Theorem
If t1(n) O(g1(n)) and t2(n) Є O(g2(n)) then,

t1(n) + t2(n) Є (max {g1(n),g2(n)})

Proof

Since t1(n) Є O(g1(n)), there exist some constant C1 and some non

negative integer n1 such that
t1(n) ≤ C1 (g1(n)) for all n ≥ n1

Since
t2(n) O(g2(n))
t2(n) ≤ C2 (g2(n)) for all n ≥ n2

Let us denote,
C3=max {C1, C2} and

Consider n ≥ max {n1, n2}, so that both the inequalities can be used.

The addition of two inequalities becomes,
t1(n)+ t2(n) ≤ C1 (g1(n))+ C2 (g2(n))

≤ C3 (g1(n))+ C3 (g2(n))
≤ C3 2 max{g1(n), (g2(n))}

Hence,
t1(n) +t2(n) Є O (max {g1(n),g2(n)}),

with the constants C and n0 required by the definition being 2C3 = 2 max (C1, C2) and

max {n1, n2} respectively.

11

Algorithm F(n)

//Computes the nth Fibonacci number recursively by using its definition.

//Input: A nonnegative integer n

//Output: The nth Fibonacci number

if n<1

return n

Else

return F(n-1)+(n-2)

The property implies that the algorithms overall efficiency will be determined by the

part with a larger order of growth.

(i.e.) its least efficient part is

t1(n) Є O(g1(n)) t1(n) +t2(n) Є O (max {g1(n),g2(n)})

t2(n) Є O(g2(n))

58. Give the Euclid’s algorithm for computing gcd(m, n) (AU nov 2016) or write an algorithm to

compute the greatest common divisor of two numbers (Apr/ May-2017)(or)

Give the Euclid’s algorithm for computing gcd of two numbers. (May/June 2018)

ALGORITHM Euclid_gcd(m, n)

//Computes gcd(m, n) by Euclid’s algorithm

//Input: Two nonnegative, not-both-zero integers m and n

//Output: Greatest common divisor of m and n

while n ≠ 0 do

r ←m mod n

m←n

n←r

return m

Example: gcd(60, 24) = gcd(24, 12) = gcd(12, 0) = 12.

59. Compare the order of growth n(n-1)/2 and n2. (AU nov 2016)

n(n-1)/2 is lesser than the half of n2

60. The (log n)th smallest number of n unsorted numbers can be determined in O(n) average-

case time

Ans: True

61. Fibonacci algorithm and its recurrence relation

Algorithm for computing Fibonacci numbers

First method

 2

Polynomial Quadratic Quadratic

1 0 1

2 1 4

4 6 16

8 28 64

10 45 10
2

10
2
 4950 10

4

Complexity Low High

Growth Low high

12

the algorithm’s basic operation is addition.

Let A(n) is the number of additions performed by the algorithm to compute F(n).

The number of additions needed to compute F(n-1) is A(n-1) and the number of additions

needed to compute F(n-2) is A(n-2).

62. Design an algorithm to compute the area and circumference of a circle

63. What is a basic operation?

A basic operation could be: An assignment. A comparison between two variables. An

arithmetic operation between two variables. The worst-case input is that input assignment for

which the most basic operations are performed.

Basic Operations on Sets. The set is the basic structure underlying all of mathematics. In algorithm

design, sets are used as the basis of many important abstract data types, and many techniques have

been developed for implementing set-based abstract data types.

64. Define algorithm. List the desirable properties of an algorithm.

Algorithm is a step-by-step procedure, which defines a set of instructions to be executed in a

certain order to get the desired output. Algorithms are generally created independent of underlying

languages, i.e. an algorithm can be implemented in more than one programming language.

An algorithm must satisfy the following properties: Input: The algorithm must have input

valuesfrom a specified set. The output values are the solution to a problem. Finiteness: For any

input, the algorithm must terminate after a finite number of steps. Definiteness: All steps of

the algorithm must be precisely defined.

65. Define best, worst, average case time complexity.

13

 The worst-case complexity of the algorithm is the function defined by the maximum number of steps

taken on any instance of size n. It represents the curve passing through the highest point of each

column.

 The best-case complexity of the algorithm is the function defined by the minimum number of steps

taken on any instance of size n. It represents the curve passing through the lowest point of each

column.

 Finally, the average-case complexity of the algorithm is the function defined by the average number

of steps taken on any instance of size n.

66. Prove that the of f(n)=o(g(n)) and g(n)=o(f(n)),then f(n)=θ g(n). OR

state the transpose symmetry property of O and Ω April/May 2019,Nov/Dec
2019

Given function:

f(n) and g(n)
f(n)= O(g(n)) when f(n) ≤C1g(n) for all n≥n0 ------------- (1)
f(n)= Ω(g(n)) when f(n) ≥C2g(n) for all n≥n0 ------------- (2)

from (1) and (2)
C2 g(n) ≤f(n) ≤ C1g(n) for all n≥n0 ------------ (3)

(i.e) Θ(g(n)) = O(g(n))Ω(g(n))

From (3) f(n) = Θ(g(n)) hence proved

67. Define recursion

A function may be recursively defined in terms of itself. A familiar example is the Fibonacci

number sequence: F(n) = F(n − 1) + F(n − 2).

For such a definition to be useful, it must be reducible to non-recursively defined values: in

this case F(0) = 0 and F(1) = 1. ccurs when a thing is defined in terms of itself or of its type.

Recursion is used in a variety of disciplines ranging from linguistics to logic.

The most common application of recursion is in mathematics and computer science, where

a function being defined is applied within its own definition.

While this apparently defines an infinite number of instances (function values), it is often

done in such a way that no loop or infinite chain of references can occur.

68. List the reasons for choosing an approximate algorithm.

Approximation algorithms are typically used when finding an optimal solution is
intractable, but can also be used in some situations where a near-optimal solution can be

found quickly and an exact solution is not needed. Many problems that are NP-hard are also
non-approximable assuming P≠NP.

https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Linguistics
https://en.wikipedia.org/wiki/Logic
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Function_(mathematics)

14

PART – B

1. Explain the notion of an algorithm with diagram. May2014

Synopsis:

Introduction:

 Introduction

 Definition

 Diagram

 Characteristics of an Algorithm / Features of an Algorithm

 Rules for writing an Algorithm

 Implementation of an Algorithm
 Order of an Algorithm

 Program

 Example : GCD

 An algorithm is a sequence of finite number of steps involved to solve a particular

problem.

 An input to an algorithm specifies an instance of the problem the algorithm solves.

 An algorithm can be specified in a natural language or in a pseudo code.

 Algorithm can be implemented as computer programs.

 The same algorithm can be represented in several different ways.

 Several algorithms for solving the same problem may exist.

 Algorithms for the same problem can be based on different ideas and can solve the

problem with dramatically different speeds.

Definition:

 An algorithm is a sequence of non ambiguous instructions for solving a problem in a

finite amount of time.

 Each algorithm is a module, designed to handle specific problem.

 The non ambiguity requirement for each step of' an algorithm cannot be

compromised.

 The range of inputs for which an algorithm works has to be specified carefully.

Diagram:

Characteristics of an algorithm / Features of an Algorithm

The important and prime characteristics of an algorithm are,

 Input:Zero or more quantities are externally supplied.

 Output:At least one quantity is produced.

 Definiteness:Each instruction is clear and unambiguous.

 Finiteness:For all cases the algorithm terminates after a finite number of steps.

 Efficiency:Every instruction must be very basic.

 An algorithm must be expressed in a fashion that is completely free of

ambiguity.

 It should be efficient.

 Algorithms should be concise and compact to facilitate verification of their

correctness.

Writing an algorithm

 Algorithm is basically a sequence of instructions written in simple English language.

15

Algorithm Body

It consists of logical body of the algorithm by making use of

various programming constructs and assignment statement.

Algorithm heading

It consists of name of algorithm, problem description , input

and output.

 The algorithm is broadly divided into two sections

Rules for writing an algorithm.

Algorithm is a product consisting of heading and body. The heading consists of keyword

algorithm and name of the algorithm and parameter list. The syntax is

Algorithm name (p1, p2,. pn)

1. Then in the heading section we should write following things :

// Problem Description;

// Input:

//Output:

2. Then body of an algorithm is written, in which various programming constructs like if

, for , while or some assignment statement may be written.

3. The compound statements should be enclosed within { and } brackets.

4. Single line comments are written using // as beginning of comment.

5. The identifier should begin by latter and not by digit. An identifier can be a

combination of alphanumeric string.

 It is not necessary to write data types explicitly for identifiers. It will be

represented by the context itself.

 Basic data types used are integer, float, and char, Boolean and so on.

 The pointer type is also used to point memory locations.

 The compound data type such as structure or record can also be used.

6. Using assignment operator ← an assignment statement can be given.

For instance: Variable ← expression

7. There are other types of operators’ such as Boolean operators such as true or false.

Logical operators such as AND, OR, NOT. And relational operators such as < , <= ,

>, >=, = , !=.

8. The array indices are stored with in square brackets ‘[‘ ‘]’. The index of array usually

starts at zero. The multidimensional arrays can also be used in algorithm.

9. The inputting and outputting can be done using read and write.

For example:

Write (“this message will be displayed on console “);

Read (Val);

10. The conditional statements such as if –then – else are written in following form

If (condition) then statement

If (condition) then statement else statement

If the if – then statement is of compound type then {and} should be used for

enclosing block

11. While statement can be written as :

While (condition)do

{

Statement 1

Statement 2

:

16

Statement n

}

While the condition is true the block enclosed with { } gets executed otherwise

statement after} will be executed.

12. The general form for writing for loop is :

For variable ← value1 to valuen do
{

Statement 1

Statement 2

:

Statement n

}

Here value1 is initialization condition and valuen is a terminating condition the step

indicates the increments or decrements in value1 for executing the for loop.
Sometime a keyword step is used to denote increment or decrement the value of

variable for example

For i ← 1 to n step 1

{

Write (i)

}

13. The repeat – until statement can be written as

Repeat

Statement 1

Statement 2

:

Statement n

Until (condition)

14. The break statement is used to exit from inner loop. The return statement is used to

return control from one point to another. Generally used while exiting from function

Note: The statements in an algorithm executes in sequential order i.e. in the same

order as they appear – one after the other

Example 1 : Write an algorithm to count the sum of n numbers

Algorithm sum (1, n)

//Problem description : this algorithm is for finding the

//sum of given n numbers

//Input: 1 to n numbers

//Output: the sum of n numbers

Result ← 0

For i 1 to n do

i ← i+1

Result ← result + i

Return result

Example 2: Write an algorithm to check whether given number is even or odd.

Algorithm eventest (val)

//Problem description : this algorithm test whether given

//number is even or odd

//Input: the number to be tested i.e .val

//Output: appropriate messages indicating even or odd

Here variable i is incremented
by 1 at each iteration

17

If (val % 2 = 0) then

Write (“given number is even “)

Else

Write (“given number is odd”)

Example 3: Write an algorithm for sorting the elements.

Algorithm sort (a, n)

//Problem description: sorting the elements in ascending
//order

//Input: an array in which the elements in ascending order

//is total number of elements in the array

//Output: the sorted array

For i 1 to n do

For j i + 1 to n-1 do

If (a[i]>a[j]) then

{

temp ← a[i]

a[i] ←a[j]

a[j] ←temp

}

Write (“ list is sorted “)

Example 4: Write an algorithm to find factorial of n number.

Algorithm fact (n)

//Problem description: this algorithm finds the factorial.

//for given number n

//Input : the number n of which the factorial is to be

//calculated.

//Output : factorial value of given n number.

If(n ← 1) then

Return 1

Example 5:

Else

Return n * fact(n-1)

Write an algorithm to perform multiplication of two matrices

Algorithm mul (A, b, n)

//Problem description: this algorithm is for computing

//multiplication of two matrices

//Input : the two matrices A, B and order of them as n

//Output : The multiplication result will be in matrix c

For i ← 1 to n do

For j ← 1 to n do

C [i,j] ← 0

For k ← 1 to n do

C[I ,j] ←c[i, j] +A[i,k]B[k,j]

Implementation of algorithms

An algorithm describes what the program is going to perform. It states some of the actions to be

executed and the order in which these actions are to be executed.

18

The various steps in developing algorithm are,

1. Finding a method for solving a problem. Every step of an algorithm should be in a

precise and in a clear manner. Pseudo code is also used to describe the algorithm.

2. The next step is to validate the algorithm. This step includes, all the algorithm should

be done manually by giving the required input, performs the required steps including

in the algorithm and should get the required amount of output in an finite amount of

time.

3. Finally, implement the algorithm in terms of programming language.

Order of an algorithm

The order of an algorithm is a standard notation of an algorithm that has been

developed to represent function that bound the computing time for algorithms. It is an

order notation. It is usually referred as O-notation.

Example

Problem size = 'n'

Algorithm = 'a' for problem size n

The document mechanism execution = Cn2 times

where C – constant

Then the order of the algorithm 'a' = O(n2)

where n2 = Complexity of the algorithm 'a'.

Program

 A set of explicit and unambiguous instructions expressed using a programming

languages constructs is called a program.

 An algorithm can be converted into a program, using any programming language.

Pascal, Fortran, COBOL, C and C++ are some of the programminglanguages.

Difference between program and algorithm:

Sno Algorithm Program

1 Algorithm is finite. Program need to be finite.

2 Algorithm is written using natural

language or algorithmic language.

Programs are written using a specific

programming language.

1.A. write an algorithm using recursion that determines the GCD of two numbers.Determine

the time and space complexity Nov/Dec 2019

Example : Calculating Greatest common Divisor

The Greatest common Divisor (GCD) of two non zero numbers a and b is basically

the largest integer that divides both a and b evenly i.e with a remainder of zero.

GCD using three methods

1. Euclid's algorithm

2. Consecutive integer checking algorithm

3. Finding Gusing repetitive factors

Euclid's algorithm to compute Greatest Common Divisor (GCD) of two non negative

integers.

Euclid's algorithm is based on applying related equality

gcd (m, n) = gcd (n, m mod n) until the m and n is equal to 0

Where m mod n is the remainder of the division of m by n

Step 1: Start

Step 2: If n = 0, return the value of m as the answer and stop,

otherwise proceed to step 3.

19

Step 3: Divide m by n and assign the value of the remainder to r.

Step 4: Assign the value of n to m and the value of r to n. Goto step 2

Step 5: Stop

Example, gcd (60,24) can be computed as follows,

gcd (60,24) gcd (m, n)

m =60, n=24;

m/n = 2 (remainder 12)

n=m=24

r=n=12

gcd (24, 12) m/2 = 2 (remainder 0)

n=m=12

r=n=0

gcd (12, 0) =12

Hence, gcd(60, 24) = gcd(24,l2)=gcd(12,0)=12

2. Consecutive integer checking algorithm

In this method while finding the GCD of a and b we first of all find the minimum value of

them. Suppose if , value of b is minimum then we start checking the divisibility by each

integer which is lesser than or equal to b.

Example:

a = 15 and b =10 then

t= min(15,10)

since 10 is minimum we will set value of t = 10 initially.

Consecutive integer checking algorithm for computing gcd(m, n)

Step 1: Start

Step 2: Assign the value of mini {m, n} to t

Step 3: Divide m by t. If the remainder of this division is 0, go to step 4,

Otherwise goto step 5.

Step 4: Divide n by t. If the remainder of this division is 0, return the value

of t as the answer and stop. Otherwise proceed to step 5.

Step 5: Decrease the value of t by I. Go to step 3.

Step 6: Stop

Algorithm GCD intcheck (a,b)

//Problem description : this algorithm computes the GCD of //two

numbers a and b using consecutive integer checking

//method

//Input : two integers a and b

//Output: GCD value of a and b

t ← min (a, b)

while (t>=1) do

{

If (a mod t == 0 AND b mod t == 0) then

Return t

20

Else

}

t ← t-1

Return 1

3. Finding GCD using repetitive factors

The third procedure for finding the greatest common divisor is middle school procedure.

Middle School Method

For the numbers 60 and 24

2 60

2 30

3 15
5

2 24

2 12

2 6
3

60=2x2x3 x5

24=2x2x3 x2

gcd (60,24) =2x2x3 =12

Algorithm:

Step 1: Start

Step 2: Find the prime Factor of m.

Step 3: Find the prime factors of n.

Step 4: Identify all the common factors in the two prime expressions Found in

step 2 and step 3. If' P is a common factor occurring pm and pn times in

m and n respectively. It should be repeated min (pm, and pn) times.

Step 5: Compute the product of the all the common factors and return it as the

greatest common divisor of the numbers given.

Step 6: Stop.

2. Explain the Fundamentals of Algorithmic problem solving. Or explain the steps involved in

problem solving May 2014 ,April/May 2019

Sequential steps in designing and analysing an algorithm

1. Understanding the problem.

2. Ascertaining the capabilities of a computational device.

3. Choosing between exact and approximate problem solving.

4. Deciding on appropriate data structures.

5. Algorithm Design Techniques.

6. Methods of specifying an algorithm

7. Proving an algorithm's correctness.

8. Analysing an algorithm.

9.Codinganalgorithm.

21

1. Understanding the problem:

 To design an algorithm, understand the problem completely by reading the problem's

description carefully.

 Read the problem description carefully and clear the doubts.

 Specify exactly the range of inputs the algorithm need to handle.

 Once the problem is clearly understandable, then determine the overall goals but it should be

in a precise manner.

 Then divide the problem into smaller problems until they become manageable size.

2. Ascertaining the capabilities of a computational device

Sequential Algorithm:

 Instructions are executed one after another, one operation at a time.

 This is implemented in RAM model.

Parallel Algorithm:

 Instructions are executed in parallel or concurrently.

3. Choosing between exact and appropriate problem solving

 The next principal decision is to choose between solving the problem exactly or

solving the problem approximately.

 The algorithm used to solve the problem exactly called exact algorithm.

 The algorithm used to solve the problem approximately is called approximation

algorithm.

Reason to choose approximate algorithm

o There are important problems that simply cannot be solved exactly
such as

 Extracting square roots.

 Solving non linear equations.

 Evaluating definite integrals.

 Available algorithms for solving problem exactly can be unacceptably slow, because

22

of the problem’s intrinsic complexity. Ex: Travelling salesman problem

4. Deciding on appropriate data structures

Data structure is important for both design and analysis of algorithms.

Algorithm + Data Structures = Programs.

In Object Oriented Programming, the data structure is important for both design and analysis

of algorithms.

The variability in algorithm is due to the data structure in which the data of the program are

stored such as

1. How the data are arranged in relation to each other.
2. Which data are kept in memory

3. Which data are kept in files and how the files are arranged.

4. Which data are calculated when needed?

5. Algorithm Design Techniques

An algorithm design techniques or strategy or paradigm is general approach to solving

problems algorithmically that is applicable to a variety of problems from different areas of

computing.

Uses

 They provide guidance for designing algorithms or new problems.

 They provide guidance to problem which has no known satisfied algorithms.

 Algorithm design technique is used to classify the algorithms based on the design

idea.

 Algorithm design techniques can serve as a natural way to categorize and study the

algorithms.

6. Methods of specifying an algorithm

There are two options, which are widely used to specify the algorithms.

They are

Pseudo code

o Pseudo code

o Flowchart

o A pseudo code is a mixture of natural language and programming language
constructs.

o A pseudo code is more precise than a natural language

o For simplicity, declaration of the variables is omitted.

o For, if and while statements are used to show the scope of the variables.

o "←" (Arrow) - used for the assignment operation.

o "//" (two slashes) - used for comments.
Flow chart

o It is a method of expressing an algorithm by a collection of connected geometric
shapes containing description of the algorithms steps.

o It is very simple algorithm.

o This representation technique is inconvenient.

7. Proving an Algorithm's correctness

Once an algorithm has been specified, then its correctness must be proved.

 An algorithm must yield a required result for every legitimate input in a finite amount

of time.

 A mathematical induction is a common technique used to prove the correctness of the

algorithm.

 In mathematical induction, an algorithm's iterations provide a natural sequence of

steps needed for proofs.

 If the algorithm is found incorrect, need to redesign it or reconsider other decisions.

8. Analysing an algorithm

 Efficiency of an algorithm is determined by measuring the time, space and amount of

23

resources, it uses for executing the program.

 The efficiency of the algorithm is determined with respect to central processing units

time and internal memory.

 There are two types of algorithm efficiency.

They are

o Time efficiency (or) Time Complexity

o Space efficiency (or) Space Complexity
Time Efficiency / Time Complexity

 Time efficiency indicates how fast the algorithm runs.
 The time taken by a program to complete its task depends on the number of steps in

an algorithm.

 The time required by a program to complete its task will not always be the same.

 It depends on the type of problem to be solved.

It can be of two types.

o Compilation Time

o Run Time (or) Execution Time
 The time (T) taken by an algorithm is the sum of the compile time and execution

time.

Compilation Time

 The amount of time taken by the compiler to compile an algorithm is known as

compilation time.

 During compilation time, it does not calculate the executable statements, it calculates

only the declaration statements and check for any syntax and semantic errors.

 The different compilers can take different times to compile the same program.

Execution Time

 The execution time depends on the size of the algorithm.

 If the number of instructions in an algorithm is large then the run time is also large.

 If the number of instructions in an algorithm is small then the time need to execute

the program is small.

 The execution time is calculated for executable statements and not for the declaration

statements.

 The complexity is normally expressed as an order of magnitude.

 Example: O (n^ 2)

 The time complexity of a given algorithm is defined as computation of function f() as

a total number of statements that are executed for computing the value f(n).

 The time complexity is a function which depends on the value of n.

The time complexity can be classified as 3 types.

They are

Worst Case Analysis

1. Worst Case analysis
2. Average Case analysis

3. Best Case analysis

 The worst case complexity for a given size corresponds to the maximum complexity

encountered among all problem of the same size.

 Worst case complexity takes a longer time to produce a desired result.

This can be represented by a function f(n).

f(n) =n^2 or n log n

Average Case Analysis

 The average case analysis is also known as the expected complexity which gives

measure of the behaviour of an algorithm averaged over all possible problem of the

same size.

 Average case is the average time taken by an algorithm for producing a desired

output.

24

Best Case Analysis

 Best case is a shortest time taken by an algorithm to produce the desired result.

Space Complexity

 Space efficiency indicates how much extra memory the algorithm needs.

 The amount of storage space taken by the algorithm depends on the type of the

problem to be solved.

 The space can be calculated as,
 A fixed amount of memory occupied by the space for the program code is space

occupied by the variable used in the program.

 A variable amount of memory occupied by the component variable dependent on the

problem is being solved.

 This space is more or less depending upon whether the program uses iterative or

recursive procedures.

There are three different space considered for determining the amount of memory used by the

algorithm.

They are

o Instruction Space

o Data Space

o Environment Space
Instruction Space

 When the program gets compiled, then the space needed to store the compiled

instruction in the memory is called instruction space.

 The instruction space independent of the size of the problem

Data Space

 The memory space used to hold the variables of data elements are called data space.

 The data space is related to the size of the Problem

Environment Space

 It is the space in memory used only on the execution time for each Function call.

 It maintains runtime stack in that it holds returning address of the previous functions.

 Every function on the stack has return value and a pointer on it.

Characteristics of an algorithms

o Simplicity

o Generality
Simplicity

Generality

o Simpler algorithms are easier to understand.

o Simpler algorithms are easier to program.

o The resulting programs contains only few bugs.
o Simpler algorithms are more efficient compared to the complicated

alternatives.

o The characteristic of an algorithm generality has two issues.

o They are
 Generality' of the problem the algorithm solves.

 Range of inputs it accepts.

9. Coding an Algorithm

 Implementing an algorithm correctly is necessary but not sufficient to diminish the

algorithm's power by an inefficient implementation.

 The standard tricks such as computing a loop's invariant (an expression that does not change

its value) outside the loop, collecting common sub expressions, replacing expensive

operations by cheaper ones and so on should be known to the programmers such factors can

speed up a program only by a constant factor, where as a better algorithm can make a

difference in running time by orders of magnitude.

25

 Once an algorithm has been selected, a 10-50% speed up may be worth an effort.

 An algorithm's optimality is not about the efficiency of an algorithm but about the

complexity of the problem it solves.

3. Explain the important problem types.

Some of the most important problem types are

1. Sorting

2. Searching

3. String Matching (or) String processing

4. Graph Problems
5. Combinatorial problems

6. Geometric problems

7. Numerical Problems

1. Sorting

 Sorting means arranging the elements in increasing order or in decreasing order.

 The sorting can be done on numbers , characters (alphabets), string or employees

record.

 Many algorithms are used to perform the task of sorting.

 Sorting is the operation of arranging the records of a table according to the key value

of the each record.

 A table of a file is an ordered sequence of records r[l], r[2].. r[n] each containing a

key k[l], k[2] ... k[n]. The table is sorted based on the key.

Properties of Sorting Algorithms

The two properties of Sorting Algorithms are

1. Stable

2. In-place

Stable:

 A sorting algorithm is called stable, if it preserves the relative order of any two equal

elements in its input.

 In other words, if an input list contain two equal elements in positions i and j, where i<j, then

in the sorted list they have to be in position i' and j' respectively, such that i' < j'

In-place

 An algorithm is said to be in-place if it does not require extra memory, except, possibly for a

few memory units.

The important criteria for the selection of a sorting method for the given set of data items are as

follows.

1. Programming time of the sorting algorithm.

2. Execution time of the program

3. Memory space needed for the programming environment

The main objectives involved in the design of sorting algorithms are

1. Minimum number of exchanges.

2. Large volume of data blocks movement.

Types of Sorting

The two major classification of sorting methods are

1. Internal Sorting methods

2. External Sorting methods

Internal Sorting

 The key principle of internal sorting is that all the data items to be sorted are retained in the

main memory and random access memory.

 This memory space can be effectively used to sort the data items.

 The various internal sorting methods are

1. Bubble sort

2. Selection sort

3. Shell sort

26

4. Insertion sort

5. Quick sort

6. Heap sort

External Sorting

 The idea behind the external sorting is to move data from secondary storage to mail

memory in large blocks for ordering the data.

 The most commonly used external sorting method is merge sort.

2. Searching

 One of the important applications of array is searching
 Searching is an activity by which we can find out the desired element from the list. The

element which is to be searched is called search key

 There are many searching algorithm such as sequential search , Fibonacci search and more.

Searching in dynamic set of elements

 There may be of elements in which repeated addition or deletion of elements occur.

 In such a situation searching an element is difficult.

 To handle such lists supporting data structures and algorithms are needed to make the

list balanced (organized)

3. String processing

A string is a collection of characters from an alphabet.

Different type of strings are

o Text string

o Bit string
Text String It is a collection of letters, numbers and special characters.

Bit String It is collection of zeros and ones.

 Operations performed on a string are

1. Reading and writing strings

2. String concatenation

3. Finding string length

4. String copy

5. String comparison

6. Substring operations

7. Insertions into a string

8. Deletions from a string

9. Pattern matching

Pattern Matching or String matching

The process of searching for an occurrence of word in a text is called Pattern matching.

Some of the algorithms used for pattern matching are

1. Simple pattern matching algorithm

2. Pattern matching using Morris Pratt algorithm

3. Pattern matching using Knuth-Morris-Pratt algorithm

4. Graph Problems

 Graph is a collection of vertices and edges.

 Formally, a graph G={ V, E } is defined by a pair of two sets.

 A finite set V of items called Vertices and a set E of pairs of these items called edges.

 If the pairs of vertices are ordered, then G is called a directed graph because every edge is

directed.

 In a directed graph the direction between two nodes are not same G(V,W)!=G(W,V)

 If the pair of the vertices are unordered then G is called an undirected graph.

 In undirected graph, the edges has no specific direction.

 The graph problems involve graph traversal algorithms, shortest path algorithm and

topological sorting and so on. Some graph problems are very hard to solve.

 For example travelling salesman problem, graph colouring problems

5. Combinatorial Problems

27

 The travelling salesman problem and the graph colouring problems are examples of

combinatorial problems.

 A combinatorial object such as a permutation a combination or a subset that satisfies

certain constraints and has some desired property such as maximizes a value or

minimizes a cost should be find.

 Combinatorial problems are the most difficult problems.

The reason is,

1. As problem size grows the combinatorial objects grow rapidly and reach to huge
value. size.

2. There is no algorithms available which can solve these problems in finite

amount of time

3. Many of these problems fall in the category of unsolvable problem.

Some combinatorial problems can be solved by efficient algorithms.

6. Geometric Problems

 Geometric algorithms deal with geometric objects such as points ,lines and polygons.

 The procedure for solving a variety of geometric problems includes the problems of

constructing simple geometric shapes such as triangles, circles and so on.

The two classic problems of computational geometry are the

2. Closest pair problem

3. Convex hull problem

 The closest pair problem is self explanatory. Given n points in the plane, find the closest pair

among them.

 The convex hull problem is used to find the smallest convex polygon that would include all the

points of a given set.

 The geometric problems are solved mainly in applications to computer graphics or in robotics

6. Numerical problems

 Numerical problems are problems that involve mathematical objects of continuous nature

such as solving equations and systems of equations computing definite integrals evaluating

functions and so on.

 Most of the mathematical problems can be solved approximate algorithms.

 These algorithms require manipulating of the real numbers; hence we may get wrong output

many times.

3. Explain the fundamentals of the analysis framework. Or explain time-space trade off of

the algorithm designed. April/May 2019

 Efficiency of an algorithm can be in terms of time or space.

 This systematic approach is modelled by a frame work called as analysis frame work.

Analysis framework

o The efficiency of an algorithm can be decided by measuring the performance of
an algorithm.

o The performance of an algorithm is computed by two factors
 amount of time required by an algorithm to execute
 amount of storage required by an algorithm

Overview

 Space complexity

 Time complexity

 Measuring an Input's size

 Measuring Running Time

 Orders of Growth

Space complexity

 The space complexity can be defined as amount of memory required by an

algorithm to run.

28

 To compute the space complexity we use two factors: constant and instance

characteristics.

 The space requirement S(p) can be given as S(p) = C+ S(p)

Where C is a constant i.e. fixed part and it denotes the space of inputs and

outputs.

Time complexity

 The time complexity of an algorithm is the amount of computer time required by

an algorithm to run to completion.

 For instance in multiuser system, executing time depends on many factors such as

o System load

o Number of other programs running

o Instruction set used

o Speed underlying hardware

 The time complexity is therefore given in term of frequency count

o Frequency count is a count denoting number of times of execution of statement
Example

For (i=0; i<n; i++)
{

sum = sum + a[i];

}

Statement Frequency count

i=0 1

i<n This statement executes for (n+1) times. When

conditions is true i.e. when i<n is true , the execution

happens to be n times , and the statement execute once

more when i<n is false

i++ n times

sum = sum + a[i] n times

Total 3n + 2

Measuring an Input's size

 All algorithms run longer on larger inputs.

 Ex: Sorting larger arrays, multiply larger matrices etc.

 Investigates an algorithm efficiency as a function of some parameter n indicating the

algorithm input size.

 Example:

o In problem of evaluating a polynomial p(x) = an x n + ….+ a0 of degree n, the
parameter will be the polynomial's degree or the number of its coefficients
which is larger by one than its degree.

 In spell checking algorithm,

o If algorithm examines the individual character of its input, then the size of the
input is the no. of characters.

o If the algorithm processes the word, the size of the input is the no. of words.
Measuring Running Time

 Some units of time measurement such as a second, a millisecond and so on can be

used to measure the running time of a program implementing the algorithm.

 Drawbacks

l. Dependence on the speed of a particular computer
2. Dependence on the quality of a program implementing the algorithm.

3. The compiler used in generating the machine code.

29

4. The difficulty of clocking the actual running time of the program

 Since we are in need to measure an algorithm's efficiency, we should have a metric

that does not depend on these factors.

 One possible approach is to count the number of times of the algorithm's operations is

executed. But this approach is difficult and unnecessary.

 The main objective is to identify the most important operation of the algorithm, called

the Basic Operation - the operation contributing the most to the total running time,

and compute the number of times the basic operation is executed.

 It is not so difficult to identify the basic operation of an algorithm: it is usually the

most time consuming operation in the algorithm's innermost loop.

Example

 Most sorting algorithms work by comparing the elements (keys) of a list being

sorted with each other. For such algorithms the basic operation is a Key

Comparison.

Problem statement Input Size Basic operation

Searching a key

element from the

list of n elements

List of n elements Comparison of key with every

element of list

Performing matrix

multiplication

The two matrixes with

order n×n

Actual multiplication of the

elements in the matrices

Computing GCD of

two numbers

Two numbers Division

The formula to compute the execution time using basic operation is

. T(n) ≈ Cop C(n)
Where T(n) – running time

C(n) – no. of times this operation is executed.

Cop – execution time of algorithms basic operation.

Orders of Growth

 Measuring the performance of an algorithm in relation with the input size n is called

order of growth.

Worst Case, Best Case and Average Case efficiencies

 It is reasonable to measure an algorithm's efficiency as a function of a parameter

indicating the size of the algorithm's input.

 But for many algorithms the running time depends not only on an input size but also

on the specifics of a particular input.

Example: Sequential Search or Linear Search AU: Dec -11, Marks 10

ALGORITHM SequentialSearch(A[0..n − 1], K)

//Searches for a given value in a given array by sequential search

//Input: An array A[0..n − 1] and a search key K

//Output: The index of the first element in A that matches K

// or −1 if there are no matching elements

i ←0

while i < n and A[i] _= K do

i ←i + 1

if i < n return i

else return -1

 This algorithm searches for a given item using some search key K in a list of 'n'

elements by checking successive elements of the list until a match with the search key

30

is found or the list is exhausted.

 The algorithm makes the largest number of key comparisons among all possible

inputs of size n:Cworst(n)=n
Worst case efficiency

 The worst case efficiency of an algorithm is its efficiency for the worst case input of

size n, which is an input (or inputs) of size n. For which the algorithm runs the

longest among all possible of that size.

 The way to determine the worst case efficiency of an algorithm is that:

o Analyse the algorithm to see what Kind of inputs yield the largest value of the
basic operations count C(n) among all possible inputs of size n and then
compute is w value Cworst = (n).

Best case efficiency

 The best case efficiency of an algorithm is its efficiency for the best case input of size

n, which is an input (or inputs) of. size n for which the algorithm runs the fastest

among all possible inputs of that size.

 The way to determine the best case efficiency of an algorithm is as follows.

o First, determine the kind of inputs of size n.

o Then ascertain the value of C(n) on these inputs.

 Example: For sequential search, the best case inputs will be lists of size 'n' with their

first elements equal to a search key: Cbest(n) = 1.

Average case efficiency

 It yields the necessary information about an algorithm's behaviour on a "typical" or

"random" input.

 To determine the algorithm's average case efficiency some assumptions about

possible inputs of size 'n'.

 The average number of key comparisons Cavg (n) can be computed as follows:
o In case of a successful search the probability of the first match occurring in

the position of the list is p/n for every i. and the number of comparisons made
by the algorithm in such a situation is obviously ‘i’.

o In case of an unsuccessful search, the number of comparisons is 'n' with the
probability of such a search being (1-p). Therefore,

Cavg(n)=[1. +2. +......i. +...n. +]+n.(1-p)

= [1+2+3+....+i+...+n]+n(1-p)

= +n(1-p)

Cavg(n)= + n(1-p)

There may be n elements at

which chances of ‘not getting

element’ are possible. Hence n .

(1-p)

Example:

o If p = 1 (i.e.) if the search is successful, then the average number of key
comparisons made by sequential search is (n+1)/2.

o If p = 0 (i.e.) if the search is unsuccessful, then the average number of key
comparisons will be 'n' because the algorithm will inspect all n elements on all
such inputs.

4. Explain the Asymptotic Notations and its properties? Or explain briefly Big oh notation

, Omega notation and Theta notation give an example (Apr/May-2017) or what are the

Rules of Manipulate Big-Oh Expression and about the typical growth rates of

31

algorithms? Nov/Dec 2017 Nov/Dec 2018

Define Big O notation, Big Omega and Big Theta Notation. Depict the same graphically

and explain. May/June 2018 , Nov/Dec 2019

Explain the importance of asymptotic analysis for running time of an algorithm with an

example. (April/May 2021)

Asymptotic notations are mathematical tools to represent time complexity of algorithms for

measuring their efficiency. Types :

o Big Oh notation - 'O'

o Omega notation - 'Ω'

o Theta notation - ’Θ’

o Little Oh notation - 'o '
Big Oh notation (O)

o The big oh notation is denoted by ‘O’.

o It is a method of representing the upper bound of algorithm’s running time.
o Using big oh notation we can give longest amount of time taken by the

algorithm to complete.

Definition

A function t(n) is said to be in O(g(n)) (t(n) Є O(g(n))), if t(n) is bounded above by constant

multiple of g(n) for all values of n, and if there exist a positive constant c and non negative

integer n0 such that

o t(n) ≤ c*g(n) for all n ≥ n0.

o
Example 1:

Consider function t(n) = 2n + 2 and g(n) = n2. Then we have to find some

constant c, so that f(n) ≤ c*g(n).

As t(n) = 2n + 2 and g(n) = n2. Then we find c for n=1 then

t(n) = 2n + 2

= 2(1) +2

t(n) = 4

And g(n) = n2

= (1) 2

g(n) = 1

i.e t(n) > g(n)

if n = 2 then,

t(n) = 2n + 2

= 2(2) +2

t(n) = 6

And g(n) = n2

= (2) 2

g(n) = 4

i.e t(n) > g(n)

if n = 3 then,

t(n) = 2n + 2

32

= 2(3) +2

t(n) = 8

And g(n) = n2

= (3) 2

g(n) = 9

i.e t(n) < g(n) is true.

Hence we can conclude that for n> 2, we obtain

t(n) < g(n)

Thus always upper bound of existing time is obtained by big oh notation.

Omega Notation (Ω)

Omega notation is denoted by ‘Ω’.

This notation is used is to represent the lower bound of algorithm’s running time.

Using omega notation we can denote shortest amount of time taken by algorithm.

Definition

A function t(n) is said to be in Ω(g(n)) (t(n) Є Ω(g(n))), if t(n) is bounded below by constant

multiple of g(n) for all values of n, and if there exist a positive constant c and non negative

integer n0 such that

o t(n) ≥ c*g(n) for all n ≥ n0.

o Example 1:
Consider t(n)=2n2 + 5 and g(n) = 7n

Then if n = 0

t(n) = 2 (0)2 + 5

= 5

g(n) = 7(0)

= 0 i.e t(n) > g(n)

But if n = 1

t(n) = 2 (1)2 + 5

= 7

g(n) = 7(1)

= 7 i.e t(n) = g(n)
But if n = 2

But if n = 3

t(n) = 2 (2)2 + 5
= 9

g(n) = 7(2)

= 12 i.e t(n) < g(n)

t(n) = 2 (3)2 + 5

= 18 + 5

= 23

g(n) = 7(3)

= 21 i.e t(n) > g(n)

Thus for n>3 we get t(n) > c * g(n).

It can be represented as

33

2n2 + 5 ∈Ω(n)

Theta Notation (Θ)

The theta notation is denoted by Θ. By this method the running time is between upper

bound and lower bound.

Definition

A function t(n) is said to be in Θ(g(n)) (t(n) Є Θ(g(n))), if t(n) is bounded both above and

below by constant multiple of g(n) for all values of n, and if there exist a positive constant c1

and c2 and non negative integer n0 such that

o C2*g(n) ≤ t(n) ≤ c1*g(n) for all n ≥
n0.

Example 1:

If t(n) = 2n + 8 and g(n) = 7n, 5n

Where n ≥ 2

Little oh notation(o)

C2*g(n) ≤ t(n) ≤ c1*g(n) for all n ≥

Θ(g(n)) = O(g(n)) Ω(g(n))

(t(n) Є Θ(g(n)))

Similarly t(n) = 2n + 8

g(n) = 7n

g(n) = 5n

i.e 5n < 2n + 8 < 7n for n ≥ 2

Here c2 = 5 and c1 = 7 with n0 = 2

The function t(n) = o(g(n)), if O(g(n)) and t(n) <> (g(n))

Example

t(n) = 3n+2

Where n>0, 3n+2 ≤ 5 n2

By definition of Big Oh

t(n) = Cg(n)

C = 5; g(n) = n2

But t(n) = 3n+2 < > (n2)

Therefore t(n) = 3n+2 = o(n2)

Useful property involving the Asymptotic notation:

The following property is useful in analyzing algorithms that comprise two

consecutively executed parts.

Theorem
If t1(n) Є O(g1(n)) and t2(n) Є O(g2(n)) then,

t1(n) + t2(n) Є (max {g1(n),g2(n)})

Proof

Since t1(n) Є O(g1(n)), there exist some constant C1 and some non

negative integer n1 such that
t1(n) ≤ C1 (g1(n)) for all n ≥ n1

Since

34

t2(n) Є O(g2(n))

t2(n) ≤ C2 (g2(n)) for all n ≥ n2

Let us denote,
C3=max {C1, C2} and

Consider n ≥ max {n1, n2}, so that both the inequalities can be used.

The addition of two inequalities becomes,

Hence,

t1(n)+ t2(n) ≤ C1 (g1(n))+ C2 (g2(n))
≤ C3 (g1(n))+ C3 (g2(n))
≤ C3 2 max{g1(n), (g2(n))}

t1(n) +t2(n) Є O (max {g1(n),g2(n)}),
with the constants C and n0 required by the definition being 2C3 = 2 max (C1, C2) and

max {n1, n2} respectively.
The property implies that the algorithms overall efficiency will be determined by the

part with a larger order of growth.

(i.e.) its least efficient part is
t1(n) Є O(g1(n)) t1(n) +t2(n) Є O (max {g1(n),g2(n)})

t2(n) Є O(g2(n))

Using limits for comparing orders of growth

There are 3 principal cases,

 0, Implies that (n)
of growth than g(n)

has a smaller order

C, Implies that (n)

of growth than g(n)
has a same order

 ∞, Implies that (n)
of growth than g(n)

has a larger order

L' Hospital's rule.

 =

Stirling’s formula

n!≈
n for large values of n.

Asymptotic Growth Rate

Three notations used to compare orders of growth of an algorithm’s basic

operation count

 O(g(n)): class of functions f(n) that grow no faster than g(n)

 Ω(g(n)): class of functions f(n) that grow at least as fast as g(n)

 Θ (g(n)): class of functions f(n) that grow at same rate as g(n)

35

Basic Asymptotic Efficiency Classes

Class Name Comments

1 Constant Short of best-case efficiencies
logn Logarithmic Cutting a problem size by a constant factor

n Linear
Algorithms that scan a list of size n.(eg sequential

search)
n logn n-log-n Many divide and conquer algorithm

n2 Quadratic
Efficiency of algorithm with two embedded

loops.

n3 Cubic
Efficiency of algorithm with three embedded

loops.

2n Exponential Generate all the subsets of an n element set.

36

If any value is large than current

Max_ Value then set new Max_value

by obtained larger value

n! Factorial
Algorithm that generate all permutations of an n

element set

5. Explain the Mathematical analysis for non-recursive algorithm or write an

algorithm for determining the uniqueness of an array. Determine the time complexity of your

algorithm. (Apr/May-2017) April/May 2019

General plan for analyzing efficiency of non-recursive algorithm

Example 1: Problem for finding the value of the largest element in a list of

n numbers
The pseudo code to solving the problem is

ALGORITHM MaxElement(A[0..n-1])

//Problem Description : This algorithm is for finding the

//maximum value element from the array

//Input:An array A[0..n-1] of real numbers

//Output: Returns the largest element from array

Maxval ← A[0]

For i ← 1 to n-1 do

{

If (A[i]>max_value)then

Maxval ← A[i]

}

Return Max_value

Mathematical Analysis

Step 1: The input size is the number of elements in the array(ie.),n

Step 2 : The basic operation is comparison in loop for finding larger value There are two

operations in the for loop

 Comparison operation a[i]->maxval

 Assignment operation maxval->a[i]

Step 3: The comparison is executed on each repetition of the loop. As the

comparison is made for each value of n there is no need to find best case

worst case and average case analysis.

Step 4: Let C(n) be the number of times the comparison is executed.

The algorithm makes comparison each time the loop executes.

That means with each new value of I the comparison is made.

Hence for i= 1 to n – 1 times the comparison is made . therefore we can

formulate C(n) as

C(n) = one comparison made for each value of i

Step 5 : let us simplify the sum

Thus C(n) =

=n-1 θ (n)

1. Decide the input size based on parameter n.

2. Identify the algorithm basic operation(s).

3. Check whether the number of times the basic operation is executed depends on only on

the size of the input.

4. Set up a sum expressing the number of times the algorithm basic operation is excited

5. Simplify the sum using standard formula and rules

Searching the maximum element from an array

37

Θ

Using the rule θ (n)

The frequently used two basic rules of sum manipulation are,

i=C i R1

i+bi)= I + i R2

The two summation formulas are

1. =u-l+1

Where l≤ u are some lower and upper integer limits S1

2. = =1+2+…..+n

=n(n+1)/2

=1/2n2 o(n2) S2

Example 2: Element uniqueness problem-check whether all the element in

the list are distinct April/May 2019

ALGORITHM UniqueElements(A[0..n-1])

//Checks whether all the elements in a given array are distinct

//Input :An array A[0..n-1]

//Output Returns ‘true’ if all elements in A are distinct and ‘false’

//otherwise

for i to n-2 do

for j i+1 to n-1 do

if a[i] = a[j] then

return false

else

Mathematical analysis

return true

Step 1: Input size is n i.e total number of elements in the array A

Step 2: The basic iteration will be comparison of two elements . this

operation the innermost operation in the loop . Hence

if a[i] = a[j] then comparison will be the basic operation .
Step 3 : The number of comparisons made will depend upon the input n .

but the algorithm will have worst case complexity if the same

element is located at the end of the list. Hence the basic operation

depends upon the input n and worst case

Worst case investigation

Step 4: The worst case input is an array for which the number od elements comparison

cworst(n) is the largest among the size of the array.
There are two kinds of worst case inputs, They are

1.Arrays with no equal elements.

2. Arrays in which the last two elements are pair of equal elements.

For the above inputs, one comparison is made for each repetition of the inter most loop

(ie) for each value of the loop's variable 'j' between its limits i+1 and n-1 and this is

repeated limit for each values of the outer loop (ie) for each value of the loop's variable `i'

between 0 and n-2. Accordingly,

C worst (n) = Outer loop × Inner loop

Cworst(n) =

Step 5: now we will simplify C worst as follows

=

If any two elements in the array

are similar then return .false

indicating that the array elements

CS 8451 DESIGN AND ANALYSIS OF ALGORITHMS

=

UNIT 1

38

This can be obtained using formula

a
03

3

a
12

6

= -

Now taking (n-1) as a common factor, we can write

Solving this equation we will get

= 2(n-1) (n-1) – (n-2) (n-1)/2

= (2(n 2 – 2n + 1) – (n 2- 3n + 2)) /2

= ((n2 – n) / 2

=1/2 n2

 Θ (n2)

We can say that in the worst case the algorithm needs to compare all

n (n – 1)/2 distinct of its n elements.

Therefore C worst(n)= 1/2n2 € o(n2)

EXAMPLE 3 : Obtaining matrix multiplication
Given two n × n matrices A and B, find the time efficiency of the definition-based

algorithm for computing their product C = AB, where A and B are n by n (n*n)

matrices.

By definition, C is an n × n matrix whose elements are computed as the scalar (dot) products

of the rows of matrix A and the columns of matrix B:

where C[i, j]= A[i, 0]B[0, j]+ . . . + A[i, k]B[k, j]+ . . . + A[i, n − 1]B[n − 1, j] for

every pair of indices 0 ≤ i, j ≤ n − 1.

C = a

00
a
01

1 2

a
10

a
11

4 5

b
00

b
01

1 2

× b
10

b
11

3 4

2 × 3 b
20

b
21

5 6 3 × 2

The formula for multiplication of the above two matrices is

a00 ×b00 + a01 ×b10 + a02 ×b20 a00 ×b01 + a01×b11 + a02×b21

= (n-1)

This can be obtained using

formula /2

CS 8451 DESIGN AND ANALYSIS OF ALGORITHMS UNIT 1

39

22

49

C =
a10×b00 + a11×b10 + a12×b20 a10×b01 + a11×b11 + a12×b21

C = 1 × 1 + 2 × 3 + 3 × 5 1 × 2 + 2 × 4 + 3× 6

4 × 1 + 5 × 3 + 6 × 5 4 × 2 + 5 × 4 + 6 × 6

C = 28

64

Now the algorithm for matrix multiplication is

Mathematical analysis

Step 1: The input’s size of above algorithm is simply order of matrices i.e n.

Step 2: The basic operation is in the innermost loop and which is

There are two arithmetical operations in the innermost loop here

1. Multiplication

2. Addition

Step 3: The basic operation depends only upon input size. There are no best case, worst

case and average case efficiencies. Hence now we will go for computing sum. There is just

one multiplication which is repeated no each execution of innermost loop. (a for loop

using variable k). Hence we will compute the efficiency for innermost loops.

Step 4: The sum can be denoted by M (n).

M(n) = outermost × inner loop × innermost loop (1 execution)

=[for loop using i]×[for loop using j]×[for loop using k]×

(1 execution)

M(n)= n3

CS 8451 DESIGN AND ANALYSIS OF ALGORITHMS UNIT 1

40

Thus the simplified sum is n3. Thus the time complexity of matrix

multiplication Θ (n3)

Running time of the Algorithm T(n)

The estimation of running time of the algorithm on a particular machine is calculated by

using the product.

T (n) ≈ cmM(n) = cmn3

Where- cm is the time of one multiplication on the machine in question.
We would get a more accurate estimate if we took into account the time spent on the
additions, too:

T (n) ≈ cmM(n) + caA(n) = cmn3 + can
3 = (cm + ca)n

3
T (n) ≈ cmM(n) = cmn3

where cm is the time of one multiplication on the machine in question. We would get a more

accurate estimate if we took into account the time spent on the additions, too:

Time spend addition CA (n)

The time speed to perform the addition operation is given by

T(n) = caA(n)= ca n
3

Where
ca is the time taken to perform the one addition.

Hence the running time of the algorithm is given by
T (n) ≈ cmM(n) + caA(n) = cmn3 + can

3 = (cm + ca)n
3

The estimation differs only by the multiplication constants and not by the order of growth.

EXAMPLE 4:The following algorithm finds the number of binary digits in

the binary representation of a positive decimal integer.

Mathematical analysis

Step 1: The input size is n i.e . The positive integer whose binary digit in binary

representation needs to be checked.

Step 2 : The basic operation is denoted by while loop. And it is each time checking whether

n > 1. The while loop will be executed for the number of time at which n>1 is true .

it will be executed once more when n>1 is false . but when n>1 is false the

statements inside while loop wont get executed.

Step 3: The value of n is halved on each repetition of the loop. Hence efficiency

algorithm is equal to log2 n

Step 4: hence total number of times the while loop gets executed is [log2 n] + 1

Hence time complexity for counting number of bits of given number is Θ(log2 n). this

indicates floor value of log 2 n

6. Explain the Mathematical analysis for recursive algorithm. (Apr/May-2017) or

Discuss the steps in Mathematical analysis for recursive algorithms. Do the same for finding

factorial of a number. Nov/Dec 2017 or solve the following recurrence equations using iterative

method or tree Nov/Dec 2019

CS 8451 DESIGN AND ANALYSIS OF ALGORITHMS UNIT 1

41

Discuss various methods used for mathematical analysis of recursive algorithms.May/June

2018

General plan for analyzing efficiency of recursive algorithms

1. Decide the input size based on parameter n .

2. Identify algorithms basic operations

3. Check how many times the basic operation is executed.

To find whether the execution of basic operation depends upon the input size n.

determine worst, average , and best case for input of size n. if the basic

operation depends upon worst case average case and best case then that has to be

analyzed separately.

4. Set up the recurrence relation with some initial condition and expressing the

basic operation.

5. Solve the recurrence or at least determine the order of growth. While solving the

recurrence we will use the forward and backward substitution method. And

then correctness of formula can be proved with the help of mathematical

induction method.

Example 1:Computing factorial of some number n.
To compare the factorial F(n)=n! for an arbitrary non negative integer

N! =1.2.3……(n-1).n

= (n-1)!.n ,for n>1

0! =1

By definition F(n)=F(n-1)!.n

Mathematical Analysis:

Step 1: The algorithm’s input size is n.

Step 2: The algorithm’s basic operation in computing factorial is multiplication .

Step 3 : The recursive function call can be formulated as

According to the formula, F(n) is computed as

F(n) = F(n-1) * n, for n>0

And the number of execution is denoted by M(n).

The number of multiplication M(n) is computed as

M(n) = M(n-1) + 1, for n>0

To compute

F(n-1)

To multiply

F(n-1) by n

M(n-1) multiplication are spent to compute F(n-1).

One more multiplication is needed to multiply the result by n.

Step 4: in step 3 the recurrence relation is obtained.

The equation is

M(n)=M(n-1) +1, for n>0

CS 8451 DESIGN AND ANALYSIS OF ALGORITHMS UNIT 1

42

M(n)= M(n-i) + i;

Defines M(n)not explicitly(i.e.)as a function of n, but implicitly as function of its

value at another point, namely n-1. These equations are called as recurrence

relations or recurrences.

o Recurrences relations play an important role in the analysis of algorithm and
some area of applied mathematics.

o To solve a recurrence relation M(n)=M(n-1)+1 the formula for the sequence
M(n) in terms of n only should be find.

o To determine the unique solution, an initial condition is needed that tells the
value with which the sequence starts.

o The initial value is obtained from the condition if n=0 return 1 that makes the
algorithm stops.

The condition, if n=0 return 1 tells 2 things

1. The recursive call stops when n=0 the smallest value for which the

algorithm is executed. Hence M(n)=0.

2. When n=0 the algorithm performs no multiplication

Forward Substitution:

M(1) = M(0) +1

M(2) = M(1) + 1 = 1 + 1 =2

M(3) = M(2) + 1 = 2 + 1=3

The recurrence relation and the initial condition for the algorithm number of

multiplication M(n) is

M(n)=M(n-1)+1,for n<0, M(0)=0

Backward substitution:

M(n) = M(n-1) + 1

Substitute M(n-1) = M(n-2) + 1

Now M(n) becomes

M(n) = [M(n-2)+1]+1

= M(n-2) + 2

Substitute M(n-2) =M(n-3)+1

Now M(n) becomes

M(n)=[M(n-3)+1] + 2

= M(n-3) + 3

From the substitution method we can establish a general formula as :

Since n=0, substitute i=n;

Now let us prove correctness of this formula using mathematical induction as follows

Proof

M(n) = n by using mathematical induction

Basis : let n = 0 then

CS 8451 DESIGN AND ANALYSIS OF ALGORITHMS UNIT 1

43

M(n) =0

i.e M(0) = 0=n

Induction: if we assume M(n – 1) = n-1 then

M(n) = M(n-1) + 1

= n-1 + 1

= n

i.e M(n) = n Thus the time complexity of factorial function is Θ (n)

Give the general plan for Analyzing the time efficiency of Recursive Algorithms and use

recurrence to find number of moves for Towers of Hanoi problem. May/June 2018

Example 2:Tower of Hanoi puzzle

 In this puzzle, there are n disks of different sizes, and three pegs.

 Initially all the disks are on the first peg in order if size, the largest on the bottom and

the smallest on the top.

 The goal is to move all the disks from peg 1 to peg 3 using peg 2 as auxiliary.

 One disk should be moved at a time and do not place a larger disk on top of a smaller

one.

 The following steps are used to move n>1 disks from peg 1 to peg 3, peg 2 as

auxiliary.

1. Move n-1 disks recursively from peg 1 to peg 3.(peg 2 as auxiliary).

2. Move the largest disk directly from peg 1 to peg 3.

3. Move n-1 disks recursively from peg 2 to peg 3.(peg 2 as

auxiliary).

For example, if n=1 then the single disks is moved from source peg to destination peg

directly.

A B C

General plan to tower of Hanoi problem

The input size is the number of disks “n”.
The algorithm basic operation is moving one disks at a time.

The number of moves M(n) depends only on n.

The recurrence equation is,

CS 8451 DESIGN AND ANALYSIS OF ALGORITHMS UNIT 1

44

Therefore te general formula is 2iM(n-i)+2i-1

1 3

M(n)=M(n-1)+1+M(n-1),for n>1;

M(n)=2M(n-1)+1, for n>1;

The initial condition M(1)=1

Now the recurrence relation for number of moves is,

M(n)=2M(n-1)+1,for n>1

M(1)=1

The recurrence relation is solved by using backward substitution method

Backward substitution Method

M(n)=2M(n-1)+1

Substitute

M(n-1)=2M(n-2)+1

M(n)=2[2M(n-2)+1]+1

M(n)=22M(n-2)+2+1

Substitute

M(n-2)=2M(n-3)+1

Now, M(n) becomes

M(n)=22[2M(n-3)+1]+2+1

M(n)=23[M(n-3)+22+2+1

Hence after I substitution M(n) becomes

M(n)=2iM(n-i)+2i-1+2i-2+2i-3+…….2+1

=2iM(n-i)+2i-1

2

CS 8451 DESIGN AND ANALYSIS OF ALGORITHMS UNIT 1

45

Algorithm BinRec(n)

//Input: A positive decimal integer n

//Output: The number of binary digits in n’s binary representation

if n=1

return 1

else

return BinRec([n/2])+1

A(n)=A([n/2])+1,for >n

A(n)->number of addition made by the algorithm

A([n/2])->number of addition made to compute A9[n/2])

Fig. recursive solution to the Tower of Hanoi puzzle

Solution to recurrence relation is

Since the initial condition is n=1 becomes i=n-1.

The recurrence relation is

Substitute I=n-1 in (1)

M(n)=2n-1M(n-(n-1)+2n-1-1

=2n-1M(1)+2n-1-1

=2n-1+2n-1-1

=2n-1

M(n)= 2n-1 Thus this is an exponential algorithm, It runs unimaginably long time for

moderate values of n.

Example 3 :To find the number of binary digits in binary representation

Recurrence and Initial Condition

A Recurrence for the number of addition A(n) made by the algorithm is the number of

addition made in computing BinRec([n/2]) is A([n/2]) plus one more addition is made

Thus recurrence is

The recursive call end when n is equal to 1 and no addition is made.

The initial condition is A(1) = 0

To solve the recurrence, backward substitutions cannot be used.The reason is the presence on

[n/2] in the functions argument and the value of n is not power of 2.

A theorem called Smoothness rule is used to solve the recurrence.

The standard approach for solving such recurrence is to solve it only for n = 2k .

M(n)=2iM(n-i)+2i-1 (1)

CS 8451 DESIGN AND ANALYSIS OF ALGORITHMS UNIT 1

46

F(0)=0

F(1)=1

The order of growth observed for n = 2k gives a correct answer about the order of growth of

all values of n.

n = 2k takes the form

A(2k) = A(2k−1) + 1 for k > 0,

A(20) = 0.

Now, backward substitutions can be applied.

Backward Substitution Method

A(2k) = A(2k−1) + 1

substitute A(2k−1) = A(2k−2) + 1

= [A(2k−2) + 1] + 1

= A(2k−2) + 2

substitute A(2k−2) = A(2k−3) + 1

= [A(2k−3) + 1] + 2

= A(2k−3) + 3

After i iteration

A(2k) = A(2k−i) + i

= A(2k−k) + k

= A(20) + k

= A(1) + k

Thus, we end up with

A(2k) = A(1) + k = k

After returning to the original variable

n = 2k and hence k = log2 n,

A(n) = log2 n ∈ Ө(log n)

Example 4: Fibonacci series

A sequence of Fibonacci numbers is 0,1,1,2,3,5,8,13,21,34………..

The Fibonacci sequence can be defined by the simple recurrence

F(n)=F(n-1)+F(n-2),for n>1… 1

The two initial conditions are

Explicit formula for the nth Fibonacci number

Backward substitution method is not used to solve the recurrence F(n)=F(n-1)+F(n-2),for

n>1,because which fails to produce easily discernible pattern.

CS 8451 DESIGN AND ANALYSIS OF ALGORITHMS UNIT 1

47

α+ β=0

α()+β()=0 ……….(11)

ax(n)+bx(n-1)+cx(n-2)=0 (2)

Ar2+br+c=0 (3)

F(n)-F(n-1)-F(n-2)=0 (4)

So, the theorem that describes solution to a homogeneous second order linear recurrence with

constant coefficient is used to solve the problem.

The homogenous with constant coefficient is

Where,

a,b,c are fixed real numbers called the coefficients of recurrence and a≠0

x(n) is the unknown sequence to be found

The characteristics equation of the recurrence equation is

The recurrence relation can be written as

The characteristics equation for (4)

r2-r-1=0

The roots are

R1,2=

R1,2=

R1=

R2=

The characteristics equation has two distinct real roots.

Now the recurrence relation is

X(n)=αr1
n+βr2

n ... (5)

Substitute r1 and r2 in (5),

F(n)= α()n+β()n (6)

Now substitute the value of f(0) and F(1) in equation(6)

F(0) = α(

)0+β(

)0 =0

……….(7)

F(1)= α(

)1+β(

)1 =0

……….(8)

By solving equation (7) and (8),the linear equation in two unknown α and β

CS 8451 DESIGN AND ANALYSIS OF ALGORITHMS UNIT 1

48

() β-() β=-1

+ β- + β = -1

β = -1

β = -

Substitute β = - in (9)

α + β = 0

α - = 0

α = β = -

Substitute the value of α and β in equation (6)

F(n) = n - n

F(n) =

(11)-(10) gives

Where

Φ^ =-

Φ =

Φ = 1.61803

Φ^ = - 0.61803

The constant Φ is known as, Golden Ratio.

The value of Φ^ is lies between -1 and 0.

When n goes to infinity, Φ^ gets infinitely small value. So, it can be omitted.

Therefore F(n) = Φ n

So, for every non negative n, F(n) = Φ n is rounded to the nearest integer.

 Algorithm for computing Fibonacci numbers

First method

Algorithm F(n)

//Computes the nth Fibonacci number recursively by using its definition.

//Input: A nonnegative integer n

//Output: The nth Fibonacci number

if n<1

return n

CS 8451 DESIGN AND ANALYSIS OF ALGORITHMS UNIT 1

49

A(n)= -1

A(n)€

the algorithm’s basic operation is addition.

Let A(n) is the number of additions performed by the algorithm to compute F(n).

The number of additions needed to compute F(n-1) is A(n-1) and the number of additions

needed to compute F(n-2) is A(n-2).

The algorithm needs one more addition to compute the sum of A(n-1) and A(n-2).

Thus the recurrence for A(n) is

The recurrence A(n)-A(n-1)-A(n-2)=1 is same as F(n)-F(n-1)-F(n-2)=0, but its right hand

side not equal to zero. These recurrences are called inhomogeneous recurrences.

General techniques are used to solve inhomogeneous recurrences.

The inhomogeneous recurrences is converted into homogeneous recurrence by rewriting the

in homogeneous recurrence as,A(n)+1]-[A(n-1)+1]-[A(n-2)+1]=0 (14)

Now substitute, B(n)=A(n)+1

Now (14) becomes, B(n)-B(n-1)-B(n-2)=0

B(0)=0

B(1)=1

Here B(n)=F(n+1)

Since B(n)=A(n)+1

B(n-1)=A(n)

So A(n)=B(n)-1

Substitute F(n+1)-1 (15)

We know that

F(n)=

F(n+1)= ………(16)

Substitute (16) in (15)

Hence

The poor efficiency class of algorithm could be anticipated from the class of recurrence

A(n)=A(n-1) + A(n-2)+1, for n>1

A(0)=0

A(1)=0

Else

return F(n-1)+(n-2)

CS 8451 DESIGN AND ANALYSIS OF ALGORITHMS UNIT 1

50

F

F(1)

The reason behind the algorithm inefficiency can be traced by looking at the tree of recursive

calls n=6

The same values of the function are evaluated again and again which is extremely

inefficiently.

F(4)

F(4) F(3)
F(3) F(2)

F(3)
F2)

F(2)

(2)
F(1)

F(1)
F(0)

F(1) F(0) F(1) F(0)

F(2)

F(1)

F(1)
F(0)

7. Find the time complexity and space complexity of the following problems. Factorial using

recursion and compute the nth Fibonacci number using iterative statements. Dec 2012

8.Solve the following recurrence relations: or solve the following recurrence equation:

T(n)=T(n/2)+1,where n=2k for all k>=0

T(n)= T(n/3)+ T(2n/3)+cn,where ‘c’ is a constant and ‘n’ is the input size.

Dec 2012 April/May 2019

1. T(n)= 2T(n/2)+3 n>2

2 n=2

T(n)=2T(n/2)+3

=2{(2T(n/2)+3)/2}+3

=2{(2T(n/4)+3/2}+3

....

=4T(n/4)+6

= 4{(2T(n/2)+3)/4}+6

.....

=8T(n/8)+9

Fig Tree of recursive calls for computing the Fibonacci number for n = 6

CS 8451 DESIGN AND ANALYSIS OF ALGORITHMS UNIT 1

51

=2kT(n/2k)+3n

T(n)=nlogn+3n

Time complexity=o(nlog n)

2. T(n)= 2T(n/2)+cn n>1

a n=1 where a and c constants

T(n)=2T(n/2)+cn

=2{(2T(n/2)+cn)/2}+cn

=2{(2T(n/4)+cn/2}+cn

=4T(n/4)+cn+cn

= 4{(2T(n/8)+cn/4}+ cn+cn

=8T(n/8)+ cn+cn+cn

=2kT(n/2k)+k(cn)

T(n)=nlogn+ k(cn)

Time complexity=o(nlog n)

8. Show the following equalities are correct June 2013

i. 5n2-6n = Φ(n2)

ii. n!=O(nn)

iii. n3+106n2=Θ(n3)

iv. 2n22n + n log n = Θ(n22n)

i. 5n2-6n = Φ(n2) =>higest order of grouth is n2

ii. n!=O(nn) =>higest order of grouth O(n)

iii. n3+106n2=Θ(n3) =>higest order of grouth O(n3)

iv. 2n22n + n log n = Θ(n22n)=>higest order of grouth O(n2)

Nov 2010

9. Prove that for any two functions f(n) and g(n), we have f(n)-> Θ(g(n)) if and only if

f(n) -> O(g(n)) and f(n) ->Ω(g(n)) Nov 2010

Given function:

f(n) and g(n)
f(n)= O(g(n)) when f(n) ≤C1g(n) for all n≥n0 ------------- (1)
f(n)= Ω(g(n)) when f(n) ≥C2g(n) for all n≥n0 ------------- (2)

from (1) and (2)
C2 g(n) ≤f(n) ≤ C1g(n) for all n≥n0 ------------ (3)

(i.e) Θ(g(n)) = O(g(n))Ω(g(n))

From (3) f(n) = Θ(g(n)) hence proved

10. (a)If you have to solve the searching problem for a list of n numbers, how can you take

CS 8451 DESIGN AND ANALYSIS OF ALGORITHMS UNIT 1

52

advantage of the fact that the list is known to be sorted? Give separate answers for lists

represented as arrays lists represented as linked lists. (AU april/may 2015)

For a sorted array do a binary search to divide the array in half for each query, thus O(lg n).

If the list is linked you must you do a linear search which is O(n),

unless you use a linked binary search tree, which is O(lg n)

11. The best-case analysis is not as important as the worst-case analysis of an algorithm”.
Yes or No ? Justify your answer with the help of an example. (April/May 2021)

The Best Case analysis is bogus. Guaranteeing a lower bound on an algorithm doesn't
provide any information as in the worst case, an algorithm may take years to run. For
some algorithms, all the cases are asymptotically the same, i.e., there are no worst and best
cases. For example, Merge Sort.

11. Derive the worst case analysis of merge sort using suitable illustration (AU april/may 2015)

Efficiency of Merge Sort

 In merge sort algorithm the two recursive calls are made. Each recursive call focuses

on n/2 elements of the list .

 After two recursive calls one call is made to combine two sublist i.e to merge all n

elements.

 Hence we can write recurrence relation as

T(n) = T(n/2) + T(n/2) + cn

T(n/2) = Time taken by left sublist

T(n/2) = time taken by right sublist

T(n) = time taken for combining two sublists

where n> 1 T (1) = 0

The time complexity of merge sort can be calculated using two methods

 Master theorem

 Substitution method

Master theoremLet , the recurrence relation for merge sort is

T(n) = T(n/2) + T(n/2) + cn

Let T(n) = aT(n/b) + f(n) be a recurrence relation

i.e. T(n) = 2T(n/2) + cn ----------(1)

T(1) = 0 ----------- (2)

As per master theorem T(n) = Θ (n d long n) if a = b

As equation (1),a =2 , b = 2 and f(n) = cn and a = bd i.e 2 = 2`

This case gives us , T (n) =Θ (n log2 n)

Hence the average and worst case time complexity of merge sort is

C worst (n) = (n log2 n)

Substitution method Let, the recurrence relation for merge sort be

T(n) = T(n/2) + T(n/2) + cn for n>1

i.e. T(n) = 2T(n/2) + cn for n>1 --------------- (3)

CS 8451 DESIGN AND ANALYSIS OF ALGORITHMS UNIT 1

53

T(1) = 0 --- (4)

Let us apply substitution on equation (3) .

Assume n=2k

T(n) = 2T(n/2) + cn

T(n) = 2T(2k/2) + c.2k

T(2k) = 2T(2k-1) + c.2k

If k = k-1 then,

T(2k) = 2T(2k-1) + c.2k

T(2k) = 2[2T(2k-2) + c.2k -1] + c.2k

T(2k) = 22 T(2k-2) + 2.c.2k -1 + c .2k

T(2k) = 22 T(2k-2) + 2.c.2k /2 + c.2k

T(2k) = 22 T(2k-2) + c.2k + c.2k

T(2k) = 22 T(2k-2) + 2c .2k

Similarly we can write,

T(2k) = 23 T(2k-3) + 3c .2k

T(2k) = 24 T(2k-4) + 4c .2k

…..

….

T(2k) = 2k T(2k-k) + k.c.2k

T(2k) = 2k T(20) + k.c.2k

T(2k) = 2k T(1) + k.c.2k --------- (5)

But as per equation (4), T(1) =0

There equation (5) becomes ,

T(2k) = 2k .0 +. k. c . 2k

T(2k) = k. c . 2k

But we assumed n=2k , taking logarithm on both sides.i.e. log 2 n = k

Therefore T(n) = log 2 n. cn

Therefore T (n) =Θ (n log2 n)

Hence the average and worst case time complexity of merge sort is

C worst (n) = (n log2 n)

Time complexity of merge sort

Best case Average case Worst case

Θ (n log2 n) Θ (n log2 n) Θ (n log2 n)

12. write Insertion sort algorithm and estimate its running time.

CS 8451 DESIGN AND ANALYSIS OF ALGORITHMS UNIT 1

54

 Like selection sort, insertion sort loops over the indices of the array. It just calls insert on

the elements at indices 1,2,3,…,n−1. Just as each call to indexOfMinimum took an amount

of time that depended on the size of the sorted subarray, so does each call to insert.

Actually, the word "does" in the previous sentence should be "can," and we'll see why.

 Let's take a situation where we call insert and the value being inserted into a subarray is

less than every element in the subarray.

 For example, if we're inserting 0 into the subarray [2, 3, 5, 7, 11], then every element in the

subarray has to slide over one position to the right. So, in general, if we're inserting into a

subarray with k elements, all k might have to slide over by one position.

 Rather than counting exactly how many lines of code we need to test an element against a

key and slide the element, let's agree that it's a constant number of lines; let's call that

constant ccc. Therefore, it could take up to c⋅k lines to insert into a subarray of k elements.

 Suppose that upon every call to insert, the value being inserted is less than every element in

the subarray to its left. When we call insert the first time, k=1. The second time, k=2. The

third time, k=3. And so on, up through the last time, when k=n−1.

Therefore, the total time spent inserting into sorted subarrays

That sum is an arithmetic series, except that it goes up to n−1n-1n−1 rather than nnn. Using
our formula for arithmetic series, we get that the total time spent inserting into sorted

subarrays is

Using big-Θ notation, we discard the low-order term cn/2 and the constant factors c and 1/2,

getting the result that the running time of insertion sort, in this case, is Θ(n2).

Can insertion sort take less than Θ(n2) time? The answer is yes. Suppose we have the array

[2, 3, 5, 7, 11], where the sorted subarray is the first four elements, and we're inserting the

value 11. Upon the first test, we find that 11 is greater than 7, and so no elements in the

subarray need to slide over to the right.

 Then this call of insert takes just constant time. Suppose that every call of insert

takes constant time. Because there are n−1 calls to insert, if each call takes time that

is some constant ccc, then the total time for insertion sort is c⋅(n−1) which is Θ(n),

not Θ(n2).

 Can either of these situations occur? Can each call to insert cause every element in

the subarray to slide one position to the right? Can each call to insert cause no

elements to slide? The answer is yes to both questions.

 A call to insert causes every element to slide over if the key being inserted is less

than every element to its left. So, if every element is less than every element to its

left, the running time of insertion sort is Θ(n2).

 What would it mean for every element to be less than the element to its left? The

array would have to start out in reverse sorted order, such as [11, 7, 5, 3, 2]. So a

reverse-sorted array is the worst case for insertion sort.

 How about the opposite case? A call to insert causes no elements to slide over if the

key being inserted is greater than or equal to every element to its left. So, if every

element is greater than or equal to every element to its left, the running time of

insertion sort is Θ(n).

 This situation occurs if the array starts out already sorted, and so an already-sorted

array is the best case for insertion sort.

c⋅(n−1+1)((n−1)/2)=cn2/2−cn/2.

isc⋅1+c⋅2+c⋅3+⋯c⋅(n−1)=c⋅(1+2+3+⋯+(n−1))

CS 8451 DESIGN AND ANALYSIS OF ALGORITHMS UNIT 1

55

What else can we say about the running time of insertion sort? Suppose that the array starts

out in a random order. Then, on average, we'd expect that each element is less than half the

elements to its left.

 In this case, on average, a call to insert on a subarray of k elements would slide k/2

of them. The running time would be half of the worst-case running time. But in

asymptotic notation, where constant coefficients don't matter, the running time in the

average case would still be Θ(n2), just like the worst case.

 What if you knew that the array was "almost sorted": every element starts out at most

some constant number of positions, say 17, from where it's supposed to be when

sorted?

 Then each call to insert slides at most 17 elements, and the time for one call of

insert on a subarray of kkk elements would be at most 17⋅c. Over all n−1 calls to

insert, the running time would be 17⋅c⋅(n−1), which is Θ(n), just like the best case.

So insertion sort is fast when given an almost-sorted array.

To sum up the running times for insertion sort:

 Worst case: Θ(n2).

 Best case: Θ(n).

 Average case for a random array: Θ(n2).

 "Almost sorted" case: Θ(n).

f you had to make a blanket statement that applies to all cases of insertion sort, you would

have to say that it runs in O(n2) time. You cannot say that it runs in Θ(n2) time in all cases,

since the best case runs in Θ(n) time. And you cannot say that it runs in Θ(n) time in all

cases, since the worst-case running time is Θ(n2).

13. Show how to implement a stack using two queues.Analyze the running time of the stack

operations.

CS 8451 DESIGN AND ANALYSIS OF ALGORITHMS UNIT 1

56

14. find the closest asymptotic tight bound by solving the recurrence equation

T(n)=8T(n/2)+n2 with (T(1)=1) using recursion tree method.[Assume that T(1)ЄӨ(1)]

CS 8451 DESIGN AND ANALYSIS OF ALGORITHMS UNIT 1

57

CS 8451 DESIGN AND ANALYSIS OF ALGORITHMS UNIT 1

58

15. Derive a loose bound on the following equation: F(x)=35 x8 -22x7+14x5 -2x4 -4x2+x-15

CS 8451 DESIGN AND ANALYSIS OF ALGORITHMS UNIT 1

59

16. Solve the recurrence relations

X(n) =x(n-1) +5 for n > 1 x(1)=0

X(n) =3x(n-1) for n > 1 x(1)=4

X(n) =x(n-1) +n for n > 0 x(0)=0

X(n) =x(n/2) +n for n > 1 x(1)=1 (solve for n= 2 k)

X(n) =x(n/3) +1 for n > 1 x(1)=1 (solve for n= 3 k)

X(n) =x(n-1) +5 for n > 1 x(1)=0

X(1)=0

If n=2

X(2)=x(2-1)+5

=x(1)+5

=0+5

=5

If n=3

X(3)=x(3-1)+5

CS 8451 DESIGN AND ANALYSIS OF ALGORITHMS UNIT 1

60

=x(2)+5

=5+5

=10

If n=4

X(4)=x(4-1)+5

=x(3)+5

=10+5

=15........

17. Use the most appropriate notation to indicate the time efficiency class of sequential search

algorithm in the worst case,best case and the average case.

Solution : Sequential search

“Given a target value and a random list of values, find the location of the target in the

list, if it occurs, by checking each value in the list in turn”

get (NameList, PhoneList, Name)

i = 1

N = length(NameList)

Found = FALSE

while ((not Found) and (i <= N)) {

if (Name == NameList[i]) {

print (Name, “’s phone number is ”, PhoneList[i])

Found = TRUE

}

i = i+1

}

if (not Found) { print (Name, “’s phone number not found!”) }

Central unit of work: operations that occur most frequently

Central unit of work in sequential search:

Comparison of target Name to each name in the list

Also add 1 to i

Typical iteration: two steps (one comparison, one addition)

Given a large input list:

Best case: smallest amount of work algorithm must do

Worst case: greatest amount of work algorithm must do

Average case: depends on likelihood of different scenarios occurring

 Best case: target found with the first comparison (1 iteration)

 Worst case: target never found or last value (N iterations)

 Average case: if each value is equally likely to be searched, work done varies from 1

to N, on average N/2 iterations

Sequential search worst case (N) grows linearly in the size of the problem 2N steps (one

comparison and one addition per loop) Also some initialization steps...

On the last iteration, we may print something...After the loop, we test and maybe print...

To simplify analysis, disregard the “negligible” steps (which don’t happen as

often), and ignore the coefficient in 2N Just pay attention to the dominant term (N)

Order of magnitude O(N): the class of all linear functions (any algorithm that takes C1N +

C2 steps for any constants C1 and C2)

CS 8451 DESIGN AND ANALYSIS OF ALGORITHMS UNIT 1

61

18.(i) Prove that if g(n) is Ω(f(n)) then f(n) is O(g(n)).May/June 2018

f(n) ∈ Ω(g(n)) ⟺ g(n) ∈ O(f(n))

Proof:

O(f(n))={g:N→N | ∃c,n0∈N ∀n≥n0:g(n)≤c⋅f(n)}

Ω(g(n))={f:N→N | ∃c,n0∈N ∀n≥n0:f(n)≥c⋅g(n)}

Step 1/2: f(n) ∈ Ω(g(n)) ⟺ g(n) ∈ O(f(n))

∃c,n0∈N ∀n≥n0: f(n)≥c⋅g(n)⇒f(n)g(n)≥c⇒1g(n)≥cf(n)⇒g(n)≤1c⋅f(n)

And this is exactly the definition of O(f(n)).

Step 2/2: f(n)∈Ω(g(n))⇐g(n)∈O(f(n))

∃c,n0∈N ∀n≥n0: g(n)≤c⋅f(n)⇒...⇒f(n)≥1c⋅g(n)

Hence proved.

19. Explain briefly about Empirical Analysis of Algorithm.

The principal alternative to the mathematical analysis of an algorithm’s efficiency is its

empirical analysis. This approach implies steps spelled out in the following plan.

General Plan for the Empirical Analysis of Algorithm Time Efficiency

1. Understand the experiment’s purpose.

2. Decide on the efficiency metric M to be measured and the measurement unit(an operation

count vs. a time unit).

3. Decide on characteristics of the input sample (its range, size, and so on).

4. P r e p a r e a p r o gr a m i m p l e m e n t i n g t h e a l g o r i t h m f o r t h e

e x p e r imentation.

5. Generate a sample of inputs.

6. Run the algorithm (or algorithms) on the sample’s inputs and record the data observed.

7. Analyze the data obtained.

1. Purpose:

 To ensure theoretical assertion about the algorithm’s efficiency

 comparing the efficiency of several algorithms for solving the same problem or different

implementations of the same algorithm

 developing a hypothesis about the algorithm’s efficiency class

 ascertaining the efficiency of the program implementing the algorithm on a particular

machine.

2. how & What to measure

CS 8451 DESIGN AND ANALYSIS OF ALGORITHMS UNIT 1

62

 Include a variable counter, to count the number of times the

algorithm’s basic operation is executed.

 In the implementing the algorithm , measure the running time of basic

operation

Example

 In unix, the system command time may be used.

 computing the difference between the two(t finish−t start).

Disadvantages of Measuring the system time

1. System’s time is typically not very accurate, and you might get somewhat

different results on repeated runs of the same program on the same

inputs. An obvious remedy is to make several such measurements and then take

their average (or the median) as the sample’s observation point.

2. In the high speed of modern computers, the running time may fail to register

at all and be reported as zero. The standard trick to overcome this

obstacle is to run the program in an extra loop many times, measure the total

running time, and then divide it by the number of the loop’s repetitions.

3. The computer running under a time-sharing system such as UNIX, the reported time

may include the time spent by the CPU on other programs, which obviously defeats the

purpose of the experiment. Therefore,

yous h o u l d t a k e c a r e t o a s k t h e s y s t e m f o r t h e t i m e d e v o t e d s p e c i fi

c a l l y t o e x e c u t i o n o f y o u r p r o g r a m . (I n U N I X , t h i s t i m e i s

c a l l e d t h e “ u s e r t i m e , ” a n d i t i s a u t o m a t i c a l l y provided by the

time command.)

Advantage of Measuring physical running time

(i) the physical running time provides very specific information about an

algorithm’s performance in a particular computing environment

(ii) Measuring time spent on different segments of a program can pinpo int a

bottleneck in the program’s performance that can be missed by an abstract

deliberation about the algorithm’s basic operation profiling.

4. Deciding on a sample of inputs

Sample size: (it is sensible to start with a relatively small sample and increase it later

if necessary)

Range of input sizes: (typically neither trivially small nor excessively large)

 procedure for generating instances in the range chosen.

 The instance sizes c a n e i t h e r a dh e r e t o s om e p a t t er n (e . g . , 10 0 0 ,

2 0 00 , 3 00 0 , . . . , 10 , 00 0 o r 5 00 , 1 00 0 , 2000, 4000, . . . , 128,000) or

be generated randomly within the range chosen.

 Several instances of the same size should be included or not.

5. Generate a sample of inputs (random numbers)

Typically, its output will be a value of a (pseudo)random variable uniformly distributed in

the interval between 0 and 1. If a different (pseudo)random variable is desired,

an appropriate transformation needs to be made. For example, if x is a continuous

random variable uniformly distributed on the interval 0≤x < 1, the variable y =l+⌊x(r −l)⌋
w i l l b e u n i f o r m l y d i s t r i b u t e d a m o n g t h e i n t e g e r v a l u e s b e t w e e n

i n t e g e r s l and r −1(l < r) .

Alternatively, you can implement one of several known algorithms for generating

(pseudo)random numbers. The most widely used and thoroughly studied of such algorithms

is the linear congruential method

CS 8451 DESIGN AND ANALYSIS OF ALGORITHMS UNIT 1

63

ALGORITHM

Random(n, m, seed, a , b)

//Generates a sequence of n pseudorandom numbers according to the linear

/ / c o n g r u e n t i a l m e t h o d

//Input: A positive integer n and positive integer parameters m, seed, a , b

//Output: A sequence r1, . . . , rn of n pseudorandom integers uniformly

/ / d i s t r i b u t e d a m o n g i n t e g e r v a l u e s b e t w e e n 0 a n d m−1

//Note: Pseudorandom numbers between 0 and 1 can be obtained

// by t r e a t i n g t h e i n t e g e r s g e n e r a t e d as d i g i t s a f t e r t h e d e c i m a l p o i n t
r0← seed

for i ←1 to n do

ri ←(a ∗ri−1+b) mod m

6. Data analysis

 It is a good idea to use both these options whenever it is feasible because both

methods have their unique strengths and weaknesses.

 The advantages of tabulated data lies in the opportunity to manipulate it easily

and to find efficiency class of the algorithm.

 The Scatter plot representation helps in the analysis of algorithm efficiency

class as given in figure

Shape of the scatter plot Efficiency class

Concave shape Logarithmic

Point around straight line or between two

straight line

Linear

Convex shape Quadratic and nlogn

Convex shape with rapid increase in the

metrics valus

Cubic

CS 8451 DESIGN AND ANALYSIS OF ALGORITHMS UNIT 1

64

Typical scatter plots. (a) Logarithmic. (b) Linear. (c) One of the convex

functions

Application:

1. Predicting the algorithm performance on a sample size not included in the experiment

sample.

2. The standard techniques of statistical data analysis and prediction can also be done.

20. Explain briefly about Algorithm Visualization.

Algorithm visualization is defined as the use of images to convey some useful information

about algorithms. That information can be a visual illustration with the following

combinations.

CS 8451 DESIGN AND ANALYSIS OF ALGORITHMS UNIT 1

65

1. Algorithm’s operation on different kinds of inputs

2. Same input for different algorithms to compare the execution speed.

An algorithm visualization uses graphic elements—points, line segments, two- or three-

dimensional bars, and so on—to represent some “interesting events” in the algorithm’s

operation.

There are two principal variations of algorithm visualization:

1. Static algorithm visualization

2. Dynamic algorithm visualization, also called algorithm animation

Static algorithm visualization shows an algorithm’s progress through a series of still images.

Algorithm animation, on the other hand, shows a continuous, movie-like presentation of an

algorithm’s operations. Animation is an arguably more sophisticated option, which, of

course, is much more difficult to implement.

The features of an animations user interface was suggested by Peter Gloor is listed below

 Be consistent

 Be Interactive

 Be clear and concise

 Be forgiving to the user

 Adapt to the knowledge level of the user

 Emphasis the visual component

 Keep the user interested

 Incorporate both symbolic and iconic representations

 Include algorithm analysis and comparisons with other algorithm for the same

problem

 Include execution history

The success of Sorting Out Sorting made sorting algorithms a perennial favorite for

algorithm animation. Indeed, the sorting problem lends itself quite naturally to visual

presentation via vertical or horizontal bars or sticks of different heights or lengths, which

need to be rearranged according to their sizes (Figure 2.8). This presentation is convenient,

however, only for illustrating actions of a typical sorting algorithm on small inputs. For

larger files, Sorting Out Sorting used the ingenious idea of presenting data by a scatterplot of

points on a coordinate plane, with the first coordinate representing an item’s position in the

file and the second one representing the item’s value; with such a representation, the process

of sorting looks like a transformation of a “random” scatterplot of points into the points along

a frame’s diagonal (Figure 2.9). In addition, most sorting algorithms work by comparing and

exchanging two given items at a time—an event that can be animated relatively easily.

CS 8451 DESIGN AND ANALYSIS OF ALGORITHMS UNIT 1

66

Applications:

1. Education - Seeks to help students learning algorithms.

2. Research - Helps to uncover some unknown features of algorithms.

IMPORTANT QUESTIONS

CS 8451 DESIGN AND ANALYSIS OF ALGORITHMS UNIT 1

67

Part A

1. Show the notion of an algorithm. Dec 2009 / May 2013

2. What are six steps processes in algorithmic problem solving? Dec 2009

3. What is time and space complexity? Dec 2012

4. Define Algorithm validation. Dec 2012

5. Differentiate time complexity from space complexity. May 2010

6. What is a recurrence equation? May 2010

7. What do you mean by algorithm? May 2013

8. Define Big Oh Notation. May 2013

9. What is average case analysis? May 2014

10. Define program proving and program verification. May 2014

11. Define asymptotic notation. May 2014

12. What do you mean by recursive algorithm? May 2014

13. Establish the relation between O and Ω Dec 2010

14. If f(n) = amnm + ... + a1n + a0. Prove that f(n)=O(nm).Dec 2010

15. Define the Fundamentals of Algorithmic Problem Solving
16. Short notes on Important Problem Types

17. .Define Fundamentals of the Analysis of Algorithm Efficiency

18. Show the Analysis Framework

19. Define Asymptotic Notations and its properties

20. Define Mathematical analysis for Recursive and Non-recursive algorithms.

Part B

1. Explain the notion of algorithm. May 2014

2. Explain the fundamentals of algorithm. May 2014

3. Find the time complexity and space complexity of the following problems. Factorial using

recursion and compute the nth Fibonacci number using iterative statements. Dec 2012

4. Solve the following recurrence relations: Dec

2012

1. T(n)= 2T(n/2)+3 n>2

2 n=2

2. T(n)= 2T(n/2)+cn n>1

a n=1 where a and c constants

5. Distinguish between Big Oh, Theta and Omega notation. Dec 2012

6. Analyse the best case, average and worst case analysis for linear search. Dec 2012

7. Explain how time complexity is calculated. Give an example. Apr 2010

8. Elaborate on asymptotic notation with example. Apr 2010

9. Briefly explain the time complexity, space complexity estimation June 2013

10. Write linear search algorithm and analyse its complexity. June 2013

11. Show the following equalities are correct June 2013

i. 5n2-6n = Φ(n2)

ii. n!=O(nn)

iii. n3+106n2=Θ(n3)

iv. 2n22n + n log n = Θ(n22n)

12. What are the features of an efficient algorithm? June 2014

13. What is space complexity? With an example explain the components of fixed and variable

part in space complexity. June 2014

14. Explain towers of Hanoi problem and solve it using recursion. June 2014

15. Derive the recurrence relation for Fibonacci series algorithm : also carry out time

complexity analysis. June 2014

16. Discuss in details about the efficiency of the algorithm with example. Mar 2014

CS 8451 DESIGN AND ANALYSIS OF ALGORITHMS UNIT 1

68

17. Explain the procedure to calculate the time complexity of binary search using non-recursive

Algorithm.

18. Explain briefly the time complexity and space complexity estimation. Nov 2010

19. Write a linear search algorithm and analyse its best, worst and average case time complexity.

20. Prove that for any two functions f(n) and g(n), we have f(n)-> Θ(g(n))

if and only if f(n) - > O(g(n)) and f(n) ->Ω(g(n)) Nov 2010

21. Explain the Mathematical analysis for non-recursive algorithm

ANNA UNIVERSITY APRIL/MAY 2015

PART-A

1. write algorithm to find the number of binary digits in the binary representation of a positive

decimal integer Part A – Refer Q. No. 56

2. write down the properties of asymptotic notations. Part A – Refer Q. No. 57

PART-B

11.(a)if you have to solve the searching problem for a list of n numbers, how can you take

advantage of the fact that the list is known to be sorted? Give separate answers for

(i) List represented as arrays

(ii) List represented as linked list Compare the time complexity involved in the analysis

of both the algorithms Refer Q. No. 27

OR

(b)(i)Derive the worst case analysis of merge sort using suitable illustrationRefer Q.No. 28

(ii) Derive a loose bound on the following equation:

F(x)=35 x8 -22x7+14x5 -2x4 -4x2+x-15 Q.No. 15

ANNA UNIVERSITY NOV/DEC 2015

PART-A

1. The (log n)th smallest number of n unsorted numbers can be determined in O(n) average-case time

(True/False) Refer Q. No. 60

2. Fibonacci algorithm and its recurrence relation Refer Q. No. 61

PART-B

11.(a)(i)write Insertion sort algorithm and estimate its running time.(8) Refer Q. No. 12

(ii)find the closest asymptotic tight bound by solving the recurrence equation

T(n)=8T(n/2)+n2 with (T(1)=1) using recursion tree method.[Assume that T(1)ЄӨ(1)]

Refer Q. No. 14

OR

(b)(i)Suppose W satisfies the following recurrence equation and base case (where c is a

constant):W(n)=c.n+W(n/2) and W(1)=1.What is the asymptotic order of W(n).

Refer Q. No. 14

(ii)Show how to implement a stack using two queues. Analyze the running time of the stack

Operations. Refer Q. No. 13

ANNA UNIVERSITY APRIL/MAY 2016

PART-A

1. Give the Euclid’s algorithm for computing gcd(m, n) Refer Q. No. 58

2. Compare the order of growth n(n-1)/2 and n2. Refer Q. No. 59

PART-B

1. a.(i) Give the definition and Graphical Representation of O-Notation.(8) Refer Q. No. 4

CS 8451 DESIGN AND ANALYSIS OF ALGORITHMS UNIT 1

69

(ii) Give an algorithm to check whether all the Elements in a given array of n elements

are distinct. Find the worst case complexity of the same. (8) Refer Q. No.5(2)

OR

(b) Give the recursive algorithm which finds the number of binary digits in the binaryrepresentation

of a positive decimal integer. Find the recurrence relation and complexity. (16) Refer Q. No.6(3)

ANNA UNIVERSITY NOV/DEC 2016

PART-A

1. Design an algorithm to compute the area and circumference of a circle Refer Q. No. 63

2. Define recurrence relation. Refer Q. No. 45

PART-B

11.(a)(i)Use the most appropriate notation to indicate the time efficiency class of sequential search

algorithm in the worst case,best case and the average case. Refer Q. No. 17

(ii) State the general plan for analyzing the time efficiency of nonrecursive algorithm and

explain with an example(8) Refer Q. No. 5

(b) Solve the recurrence relations Refer Q. No. 16

X(n) =x(n-1) +5 for n > 1 x(1)=0

X(n) =3x(n-1) for n > 1 x(1)=4

X(n) =x(n-1) +n for n > 0 x(0)=0

X(n) =x(n/2) +n for n > 1 x(1)=1 (solve for n= 2 k)

X(n) =x(n/3) +1 for n > 1 x(1)=1 (solve for n= 3 k) (16)

ANNA UNIVERSITY APRIL/MAY 2017

PART-A

1. What is an algorithm? Refer Q. No. 1

2. Write an algorithm to compute the greatest common divisor of two numbers Refer Q. No. 10

PART-B

1. Explain briefly Big oh notation , Omega notation and Theta notation give an example Q. No. 30

2.Briefly explain the mathematical analysis of recursive and non recursive algorithmQ.No.35 & 40

ANNA UNIVERSITY NOV/DEC 2017

PART-A

1. How to measure an algorithm’s running time ? Refer Q. No. 21

2. What do you mean by “worst case efficiency: of an algorithm. Refer Q. No. 55

PART-B

1. Discuss the steps in Mathematical analysis for recursive algorithms. Do the same for finding

Factorial of a number Refer Q. No. 6

2. What are the Rules of Manipulate Big-Oh Expression and about the typical growth rates of

algorithms? Refer Q.No.4

ANNA UNIVERSITY MAY/JUNE 2018

PART-A

1. Give the Euclid’s algorithm for computing gcd of two numbers. Refer Q. No. 58

2. What is a basic operation? Refer Q. No. 63

PART-B

1. a) Define Big O notation, Big Omega and Big Theta Notation. Depict the same graphically and

explain. Refer Q.No.4

CS 8451 DESIGN AND ANALYSIS OF ALGORITHMS UNIT 1

70

b) Give the general plan for Analyzing the time efficiency of Recursive Algorithms and use

recurrence to find number of moves for Towers of Hanoi problem. Refer Q.No.6

ANNA UNIVERSITY NOV/DEC 2018

PART-A

1. Define algorithm. List the desirable properties of an algorithm. Refer Q. No. 64

2. Define best, worst, average case time complexity. Refer Q. No. 65

PART-B

1. (i) Prove that if g(n) is Ω(f(n)) then f(n) is O(g(n)). Refer Q.No.18

(ii) Discuss various methods used for mathematical analysis of recursive algorithms.

Refer Q.No.6

2. Write the asymptotic notations used for best case, average case and worst case analysis of

algorithms. Write an algorithm for finding maximum element in an array. Give best, worst and

average case complexities. Refer Q.No.4

ANNA UNIVERSITY APRIL/MAY 2019

PART-A

1. How do you measure the efficiency of an algorithm? - Refer Q.No.29

2. Prove that the of f(n)=o(g(n)) and g(n)=o(f(n)),then f(n)=θ g(n). - Refer Q.No.66

PART-B

1.a) (i) solve the following recurrence equation: - Refer Q.No.8

1.T(n)=T(n/2)+1,where n=2k for all k>=0

2.T(n)= T(n/3)+ T(2n/3)+cn,where ‘c’ is a constant and ‘n’ is the input size.

(ii) Explain the steps involved in problem solving. - Refer Q.No.8

2.(i) write an algorithm for determining the uniqueness of an array. Determine the time

complexity of your algorithm. - Refer Q.No.5

(ii) Explain time-space trade off of the algorithm designed - Refer Q.No.3

ANNA UNIVERSITY NOV/DEC 2019

PART-A

1. State the transpose symmetry property of O and Ω - Refer Q.No.66

2. Define recursion - Refer Q.No.67

PART-B

1. a) i) Solve the following recurrence equations using iterative method or tree Refer Q.No.6

ii) Elaborate asymptotic analysis of an algorithm with an example. Refer Q.No.4

2. b) write an algorithm using recursion that determines the GCD of two numbers. Determine the

time and space complexity - Refer Q.No.1.A

ANNA UNIVERSITY NOV/DEC 2021

PART-A

1. Define algorithm with its properties. Refer Q.No.1

2. List the reasons for choosing an approximate algorithm. Refer Q.No.68

PART-B

1. a) i) Consider the problem of counting, in a given text the number of substrings that start with

an Aand end with a B. For example, there are four such substrings in CABAAXBYA. Design

a brute-force algorithm for this problem and determine its efficiency class. Refer Q.No.6

CS 8451 DESIGN AND ANALYSIS OF ALGORITHMS UNIT 1

71

ii) “The best-case analysis is not as important as the worst-case analysis of an algorithm”.

Yes or No ? Justify your answer with the help of an example. Refer Q.No.11

2. b) (i) Solve : T(n) = 2T(n/2) + n3. Refer Q.No.11

(iii) Explain the importance of asymptotic analysis for running time of an algorithm with an

example. Refer Q.No.4

ANNA UNIVERSITY NOV/DEC 2021

PART-A

1. Define the notation big-Omega. Refer Q.No.14

2. What is meant time complexity of an algorithm? Refer Q.No.7

PART-A

11. a) Outline worst case running time, best case running time and average case running time of

an algorithm with an example?

b) Outline a recursive algorithm and non recursive algorithm with an example.

Refere Q.No.35 & 40

2

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

COMMON FOR: DEPARTMENT OF INFORMATION

TECHNOLOGY

CS8491 – COMPUTER ARCHITECTURE

YEAR / SEM: II / III

R – 2017

LECTURE NOTES

Computer Architecture is defined as study of the structure, behaviour,

and design of computers.

UNIT - I

COMPUTER ORGANIZATION & INSTRUCTIONS

 INTRODUCTION

Computer architecture acts as the interface between the hardware and the lowest level

software. Computer architecture refers to:

 Attributes of a system visible to programmers like datatype of variables.

 Attributes that have a direct impact on the execution of programs like clock cycle.

Computer Organization: It refers to the operational units and their interconnections that realize

the architectural specifications. It describes the function of and design of the various units of

digital computer that store and process information. The attributes in computer organization

refers to:

 Control signals

 Computer/peripheral interface

 Memory technology

Computer hardware: Consists of electronic circuits, displays, magnetic and optical storage

media, electromechanical equipment and communication facilities.

Computer Architecture: It is concerned with the structure and behaviour of the computer.

It includes the information formats, the instruction set and techniques for addressing memory.

The attributes in computer architecture refers to the:

 Instruction set

 Data representation

 I/O mechanisms

 Addressing techniques

The basic distinction between architecture and organization is: the attributes of the former

are visible to programmers whereas the attributes of the later describes how features are

implemented in the system.

 BASICS OF A COMPUTER SYSTEM

The modern day computer system’s functional unit is given by Von Neumann Architecture.

4

Fig 1.1: Von Neumann Architecture

Input Unit

Computers accepts the coded information through input unit. Computer must receive

both data and program statements to function properly and must be able to solve problems. The

method of feeding data and programs to a computer is accomplished by an input device. Input

devices read data from a source, such as magnetic disks, and translate that data into electronic

impulses for transfer into the CPU. Whenever a key is pressed, the corresponding letter or digit

is automatically translated into its corresponding binary code and transmitted over a cable to

either the memory or the processor.

Central Processing Unit (CPU)

The CPU processes data transferred to it from one of the various input devices. It then

transfers either an intermediate or final result of the CPU to one or more output devices. A central

control section and work areas are required to perform calculations or manipulate data. The

CPU is the computing center of the system. It consists of a control section, an arithmetic-logic

section, and an internal storage section (memory unit). Each section within the CPU serves a

specific function and has a particular relationship with the other sections within the CPU.

Memory Unit

It stores the programs and data. Memory unit is broadly classified into two types :Primary

memory and Secondary memory.

1. Primary Memory:

It is a fast memory that operates at electronic speeds. Programs must be stored

in the memory while they are being executed. The memory contains large no of

semiconductor storage cells. Each cell carries 1 bit of information. The cells are

processed in a group of fixed size called Words. To provide easy access to any word

in a memory, a distinct address is associated with each word location. Addresses are

numbers that identify successive locations.The number of bits in each word is called

the word length.The word length ranges from 16 to 64 bits. There are 3 types of

primary memory:

I. RAM: Memory in which any location can be reached in short and fixed

amount of time after specifying its address is called RAM. Time required to

access 1 word is called Memory Access Time.

II. Cache Memory: The small, fast, RAM units are called Cache. They are

tightly coupled with processor to achieve high performance.

III. Main Memory: The largest and the slowest unit is the main memory.

Arithmetic & Logic Unit

Most computer operations are executed in ALU. The arithmetic-logic section performs

arithmetic operations, such as addition, subtraction, multiplication, and division. Through internal

logic capability, it tests various conditions encountered during processing and takes action based

on the result. Data maybe transferred back and forth between these two sections several times

before processing is completed.Access time to registers is faster than access time to the fastest

cache unit in memory.

Output Unit

Its function is to send the processed results to the outside world.

Control Unit

The operations of Input unit, output unit, ALU are co-ordinate by the control unit. The

control unit is the Nerve centre that sends control signals to other units and senses their states.

The control section directs the flow of traffic (operations) and data. It also maintains order within

the computer. The control section selects one program statement at a time from the program

storage area, interprets the statement, and sends the appropriate electronic impulses to the

arithmetic-logic and storage sections so they can carry out the instructions. The control section

does not perform actual processing operations on the data.

6

The control section instructs the input device on when to start and stop transferring data

to the input storage area. It also tells the output device when to start and stop receiving data from

the output storage area.Data transfers between the processor and the memory are controlled by

the control unit through timing signals. Information stored in the memory is fetched, under

program control into an arithmetic and logic unit, where it is processed.

 Evolution of Computers

 The word ‘computer’ is an old word that has changed its meaning several times in the

last few centuries.

 Today, the word computer refers to computing devices, whether or not they are electronic,

programmable, or capable of ‘storing and retrieving’ data.

The Mechanical Era (1623-1945)

 Wilhelm Schickhard, Blaise Pascal, and Gottfried Leibnitz were among mathematicians

who designed and implemented calculators that were capable of addition, subtraction,

multiplication, and division during the seventeenth century.

 The first multi-purpose or programmable computing device was probably Charles

Babbage’s Difference Engine, which was begun in 1823 but never completed.

 In 1842, Babbage designed a more ambitious machine, called the Analytical Engine

but unfortunately it also was only partially completed.

 Babbage, together with Ada Lovelace recognized several important programming

techniques, including conditional branches, iterative loops and index variables.

 Babbage designed the machine which is the first to be used in computational science.

 In 1933, George Scheutz and his son, Edvard began work on a smaller version of the

difference engine and by 1853 they had constructed a machine that could process 15-

digit numbers and calculate fourth-order differences.

 The US Census Bureau was one of the first organizations to use the mechanical computers

which used punch-card equipment designed by Herman Hollerith to tabulate data for the

1890 census.

 In 1911 Hollerith’s company merged with a competitor to found the corporation which

in 1924 became International Business Machines (IBM).

First Generation Electronic Computers (1937-1953)

 These devices used electronic switches, in the form of vacuum tubes, instead of

electromechanical relays.

 The earliest attempt to build an electronic computer was by J. V. Atanasoff, a professor

of physics and mathematics at Iowa State in 1937.

 Atanasoff set out to build a machine that would help his graduate students solve systems

of partial differential equations.

 By 1941 he and graduate student Clifford Berry had succeeded in building a machine

that could solve 29 simultaneous equations with 29 unknowns.

 However, the machine was not programmable, and was more of an electronic calculator.

 A second early electronic machine was Colossus, designed by Alan Turing for the British

military in 1943.

 The first general purpose programmable electronic computer was the Electronic

Numerical Integrator and Computer (ENIAC), built by J. Presper Eckert and John V.

Mauchly at the University of Pennsylvania.

 ENIAC was controlled by a set of external switches and dials; to change the program

required physically altering the settings on these controls.

 Research work began in 1943, funded by the Army Ordinance Department, which needed

a way to compute ballistics during World War II.

 The machine was completed in 1945 and it was used extensively for calculations during

the design of the hydrogen bomb.

 Eckert, Mauchly, and John von Neumann, a consultant to the ENIAC project, began

work on a new machine before ENIAC was finished.

 The next development was EDVAC- Electronic Discrete Variable Computer.

 The main contribution of EDVAC, their new project, was the notion of a stored program.

 EDVAC was able to run orders of magnitude faster than ENIAC and by storing instructions

in the same medium as data, designers could concentrate on improving the internal

structure of the machine without worrying about matching it to the speed of an external

control.

8

 Eckert and Mauchly later designed the first commercially successful computer, the

UNIVAC(Universal Automatic Computer); in 1952.

 Software technology during this period was very primitive.

 The instructions were written in machine language that could be executed directly.

Second Generation (1954-1962)

 The second generation witnessed several important developments at all levels of computer

system design, ranging from the technology used to build the basic circuits to the

programming languages used to write scientific applications.

 Electronic switches in this era were based on discrete diode and transistor technology

with a switching time of approximately 0.3 microseconds.

 The first machines to be built with this technology include TRADIC at Bell Laboratories

in 1954 and TX-0 at MIT’s Lincoln Laboratory.

 Index registers were designed for controlling loops and floating point units for calculations

based on real numbers.

 A number of high level programming languages were introduced and these include

FORTRAN (1956), ALGOL (1958), and COBOL (1959).

 Batch processing systems came to existence.

 Important commercial machines of this era include the IBM 704 and its successors, the

709 and 7094.

 In the 1950s the first two supercomputers were designed specifically for numeric

processing in scientific applications.

 Multiprogammed computers that serve many users concurrently came to existence. This

is otherwise known as time-sharing systems.

Third Generation (1963-1972)

 Technology changes in this generation include the use of integrated circuits, or ICs.

 This generation led to the introduction of semiconductor memories, microprogramming

as a technique for efficiently designing complex processors and the introduction of

operating systems and time-sharing.

 The first ICs were based on small-scale integration (SSI) circuits, which had around 10

devices per circuit (or ‘chip’), and evolved to the use of medium-scale integrated (MSI)

circuits, which had up to 100 devices per chip.

 Multilayered printed circuits were developed and core memory was replaced by faster,

solid state memories.

 In 1964, Seymour Cray developed the CDC 6600, which was the first architecture to use

functional parallelism.

 By using 10 separate functional units that could operate simultaneously and 32

independent memory banks, the CDC 6600 was able to attain a computation rate of one

million floating point operations per second (Mflops).

 Five years later CDC released the 7600, also developed by Seymour Cray.

 The CDC 7600, with its pipelined functional units, is considered to be the first vector

processor and was capable of executing at ten Mflops.

 The IBM 360/91, released during the same period, was roughly twice as fast as the CDC

660.

 Early in this third generation, Cambridge University and the University of London

cooperated in the development of CPL (Combined Programming Language, 1963).

 CPL was an attempt to capture only the important features of the complicated and

sophisticated ALGOL.

 However, like ALGOL, CPL was large with many features that were hard to learn.

 In an attempt at further simplification, Martin Richards of Cambridge developed a subset

of CPL called BCPL (Basic Computer Programming Language, 1967).

 In 1970 Ken Thompson of Bell Labs developed yet another simplification of CPL called

simply B, in connection with an early implementation of the UNIX operating system.

Fourth Generation (1972-1984)

 Large scale integration (LSI - 1000 devices per chip) and very large scale integration

(VLSI - 100,000 devices per chip) were used in the construction of the fourth generation

computers.

 Whole processors could now fit onto a single chip, and for simple systems the entire

computer (processor, main memory, and I/O controllers) could fit on one chip.

10

 Gate delays dropped to about 1ns per gate. Core memories were replaced by

semiconductor memories.

 Large main memories like CRAY 2 began to replace the older high speed vector

processors, such as the CRAY 1, CRAY X-MP and CYBER.

 In 1972, Dennis Ritchie developed the C language from the design of the CPL and

Thompson’s B.

 Thompson and Ritchie then used C to write a version of UNIX for the DEC PDP-11.

 Other developments in software include very high level languages such as FP (functional

programming) and Prolog (programming in logic).

 IBM worked with Microsoft during the 1980s to start what we can really call PC (Personal

Computer) life today.

 IBM PC was introduced in October 1981 and it worked with the operating system

(software) called ‘Microsoft Disk Operating System (MS DOS) 1.0.

 Development of MS DOS began in October 1980 when IBM began searching the market

for an operating system for the then proposed IBM PC and major contributors were Bill

Gates, Paul Allen and Tim Paterson.

 In 1983, the Microsoft Windows was announced and this has witnessed several

improvements and revision over the last twenty years.

Fifth Generation (1984-1990)

 This generation brought about the introduction of machines with hundreds of processors

that could all be working on different parts of a single program.

 The scale of integration in semiconductors continued at a great pace and by 1990 it was

possible to build chips with a million components - and semiconductor memories became

standard on all computers.

 Computer networks and single-user workstations also became popular. Parallel processing

started in this generation.

 The Sequent Balance 8000 connected up to 20 processors to a single shared memory

module though each processor had its own local cache.

 The machine was designed to compete with the DEC VAX-780 as a general purpose

Unix system, with each processor working on a different user’s job.

 However Sequent provided a library of subroutines that would allow programmers to

write programs that would use more than one processor, and the machine was widely

used to explore parallel algorithms and programming techniques.

 The Intel iPSC-1, also known as ‘the hypercube’ connected each processor to its own

memory and used a network interface to connect processors.

 This distributed memory architecture meant memory was no longer a problem and large

systems with more processors (as many as 128) could be built.

 Also introduced was a machine, known as a data-parallel or SIMD where there were

several thousand very simple processors which work under the direction of a single

control unit.

 Both wide area network (WAN) and local area network (LAN) technology developed

rapidly.

Sixth Generation (1990 -)

 Most of the developments in computer systems since 1990 have not been fundamental

changes but have been gradual improvements over established systems.

 This generation brought about gains in parallel computing in both the hardware and in

improved understanding of how to develop algorithms to exploit parallel architectures.

 Workstation technology continued to improve, with processor designs now using a

combination of RISC, pipelining, and parallel processing.

 Wide area networks, network bandwidth and speed of operation and networking

capabilities have kept developing tremendously.

 Personal computers (PCs) now operate with Gigabit per second processors, multi-

Gigabyte disks, hundreds of Mbytes of RAM, colour printers, high-resolution graphic

monitors, stereo sound cards and graphical user interfaces.

 Thousands of software (operating systems and application software) are existing today

and Microsoft Inc. has been a major contributor. Microsoft is said to be one of the

biggest companies ever, and its chairman – Bill Gates has been rated as the richest man

for several years.

12

 Finally, this generation has brought about micro controller technology. Micro controllers

are ’embedded’ inside some other devices so that they can control the features or actions

of the product.

 They work as small computers inside devices and now serve as essential components in

most machines.

 Great Ideas in Computer Architecture

The ideas that marked tremendous improvement in the field of computer architecture are

briefly discussed here.

1. Moore’s Law

Fig 1.2: Illustration of Moore’s Law

It is an observation that the number of transistors in a dense integrated circuit doubles about

every two years. It is an observation and projection of a historical trend and not a physical or

natural law.

2. Abstract Design

It is a major productivity technique for hardware and software. Abstractions are used to

represent the design at different levels of representation. The detailed lower-level design details

from the higher levels.

3. Performance through parallelism

Parallelism executes programs faster by performing several computations at the same

time. This requires hardware with multiple processing units. The overall performance of the

system is significantly increased by performing operations in parallel.

4. Performance through Pipelining

Pipelining increases the CPU instruction throughput. Throughput is a performance metric

which is the number of instructions completed per unit of time. But it does not reduce the execution

time of an individual instruction. It increases the execution time of each instruction due to overhead

in the pipeline control. The increase in instruction throughput means that a program runs faster

and has lower total execution time.

5. Make the Common Case Fast

Making the common case fast will tend to enhance performance better than optimizing

the rare case. Ironically, the common case is often simpler than the rare case and hence is often

easier to enhance. In making a design trade-off, favor the frequent case over the infrequent case.

Amdahl’s Law can be used to quantify this principle. This also applies when determining how to

spend resources, since the impact on making some occurrence faster is higher if the occurrence

is frequent. This will:

 Helps performance

 Is simpler and can be done faster

6. Performance via prediction

The computer can perform better (on average) by making rational guesses on the decisions.

Instead of wasting clock cycles for certain results, the computers can remarkably improve the

performance

7. Hierarchy of memories

Programmers want memory to be fast, large, and cheap. The memory speed is a primary

factor in determining the performance of the system. The memory capacity limits the size of

problems that can be solved.

Moore’s law states that the number of transistors willdoubled every 18 months.

14

Architects have found that hierarchy of memories will be a solution for all these issues.

The fastest, smallest, and most expensive memory per bit is placed the top of the hierarchy and

the slowest, largest, and cheapest per bit is at the bottom. Caches give the illusion that main

memory is nearly as fast as the top of the hierarchy and nearly as big and cheap as the bottom of

the hierarchy.

8. Dependability via Redundancy

Computers need to be fast and dependable. Since any physical device can fail, we make

systems dependable by including redundant components that can take over when a failure occurs

and help detect failures. Restoring the state of the system is done by redundancy.

 Technologies

Up until the early 1970’s computers used magnetic core memory, which was slow,

cumbersome, and expensive and thus appeared in limited quantities. The situation improved

with the introduction of transistor-based dynamic random-access memory (DRAM, invented at

IBM in 1966) and static random-access memory (SRAM). A transistor is simply an on/off switch

controlled by electricity. The integrated circuit (IC) combined dozens to hundreds of transistors

into a simple chip. Very large-scale integrated (VLSI) circuit is a device containing hundreds

of thousands to millions of transistors.

Manufacturing of IC:

Integrated circuits are chips manufactured on silicon wafers. Transistors are placed on

wafers through a chemical etching process. Each wafer is cut into chips which are packed

individually.

Fig 1.3: Chip manufacturing process

After being sliced from the silicon ingot, blank wafers are put through 20 to 40 steps to

create patterned wafers. These patterned wafers are then tested with a wafer tester, and a map of

the good parts is made. Then, the wafers are diced into dies. The good dies are then bonded into

packages and tested one more time before shipping the packaged parts to customers.

Cost of an IC is found from:

1. Cost per die= (cost per wafer) / ((dies per wafer)*yield)

Yield refers the fraction of dies that pass testing.

2. Dies / wafer= wafer area / die area

3. Yield=1 / (1 + (defects per area * die area)/2)2

Programmable Logic Device (PLD)

A programmable logic device (PLD) is an electronic component used to build

reconfigurable digital circuits. Unlike a logic gate, which has a fixed function, a PLD has an

undefined function at the time of manufacture. Before the PLD can be used in a circuit it must be

programmed, that is, reconfigured.

The major limitations of PLD:

 Consume space due to large number of switches for programmability

 Low speed due to the presence of many switches.

Fig 1.4: Programmable Logic Device

16

Custom chips

An Application-Specific Integrated Circuit (ASIC) is an integrated circuit (IC) customized

for a particular use, rather than intended for general-purpose use. Application-Specific Standard

Products (ASSPs) are intermediate between ASICs and industry standard integrated circuits.

 Performance

Elapsed time and throughput are two different ways of measuring speed.

 Elapsed time or wall-clock time or response time is the total time to complete a

task, including disk accesses, memory accesses, input/output (I/O) activities, operating

system overhead. It is the better measure for processor speed because it is less

dependent on other system components.

 CPU execution time is the actual time the CPU spends computing for a specific task.

 The User CPU time is the CPU time spent in a program itself. System CPU time

is the CPU time spent in the operating system performing tasks on behalf of the

program.

 The CPU Performance equation (CPU Time) is the product of number of instructions

executed, Average CPI of the program and CPU clock cycle.

CPUTime
Seconds

Pr ogram

Instructions
x

Pr ogram

Cycles

Instruction
x

Seconds

Cycle

 Performance is inversely proportional to execution time. Performance ratios are

inverted from time ratios.

Performanceimprovementratio
Performanceafterchange

Performancebeforechange

Executiontimebeforchange

Executiontimeafterchange

 Clock cycle is the time for one clock period, usually of the processor clock, which

runs at a constant rate.

 Clock period is the length of each clock cycle.

 The CPU clock rate depends on CPU organisation and hardware implementation.

ClockRate
1

ClockCycle

 Cycles Per Instruction (CPI) is count of clock cycles taken by an instruction to

complete its execution.

InstructionsPerCycle(IPC)
1

CyclesPerInstruction

 Performance is improved by reducing number of clock cycles, increasing clock rate

and hardware designer must often trade off clock rate against cycle count.

 Workload is a set of programs run on a computer that is either the actual collection

of applications run by a user or is constructed from real programs to approximate

such a mix. A typical workload specifies both the programs as well as the relative

frequencies.

 To evaluate two computer systems, a user would simply compare the execution time

of the workload on the two computers.

 Alternatively, set of benchmarks containing several typical engineering or scientific

applications can be used. A CPU benchmark (CPU benchmarking) is a series of tests

designed to measure the performance of a computer or device CPU. A set of

standards, or baseline measurements are used to compare the performance of different

systems, using the same methods and circumstances.

Fig 1.6: Types of Benchmark Programs

18

 The use of benchmarks whose performance depends on very small code segments

encourages optimizations in either the architecture or compiler that target these

segments.

 The arithmetic mean is proportional to execution time, assuming that the programs

in the workload are each run an equal number of times.

 Weighted arithmetic mean is an average of the execution time of a workload with

weighting factors designed to reflect the presence of the programs in a workload;

computed as the sum of the products of weight.

Example 1.1: For a given program, the execution time on machine A is 1s and on B is 10s.

Find the performance or speed up of the machines.

Execution
A
= 1s

Execution
B
=10s

Speedup
PerformanceofA

ExecutionofB

PerfromanceofB ExecutioofA

Speedup=10/1=10

The performance of machine A is 10 times faster than that of B.

Example 1.2: For a certain program with 1,00,00,000 instructions, find the execution time

given the average CPI is 2.5 cycles/instruction and clock rate as 200MHz.

Number of instructions=1,00,00,000

Average CPI=2.5 cycles/ instruction

Clock rate=200MHz =200000000 Hz

Clock cycle=1/Clock rate=1/ 200000000= 5 x 10-9s

CPUTime
Seconds

Pr ogram

Instructions
x

Pr ogram

Cycles

Instruction
x

Seconds

Cycle

CPUTime=10000000 x 2.5 x 5 x 10-9

=0.125 s

B

Example 1.3: For a certain program with 1,00,00,000 instructions has an average CPI is

2.5 cycles/instruction and clock rate as 200MHz. When a new optimization complier is

deployed, the instruction count was reduced to 95,00,000 with new CPI=3.0 cycles/instruction

at modified clock rate of 300MHz. Find the speedup.

OldExecutionTime
Speedup=

NewExecutionTime

Iold xCPIold xClockcycleold

Inew xCPInew xClockcCyclenew

= (10000000 x 2.5 x 5 x 10-9) / (9500000 x 3 x 3.33 x 10-9)

= 1.315

The new compiler is 1.315 times faster than the old one.

Example 1.4: A program runs in 10 seconds on computer A, which has a 2 GHz clock. We

are trying to help a computer designer build a computer, B, which with run this program

in 6 seconds. The designer has determined that a substantial increase in the clock rate is

possible, but this increase will affect the rest of the CPU design, causing computer B to

require 1.2 time as many clock cycles as computer A for this program. What clack rate should

we tell the designer to target?

Clock rate of B= ClockCycles
B

/ CPUTime
B

= 1.2 x ClockCycles
A

/ 6

ClockCycles
A
= CPU Time

A
x ClockRate

A

= 10 x 2 = 20 x 109

ClockCycles = 1.2 x 20 x 109 / 6

= 4 GHz

Example 1.5: Suppose we have two implementations of the same instruction setarchitecture.

Computer A has a clock cycle time of 250ps and a CPI of 2.0 for someprogram, and computer

B has a clock cycle time of 500ps and a CPI of 1.2 for the same program. Which computer

is faster for this program and by how much?

Computer A: Cycle Time = 250ps, CPI = 2.0

Computer B: Cycle Time = 500ps, CPI = 1.2

20

CPU Time=Instruction Count x CPI
A

x Cycle Time
A

= I x 2.0 x 250= Ix 500

CPU Time=Instruction Count x CPI
B

x Cycle Time
B

= I x1.2x 500= Ix 600

CPUtimeB

CPUTimeA

 Powerwall

 1.2

Fig 1.7: Clock rate and Power

 Power wall refers to the representational wall signifying the peak power constraint

of a system.

 Clock rate and Power for Intel x86 microprocessors over eight generations and 25

years is shown in Fig 1.7.

 The Pentium 4 made a dramatic jump in clock rate and power but less so in performance.

 The Prescott thermal problems led to the abandonment of the Pentium 4 line. The

Core 2 line reverts to asimpler pipeline with lower clock rates and multiple processors

per chip.

 Continuous technology scaling like reduction of the transistor feature sizes makes

it possible to pack more transistors in a given chip die area.

 Reduced supply voltage, simultaneous switching of these transistor devices causes

a tremendous increase in the power density, leading to the power wall disaster.

Power = Capacitiveload xVoltage2 x Frequency

Uniprocessor system is a type of architecture that is based on a single computing

unit. All the operations were done sequentially on the same unit. Multiprocessor

systems are based on executing instructions on multiple computing units.

Flynn’s taxonomy is a classification of parallel computer architectures that are

based on the number of concurrent instruction and data streams available in the

architecture.

 An increase in the power density increases the chip temperature, which slows down

the transistor switching rate and hence, the overall speed of the computer.

 Cooling solutions are very expensive, and hence, computer architects have focused

on innovating device, circuit and architecture level techniques to combat power wall.

 Dynamic voltage and frequency scaling are solutions for these problems. Here the

operating voltage and frequency of the chip are dynamically controlled based on the

chip activity.

 In CMOS (complementary metal oxide semiconductor) IC technology

Example 1.6: Suppose we developed a new, simpler processor that has 85% of the capacitive

load of the more complex older processor. Further, assume that it has adjustable voltage so

that it can reduce voltage 1 5% compared to processor B,which results in 15% shrink in

frequency. What is the impact on dynamic power?Given : 85% of capacitive load of old CPU,

15% voltage reduction, 15% frequency reduction

The new processor uses 0.52 the power of the old processor.

 From Uniprocessors to Multiprocessors

The performance of the computers has drastically increased when the technology has

drifted from uniprocessor systems to multiprocessor system. As the core computing units

were made more powerful, the performance of the processors also increased significantly.

The multiprocessor architectures, is based on Flynn Taxonomy.

22

Single Instruction, Single Data (SISD):

 This is a uniprocessor machine which is capable of executing a single instruction,

operating on a single data stream.

 The machine instructions are processed in a sequential manner and computers adopting

this model are popularly called sequential computers.

 Most conventional computers have SISD architecture.

 All the instructions and data to be processed have to be stored in primary memory.

 The speed of the processing element in the SISD model is limited by the rate at which

the computer can transfer information internally.

Multiple Instruction, Single Data (MISD):

 An MISD computing system is a multiprocessor machine capable of executing different

instructions on different Processing Elements but all of them operating on the same

dataset.

Single Instruction, Multiple Data (SIMD):

 This machine capable of executing the same instruction on all the CPUs but operating

on different data streams.

 Machines based on an SIMD model are well suited to scientific computing since they

involve lots of vector and matrix operations. So that the information can be passed

to all the Processing Elements (PEs) organized data elements of vectors can be

divided into multiple sets and each PE can process one data set.

Multiple Instruction, Multiple Data (MIMD):

 This is capable of executing multiple instructions on multiple data sets.

 Each PE in the MIMD model has separate instruction and data streams; therefore

machines built using this model are capable to any kind of application.

 Unlike SIMD and MISD machines, PEs in MIMD machines work asynchronously.

Fig 1.8: Flynns Taxonomy

Apart from these architectures,MIPS Technologies developed a Microprocessor without

Interlocked Pipeline Stages on Reduced Instruction Set Computer (RISC).

Concern for Power

 The power limit has forced a dramatic change in the design of microprocessors. Since

2002, the rate has slowed from a factor of 1.5 per year to a factor of 1.2 per year.

 Most of the desktop manufacturing companies are shipping microprocessors with

multiple processors per chip, where the benefit increased throughput than on response

time. This is done at the cost of increase in power.

 To reduce confusion between the words processor and microprocessor, companies

refer to processors as cores and such microprocessors are generically called multicore

microprocessors.

 A quadcoremicroprocessor is a chip that contains four processors or four cores.

 In the past, programmers could rely on innovations in hardware, architecture, and

compilers to double performance of their programs every 18 months without having

to change a line of code.

 Today, for programmers to get significant improvement in response time, they need

to rewrite their programs to take advantage of multiple processors.

24

The different ways in which the location of an operand is specified in an

instruction is called as Addressing mode.

 Moreover, to get the historic benefit of running faster on new microprocessors,

programmers will have to continue to improve performance of their code as the

number of cores increases.

 ADDRESSING AND ADDRESSING MODES

Each instruction of a computer specifies an operation on certain data.

Different operands will use different addressing modes. One or more bits in the instruction

format can be used as mode field. The value of the mode field determines which addressing

mode is to be used. The effective address will be either main memory address of a register.

The most common addressing modes are:

1. Immediate addressing mode

2. Direct addressing mode

3. Indirect addressing mode

4. Register addressing mode

5. Register indirect addressing mode

6. Displacement addressing mode

7. Stack addressing mode

1. Immediate Addressing:

 This is the simplest form of addressing. Here, the operand is given in the instruction.

 This mode is used to define constant or set initial values of variables.

 The advantage of this mode is that no memory reference other than instruction fetch

is required to obtain operand.

 The disadvantage is that the size of the number is limited to the size of the address

field because most instruction sets is small compared to word length.

 Example: ADD 3

 Adds 3 to contents of accumulator and 3 is the operand.

Fig 1.9: Immediate Mode

2. Direct Addressing:

 In direct addressing mode, effective address of the operand is given in the address

field of the instruction.

 It requires one memory reference to read the operand from the given location and

provides only a limited address space.

 Length of the address field is usually less than the word length.

 Example : Move P, Ro

Add Q, Ro

Where P and Q are the address of operand, R
o
is any register. Sometimes

Accumulator(AC) is the default register. Then the instruction will look like:

Add A

Fig 1.10: Direct Addressing modes

26

3. Indirect or Pseudodirect Addressing:

 Indirect addressing mode, the address field of the instruction refers to the address

of a word in memory, which in turn contains the full length address of the operand.

 The address field of instruction gives the memory address where on, the operand

is stored in memory.

 Control fetches the instruction from memory and then uses its address part to access

memory again to read Effective Address.

 The advantage of this mode is that for the word length of N, an address space of

2N can be addressed.

 The disadvantage is that instruction execution requires two memory references to

fetch the operand.

 Multilevel or cascaded indirect addressing can also be used.

 Example: Effective Address (EA) = (A).

 The operand will be present in the memory location A.

Fig 1.11: Indirect Addressing Modes

4. Register Addressing:

 Register addressing mode is similar to direct addressing. The only difference is that

the address field of the instruction refers to a register rather than a memory location.

 3 or 4 bits are used as address field in the instruction to refer 8 to 16 generate purpose

registers (GPR).

 The operands are in registers that reside within the CPU.

 The instruction specifies a register in CPU, which contain the operand.

 There is no need to compute the actual address as the operand is in a register and

to get operand there is no memory access involved.

 The advantages of register addressing are small address field is needed in the instruction

and faster instruction fetch.

 The disadvantagesincludes very limited address space and usage of multiple registers

helps in performance but it complicates the instructions.

 Example:MOV AX, BX

Fig 1.12: Register Mode

5. Register Indirect Addressing:

 This mode is similar to indirect addressing. The address field of the instruction refers

to a register.

 The instruction specifies a register in CPU whose contents give the operand in

memory.

 The selected register contain the address of operandrather than the operand

itself.

 The register contains the effective address of the operand. This mode uses one

memory reference to obtain the operand.

28

 Control fetches instruction from memory and then uses its address to access

Register and looks in Register(R) for effective address of operand in memory.

 The address space is limited to the width of the registers available to store the

effective address.

 Example:MOV AL, [BX]

Code example in Register:

MOV BX, 1000H

MOV 1000H, operand

 The instruction(MOV AL, [BX]) specifies a register[BX] which contain the

address of operand(1000H) rather than address itself.

Fig 1.13: Register Indirect Mode

6. Displacement Addressing:

 It is a combination of direct addressing or register indirect addressing mode.

 Displacement Addressing Modes requires that the instruction have two address

fields, at least one of which is explicit means, one is address field indicate direct

address and other indicate indirect address.

 Value contained in one addressing field is A, which is used directly and the value

in other address field is R, which refers to a register whose contents are to be added

to produce effective address.

 Example: EA=A+(R)

Fig 1.14 a): Displacement Addressing Modes

 In displacement addressing mode there are 3 types of addressing mode.

 Relative addressing:

The contents of program counter is added to the address part of instruction to obtain

the Effective Address. The address field of the instruction is added to implicitly

reference register Program Counter to obtain effective address.

Example: EA=A+PC

Assume that PC contains the value 825 and the address part of instruction contain

the value 24, then the instruction at location 825 is read from memory during fetch

phase and the Program Counter is then incremented by one to 826. Here both PC

and instruction contains address. The effective address computation for relative

address mode is 826+24=850

Fig 1.14 b): Relative addressing

30

 Base register addressing

The content of the Base Register is added to the direct address part of the instruction

to obtain the effective address. The address field point to the Base Register and to

obtain EA, the contents of Instruction Register, is added to direct address part of the

instruction. This is similar to indexed addressing mode except that the register is now

called as Base Register instead of Index Register.

Example:EA=A+Base

Fig 1.14 c): Base Register Addressing Mode

 Indexed addressing:

The content of Index Register is added to direct address part of instruction

to obtain the effective address. The register indirect addressing field of instruction

point to Index Register, which is a special CPU register that contain an Indexed value,

and direct addressing field contain base address.

The data array is in memory and each operand in the array is stored in memory

relative to base address. The distance between the beginning address and the address

of operand is the indexed value stored in indexed register.

Any operand in the array can be accessed with the same instruction, which

provided that the index register contains the correct index value i.e., the index register

can be incremented to facilitate access to consecutive operands.

Example: EA=A+Index

Fig 1.14d): Indexed Addressing

7. Stack Addressing:

 Stack is a linear array of locations referred to as last-in first out queue.

 The stack is a reserved block of location, appended or deleted only at the top of

the stack.

 Stack pointer is a register which stores the address of top of stack location.

 This mode of addressing is also known as implicit addressing.

 Example: Add

 This instruction pops two items from the stack and adds.

Additional Modes:

There are two additional modes. They are:

 Auto-increment mode

 Auto-decrement mode

These are similar to Register indirect Addressing Mode except that the register is incremented

or decremented after(or before) its value is used to access memory.These modes are required

because when the address stored in register refers to a table of data in memory, then it is

necessary to increment or decrement the register after every access to table so that next value

is accessed from memory.

32

Auto-increment mode:

 Auto-increment Addressing Mode are similar to Register Indirect Addressing Mode

except that the register is incremented after its value is loaded (or accessed) at

another location like accumulator(AC).

 The Effective Address of the operand is the contents of a register in the instruction.

 After accessing the operand, the contents of this register is automatically incremented

to point to the next item in the list.

 Example: (R) +.

 The contents in register R will be accessed and them it will be incremented to point

the next item in the list.

Fig 1.16: Auto-increment Mode

 The effective address is (R)=400 and operand in AC is 7. After loading R1 is

incremented by 1, it becomes 401.

Auto-decrement mode:

 Auto-decrement Addressing Mode is reverse of auto-increment , as in it the register

is decrement before the execution of the instruction.

 Effective address is equal to EA=(R) - 1

 The Effective Address of the operand is the contents of a register in the instruction.

 After accessing the operand, the contents of this register is automatically decremented

to point to the next item in the list.

An instruction is a binary code, which specifies a basic operation for the computer.

Stored Program Concept is an idea that instructions and data of many types can be

stored in memory as numbers, leading to the stored program computer.

 Example: - (R)

 The contents in register R will be decremented and then it is accessed.

Fig 1.17: Auto Decrement Addressing Mode

 INSTRUCTIONS

 Operation Code (opcode) defines the operation type. Operands define the operation

source and destination.

 Instruction Set Architecture (ISA) describes the processor in terms of what the

assembly language programmer sees, i.e. the instructions and registers.

 The opcodes and operands follows Stores Program Concept.

 Operations

 The computer performs the arithmetic through operations.

 The MIPS arithmetic instruction performs only one operation and must always have

exactly three variables.

Example: Add a, b, c

Adds b and c and stores the sum in a.

34

 The hardware for a variable number of operands is more complicated than hardware

for a fixed number.

 It is always essential to design the instructions with same number of operands so

as to simplify the hardware requirement.

 Operands

 The operands of arithmetic instruction must be from specially built memory

locations called registers.

 The registers are accessed as 32 bit groups termed as words. MIPS architecture

supports 32 registers.

Memory Operands

 The operands are always stored in registers.

 Data transfer instruction is a command that moves data between memory and

registers.

 Address of an operand is a value used to delineate the location of a specific

data element within a memory array.

 The data transfer instruction that copies data from memory to a register is

traditionally called load (lw- load word).

 The format of the load instruction is the name of the operation followed by

the register to be loaded, then a constant and register used to access memory.

 The sum of the constant portion of the instruction and the contents of the

second register forms the memory address.

 Store (sw- store word) instruction copies data from a register to memory.

 The format of a store is the name of the operation, followed by the register

to be stored, then offset to select the array element, and finally the base

register.

 The MIPS address is specified in part by a constant and in part by the contents

of a register.

 Many programs have more variables than computers have registers. The

compiler tries to keep the most frequently used variables in registers and

places the rest in memory, using loads and stores to move variables between

registers and memory.

 The process of putting less commonly used variables into memory is called

spilling registers.

Constant or Immediate Operands

 Sometimes it is necessary to load a constant from memory to use one. The

constants would have been placed in memory when the program was loaded.

Example: addi $s3,$s3,10

 This instruction is interpreted as addition of content of $s3 and the value

10. The sum is stored in $s3. Addi means add immediate, since one of the

operand is in immediate addressing mode.

 As per the design principle “Make common case faster”, the constant operands

must be loaded faster from the memory.

 Since constants occur more frequently in the instruction, they are mentioned

in the instruction itself rather than to load from registers.

Name

32 Registers

230 memory

words

Example

$S0, $S1,…

$t0,, $t1,…

Memory[0],

Memory[1],…

Comments

They can be accessed quickly. In MIPS

architecture, the data must be loaded into the

register to perform arithmetic operation.

The contents can be accessed only after data

transfer instructions. MIPS use byte addressing.

Category

Arithmetic

Instruction

Add $s1, $s2, $s3

Sub $s1, $s2, $s3

Operation

S1=s2+s3.

There are three operands in this instruction.

The data resides in the registers.

S1=s2-s3.

There are three operands in this instruction.

The data resides in the registers.

36

A bit or binary digit is a single digit of a binary number and is the smallest

indivisible unit of computing.

Data Transfer

Addi $s1, $s2, 50

Lw $s1, 50($s2)

Sw $s1, 50($s2)

S1=s2+50.

This is add immediate instruction.

It has two operands and one constant value,

which is directly added to get the result.

S1=memory [s2+50]

Data is transferred from memory to registers.

Memory[s2+50]=$s1

Data is transferred from register to memory.

 Representation of Instructions

 Numbers are represented in computer hardware as a series of high and low electronic

signals,that are denoted as 0’s and 1’s. Hence they are considered base 2 numbers.

 The binary digit may be used to denote high or low, on or off, true or false, or 1

or 0.

 Registers are part of every instruction, hence there must be a convention to map

register names into numbers.

Example:add $t0,$s1,$s2.

This instruction is mapped to its equivalent decimal representation as:

The binary equivalent representation is given as:

 Each cell is termed as a field.

 The binary representation used for communication within a computer system is

termed as Machine Language.

 Instruction Format is a representative form an instruction of fields of binary numbers.

Fields in MIPS

 Opcode is the field that denotes the operation and format of an instruction.

 rs: The first register source operand.

 rt: The second register source operand.

 rd: The register destination operand. It gets the result of the operation.

 shamt: Shift amount. This is done to adds two zero’s to the low-order end of the sign-

extended offset field in calculating the address. This operation truncated the sign

values.

 op field and is sometimes called the function code.

 The MIPS instructions are designed in the same format for easy manipulation. This

is in accordance with the design principle Good design demands good compromises.

Fig 1.18: Mapping of register names and numbers

38

Opcode values of MIPS instruction

In the MIPS instruction reg means a register number ranging from 0 and 31. Address

means a 16-bit address, and not applicable (n.a.) means this field does not appear in this

format. The add and sub instructions have the same value in the op field. The hardware uses

the funct field to decide the whether it is addition or subtraction operation using: add (32)

or subtract (34).

Instruction Format Op Rs Rt Rd Shamt Funct Address

Add R 0 Reg Reg Reg 0 32
10

 Na

Sub R 0 Reg Reg Reg 0 34
10

 Na

Add

immediate

I 8
10

Reg Reg Na Na Na Constant

Lw I 35
10

 Reg Reg Na Na Na Address

Sw I 43
10

 Reg Reg Na Na Na Address

 Logical Operations

The following are the logical operations performed by the processor:

Logical Operations MIPS Instructions

Shift left sll

Shift right srl

Bit by bit AND and, andi

Bit by bit OR or, ori

Bit by bit NOT nor

The first class of such operations is called shifts. They move all the bits in a word

to the left or right, filling the emptied bits with 0s.

0000 0000 0000 00000 000 0000 0000 0000 1001
2
= 9

10

After left shifting by four, the new value is 144.

0000 0000 0000 0000 0000 0000 0000 1001 0000
2
= 144

10

 Left shift: Left shifting by i bits is equivalent to multiplying the number by 2i.

 Right Shift: Right shifting by i bits is equivalent to dividing the number by 2i.

 AND:This is used in masking of bits.

 OR: It is a bit-by-bit operation that places a 1 in the result if either operand bit is

a 1

 NOT: A logical bit-by-bit operation with one operand that inverts the bits; that is,

it replaces every 1 with a 0, and every 0 with a 1.

 NOR: A logical bit-by-bit operation with two operands that calculates the NOT of

the OR ofthe two operands.

Category Instruction Operation

AND and $s1, $s2, $s3 S1=s2&s3

OR or $s1, $s2, $s3 S1=s2|s3

NOR nor $s1, $s2, $s3 S1=~(s2|s3)

NAND nand $s1, $s2, $s3 S1=~(s2&s3)

AND immediate andi $s1, $s2, 100 S1=s2&100

OR immediate Ori $s1, $s2, $s3 S1=s2|100

Shift left logical Sll $s1, $s2, 10 S1=s2<<10

Shift right logical Srl $s1, $s2, 10 S1=s2>>10

 Control Operations

Decision making and branching makes the computers more powerful.

Decision Making:

Decision making in MIPS assembly language includes two decision-making instructions

(conditional branches):

i) Branch if Equal (BEQ):

beq register1, register2, L1

In this instruction, the go to the statement labeled L1 if the value in register1 is

equal to the value in register2.

40

Conditional branch is an instruction that requires the comparison of two values and

that allows for a subsequent transfer of control to a new address in the program

based onthe outcome of the comparison.

ii) Branch if not Equal (BNE):

bne register1, register2, L1

In this instruction, the go to the statement labeled L1 if the value in register1 does

not equal the value in register2.

Example:

Consider the following statement,

if (i == j) f = g + h; else f = g – h;

Fig 1.19: Flowchart for if (i == j) f = g + h; else f = g – h;

The instruction first compares for equality, using beq. In general, the code will be

more efficient if we test for the opposite condition to branch over the code that performs

the subsequent then part of the if(the label Else is defined below):

bne $s3,$s4,Else # go to Else if i j

The next assignment statement performs a single operation, and if all the operands

are allocated to registers, it is just one instruction:

add $s0,$s1,$s2 # f = g + h (skipped if i j)

This instruction says that the processor always follows the branch. To distinguish

between conditional and unconditional branches, the MIPS name for this type of instruction

is jump, abbreviated as j (the label Exit is defined below).

j Exit # go to Exit

The assignment statement in the else portion of the if statement can again be

compiled into a single instruction. We just need to append the label Else to this instruction.

We also show the label Exit that is after this instruction, showing the end of the if-then-

else compiled code:

Else:sub $s0,$s1,$s2 # f = g – h (skipped if i = j)

Exit:

Compilers create branches and labels wherever necessary for maintaining flow of

the program. Also, the assembler calculates the addresses and relieves the compiler and the

assembly language programmer.

Looping:

When a set of statements has to be executed more number of times, looping

statements are used.

Example:

while (save[i] == k)

i += 1;

i and k correspond to registers $s3 and $s5 and the base of the array save is in $s6. The

MIPS instructions are:

 The first step is to load save[i] into a temporary register. This operation needs an

address. Multiply the index i by 4 and add i to the base of array to obtain the address.

 Add the label Loop to it to branch back to that instruction at the end of the loop:

Loop: sll $t1,$s3,2 # Temp reg $t1 = 4 * i

 To get the address ofsave[i] , add $t1 and the base ofsave in $s6:

add $t1,$t1,$s6 # $t1 = address of save[i]

 Use that address to load save[i] into a temporary register:

lw $t0,0($t1) # Temp reg $t0 = save[i]

42

A sequence of instructions without branches except possibly at the end and without

branch targets or branch labels except possibly at the beginning are called basic

blocks.

A table ofaddresses of alternative instruction sequences is maintained in jump

address table.

 The next instruction performs the loop test, exiting if save[i] k:

bne $t0,$s5, Exit # go to Exit if save[i] k

 The next instruction adds 1 to i :

add $s3,$s3,1 # i = i + 1

 The end of the loop branches back to the while test at the top of the loop. Add the

Exit label after it:

j Loop # go to Loop

Exit:

Grouping on instructions that makes compiling easy is through partitioning the

assembly language instructions into basic blocks.

Case / Switch Statements

These statements allow the programmers to select one among the many options.

The simple way is to implement switch is through a sequence of conditional tests using a

chain of if-then-else statements.The alternatives are encodedinjump address table.The

program needs only to index into the table and then jump to the appropriatesequence.

The jump table is an array of words containing addresses thatcorrespond to labels

in the code. MIPS include a jump registerinstruction (jr), to support the unconditional jump

to the address specified in aregister. The program loads the appropriate entry from the jump

table into a register, and then it jumps to the proper address using a jump register.

Category Instruction Operation

Conditional Branch Beq $s1, $s2,L If (s1==s2) then goto L (Branch if equal)

Bne $s1, $s2,L If (s1s2) then goto L (Branch if not equal)

Slt $s1, $s3, $s3 If (s2<s3) set s1=1Else s1=0(set on less than)

Slt$s1, $s2, 100 If (s2<100) set s1=1Else s1=0(set on less than

immediate)

Unconditional branch J L Goto L

(Jump to target address L)

44

UNIT - II

ARITHMETIC

INTRODUCTION

Data is manipulated by using the arithmetic instructions in digital computers to give

solution for the computation problems. The addition, subtraction, multiplication and division

are the four basic arithmetic operations. Arithmetic processing unit is responsible for

executing these operations and it is located in central processing unit.

The arithmetic instructions are performed on binary or decimaldata. Fixed-point

numbers are used to represent integers or fractions. These numbers can be signed or unsigned

negative numbers. A wide range of arithmetic operations can be derived from the basic

operations.

Signed and Unsigned Numbers:

Signed numbers:

These numbers require an arithmetic sign. The most significant bit of a binary number

is used to represent the sign bit. If the sign bit is equal to zero, the signed binary number

is positive; otherwise, it is negative. The remaining bits represent the actual number. The

negative numbers may be represented either in a signed magnitude or signed complement

representation. There are three ways of representing negative fixed point

• Binary numbers signed magnitude

• Signed 1’s complement

• Signed 2’s complement

Unsigned binary numbers:

These are positive numbers and thus do not require an arithmetic sign. An m-bit

unsigned number represents all numbers in the range 0 to 2m “ 1. For example, the range

of 16-bit unsigned binary numbers is from 0 to 65,53510 in decimal and from 0000 to FFFF16

in hexadecimal.

Signed Magnitude Representation:

The most significant bit (MSB) represents the sign. A 1 in the MSB bit position

denotes a negative number and 0 denotes a positive number. The remaining n •1 bits are

preserved and represent the magnitude of the number.

Computer Organization & Instructions 1.2

2

Examples:

Number Signed Magnitude Representation

+3 0011

-3 1011

0 0000

-0 1011

5 0101

-5 1101

One’s Complement Representation:

In one’s complement, positive numbers remain unchanged as before with the sign-

magnitude numbers. Negative numbers are represented by taking the one’s complement

(inversion, negation) of the unsigned positive number. Since positive numbers always start

with a 0, the complement will always start with a 1 to indicate a negative number.

The one’s complement of a negative binary number is the complement of its positive

counterpart, so to take the one’s complement of a binary number.

Number One’s complement Representation

00001000 (+8) 11110111

10001000(-8) 01110111

00001100(+12) 11110011

10001100(-12) 01110011

Two’s Complement Representation:

In two’s complement, the positive numbers are exactly the same as before for

unsigned binary numbers. A negative number, is represented by a binary number, which when

added to its corresponding positive equivalent results in zero.

Arithmetic 2.3

In two’s complement form, a negative number is the 2’s complement of its positive

number with the subtraction of two numbers being A – B = A + (2’s complement of B)

using much the same process as before as basically, two’s complement is adding 1 to one’s

complement of the number.

The main difference between 12 s complement and 22 s complement is that 12 s

complement has two representations of 0 (+0): 00000000, and (-0): 11111111. In 22 s

complement, there is only one representation for zero: 00000000 (0).

+0: 00000000

2’s complement of -0:

-0: 00000000 (Signed magnitude representation)

11111111 (1’s complement representation)

11111111 + 1= 00000000 (2’s complement representation)

These shows in 2’s complement representation both +0 and -0 takes same value. This

solves the double-zero problem, which existed in the 1’s complement.

Example 2.1: Convert 2

10
and -2

10
to 32 bit binary numbers.

+2= 0000 0000 0000 0010 (16 bits)

= 0000 0000 0000 0000 0000 0000 0000 0010 (32 bits)

It is converted to a 32-bit number by making 16 copies of the value in the most significant

bit (0) and placing that in the left-hand half of the word.

2=0000 0000 0000 0010

-2=1’s complement of 2 +1

1111 1111 1111 1101 (1’s complement of 2) + 1

= 1111 1111 1111 1110 (16 bits)

= 1111 1111 1111 1111 1111 1111 1111 1110 (32 bits)

To convert to 32 bit number copy the digit in the MSB of the 16 bit number for 16 times

and fill the left half.

Computer Organization & Instructions 1.4

4

A fixed-point number representation is a real data type for a number that has a

fixed number of digits after the radix point or decimal point.

 FIXED POINT ARITHMETIC

This is a common method of integer representation is sign and magnitude representation.

One bit is used for denoting the sign and the remaining bits denote the magnitude. With

7 bits reserved for the magnitude, the largest and smallest numbers represented are +127

and –127. Fixed-point numbers are useful for representing fractional values, usually in base

2 or base 10, when the executing processor has no floating point unit (FPU) or if fixed-point

provides improved performance or accuracy for the application at hand. Most low-cost

embedded microprocessors and microcontrollers do not have an FPU.

A value of a fixed-point data type is essentially an integer that is scaled by a specific

factor. The scaling factor is usually a power of 10 (for human convenience) or a power of

2 (for computational efficiency). However, other scaling factors may be used occasionally,

e.g. a time value in hours may be represented as a fixed-point type with a scale factor of

1/3600 to obtain values with one-second accuracy. The maximum value of a fixed-point type

is the largest value that can be represented in the underlying integer type, multiplied by the

scaling factor; and similarly for the minimum value.

Example:

The value 1.23 can be represented as 1230 in a fixed-point data type with scaling

factor of 1/1000.

Precision loss and overflow

 The fixed point operations can produce results that have more bits than the operands

there is possibility for information loss.

 In order to fit the result into the same number of bits as the operands, the answer

must be rounded or truncated.

 Fractional bits lost below this value represent a precision loss which is common in

fractional multiplication.

 If any integer bits are lost, however, the value will be radically inaccurate.

 Some operations, like divide, often have built-in result limiting so that any positive

overflow results in the largest possible number that can be represented by the current

format.

Arithmetic 2.5

 Likewise, negative overflow results in the largest negative number represented by

the current format. This built in limiting is often referred to as saturation.

 Some processors support a hardware overflow flag that can generate an exception

on the occurrence of an overflow, but it is usually too late to salvage the proper result

at this point.

 Addition and Subtraction

In addition, the digits are added bit by bit from right to left, with carries passed to

the next digit to the left. Subtraction operation is also done using addition: The appropriate

operand is simply negated before being added.

Fig 2.1: Addition and Subtraction operation

Fig 2.2: Hardware for addition / subtraction

Computer Organization & Instructions 1.6

6

Steps for addition:

a) Addition b) Subtraction

Fig 2.2: Addition and subtraction algorithm

 Place the addend in register B and augend in AC.

 Add the contents in B and AC and place the result in AC.

 V register will hold the overflow bits (if any).

Steps for subtraction:

 Place the minuend in AC and subtrahend in B.

 Add the contents of AC and 2’s complemented B. Place the result in AC.

 V register will hold the overflow bits (if any).

Fig 2.3: Manipulating carry

The figure 2.3 shows binary addition with carries from right to left. The rightmost

bit adds 1 to 0, resulting in the sum of this bit being 1 and the carry out from this bit being

0. Hence, the operation for the second digit to the right is 0 + 1 + 1. This generates a 0

for this sum bit and a carry out of 1. The third digit is the sum of 1 + 1 + 1, resulting in

a carry out of 1 and a sum bit of 1. The fourth bit is 1 + 0 + 0, yielding a 1 sum and no

carry. If there is a carry at this bit, it will be stored in the overflow register.

Overflow occurs in subtraction when we subtract a negative number from a positive

number and get a negative result, or when we subtract a positive number from a negative

number and get a positive result. This means a borrow occurred from the sign bit.

Arithmetic 2.7

Operation Operand A Operand B Result indicating

overflow

A+B >=0 >=0 <0

A+B <0 <0 >=0

A-B >=0 <0 <0

A-B <0 >=0 >=0

Example 2.2: Add 6 and 7.

Example 2.3: Subtract 6 from 7.

Example 2.4: Subtract 6 from 7 through 2’s complement.

The MIPS instructions for addition and subtraction are given in the following table:

Instruction Example Operation

Add Add $s1, $s2, $s3 S1=s2+s3Overflow detected

Subtract Sub $s1, $s2, $s3 S1=s2-s3Overflow detected

Add Immediate Addi $s1, $s2, 100 S1=s2+100Overflow detected

Add unsigned Addu $s1, $s2, $s3 S1=s2+s3Overflow undetected

Subtract unsigned Subu $s1, $s2, $s3 S1=s2-s3Overflow undetected

Add immediate unsigned Addiu $s1, $s2, 100 S1=s2+100Overflow undetected

Computer Organization & Instructions 1.8

8

 Multiplication

Multiplication is seen as repeated addition. The first operand is called the multiplicand

and the second the multiplier. The final result is called the product. The number of digits

in the product is larger than the number in either the multiplicand or the multiplier. The length

of the multiplication of an n-bit multiplicand and an m-bit multiplier is a product that is

n + m bits long. The steps in multiplication are:

1. Place a copy of the in the proper place if the multiplier digit is a 1

2. Place 0 in the proper place if the digit is 0.

Fig 2.4: Basic multiplication algorithm

Arithmetic 2.9

Booth’s Algorithm:

Booth algorithm gives a procedure for multiplying binary integers in signed- 2’s

complement representation. It operates on the fact that strings of 0’s in the multiplier require

no addition but just shifting, and a string of 1’s in the multiplier from bit weight 2k to weight

2m can be treated as 2k+1– 2m.

For example, the binary number 001110 (+14) has a string 1’s from 23 to 21 (k=3,

m=1). The number can be represented as 2k+1– 2m = 24 – 21 = 16 – 2 = 14. Therefore,

the multiplication M X 14, where M is the multiplicand and 14 the multiplier, can be

done as M X 24 – M X 21. Thus the product can be obtained by shifting the binary multiplicand

M four times to the left and subtracting M shifted left once.

Booth algorithm requires examination of the multiplier bits and shifting of partial

product. Prior to the shifting, the multiplicand may be added to the partial product, subtracted

from the partial, or left unchanged according to the following rules:

1. The multiplicand is subtracted from the partial product upon encountering the first

least significant 1 in a string of 1’s in the multiplier.

2. The multiplicand is added to the partial product upon encountering the first 0 in a

string of 0’s in the multiplier.

3. The partial product does not change when multiplier bit is identical to the previous

multiplier bit.

The algorithm works for positive or negative multipliers in 2’s complement representation.

This is because a negative multiplier ends with a string of 1’s and the last operation will

be a subtraction of the appropriate weight. The two bits of the multiplier in Qn and Qn+1

are inspected. If the two bits are equal to 10, it means that the first 1 in a string of 1

‘s has been encountered. This requires a subtraction of the multiplicand from the partial

product in AC. If the two bits are equal to 01, it means that the first 0 in a string of

0’s has been encountered. This requires the addition of the multiplicand to the partial

product in AC. When the two bits are equal, the partial product does not change.

Computer Organization & Instructions 1.10

10

Fig 2.5: Flowchart for Booth’s algorithm

Example 2.5: Multiply 7 and 3 using Booth’s algorithm.

The product is available in AQ.

Arithmetic 2.11

Example 2.6 : Multiply -5 and -7 using Booth’s algorithm

A Q Q-1 M

The product is available in AQ

 Division

Division is repeated subtraction. The two operands (dividend and divisor) and the result

(quotient) of divide are accompanied by a second result called the remainder. The following

are the terminologies:

 Dividend: A number being divided.

 Divisor: A number that the dividend is divided by.

 Quotient: The primary result of a division; a number that when multiplied by the

divisor and added to the remainder produces the dividend.

 Remainder: The secondary result of a division; a number that when added to the

product of the quotient and the divisor produces the dividend

Dividend = Quotient * Divisor + Remainder

Fig 2.6: Division Terminologies

Computer Organization & Instructions 1.12

12

Fig 2.7: Basic division operation

Arithmetic 2.13

Fig 2.8: Fixed point division

Example 2.7: Divide -7 by 3

Quotient=0010Remainder=0001

Computer Organization & Instructions 1.14

14

Example 2.8: Divide -7 by -3

Example 2.9: Divide 7 by 3

Arithmetic 2.15

Example 2.10: Divide -7 by 3

MIPSinstructions for multiplication and division

Category Example Description

Multiply mult $s2, $s3 Hi, lo=s2 * s3

64 bit signed product in Hi, Lo

Multiply unsigned multu $s2, $s3 Hi, lo=s2 * s3

64 bit signed product in Hi, Lo

Divide div $s2, $s3 Lo=s2/s3 (Quotient)

Hi=s2 mod s3 (Remainder)

Divide unsigned divu $s2, $s3 Lo=s2/s3 (unsigned Quotient)

Hi=s2 mod s3 (Remainder)

Move from Hi mfhi $s1 S1=Hi Used to get a copy of Hi

Move from Lo mflo $s1 S1=loUsed to get a copy of Lo

Computer Organization & Instructions 1.16

16

 FLOATING POINT ARITHMETIC

To represent the fractional binary numbers (IEEE 754 floating point format), it is

necessary to consider floating point. If the point is assumed to the right of the sign bit, we

can represent the fractional binary numbers as given below:

With this fractional number system, we can represent the fractional numbers in the following

range,

The binary point is said to be float and the numbers are called floating point

numbers. The position of binary point in floating point numbers is variable and hence

numbers must be represented in the specific manner is referred to as floating point representation.

The floating point representation has three fields. They are:

 Sign:Sign bit is the first bit of the binary representation. ‘1’ implies negative number

and ‘0’ implies positive number.

Example: 11000001110100000000000000000001. This is negative number

since it starts with 1.

 Exponent: It starts from bit next to the sign bit of the binary representation. The

exponent field is needed to represent both positive and negative exponents. To do

this, a bias is added to the actual exponent in order to get the stored exponent. For

IEEE single-precision floats, this value is 127. Thus, to express an exponent of zero,

127 is stored in the exponent field. A stored value of 200 indicates an exponent of

(200"127), or 73. The exponents of “127 (all 0s) and +128 (all 1s) are reserved for

special numbers.

Double precision has an 11-bit exponent field, with a bias of 1023.Example: For 8

bit conversion: 8 =23-1-1=3. Bias=3.

For 32 bit conversion: 32=28-1-1= 127. Bias=127.

 Significant digits or Mantissa: It is calculated from the remaining 23 bits of the

binary representation. It consists of ‘1’ and a fractional part. This represents the

Arithmetic 2.17

precision bits of the number. It is composed of an implicit leading bit (left of the

radix point) and the fraction bits (to the right of the radix point). To find out the value

of the implicit leading bit, consider that any number can be expressed in scientific

notation in many different ways.

Example: 50 can be represented as

1. 0.050 × 103

2. .5000 × 103

3. 5.000 × 101

4. 50.00 × 100

5. 5000. × 10-2

In order to maximize the quantity of representable numbers, floating-point numbers

are typically stored in normalized form. This basically puts the radix point after the

first non-zero digit. In normalized form, 50 is represented as 5.000 × 101.

Fig 2.9: Parts of floating point number

Conversion of Decimal number to floating point:

 Sign bit: 1 implies negative number and 0 implies positive number.

 Exponent:To find the exponent value for binary representation, express the number

by the nearest smaller or equal to 2k number. The bias is determined by 2k-1-1,where

‘k’ is the number of bits in exponent field. Add the bias with k value to express the

exponent in binary form.

 Mantissa: Move the binary point so that there is only one bit from the left. Adjust

the exponent of 2 so that the value does not change. This is normalizing the number.

Now, consider the fractional part and represented as 23 bits by adding zeros.

Computer Organization & Instructions 1.18

18

2

Example 2.11. Find the decimal equivalent of the floating point number:

01000001110100000000000000000000

Sign=0

Exponent:

10000011=131
10

131-127=4

Exponent= 24=16

Mantissa:

Remaining 23 bits: 10100000000000000000000

=1*(1/2) + 0*(1/4) + 1*(1/8) + 0*(1/16) +……… = 0.625

Decimal number= Sign * Exponent * Mantissa

=-1 * 16 *0.625

= -26

Example 2.11: Find the floating point equivalent of -17.

Sign=1 (-ve number)

Exponent:

Bias for 32 bit = 127 (28-1 -1 = 127)

127 + 4 = 131=100000112

Mantissa:

17 = 10001 =1.0001 x 24

Fractional part=00010000000000000000000

-17 =1 10000011 000100000000000000000002

Terminologies:

 Overflow: A situation in which a positive exponent becomes too large to fit in

the exponent field.

 Underflow: A situation in which a negative exponent becomes too large to fit

in the exponent field.

 Double precision: A floating point value represented in two 32-bit words.

Arithmetic 2.19

2 10

2 10

 Single precision: A floating point value represented in a single 32-bit word.

Fig 2.10: Floating point formats

Example 2.12: The IEEE-754 32-bit floating-point representation pattern is 0 10000000 110

0000 0000 0000 0000 0000. What is the number?

Sign bit S = 0 (positive number)

Exponent E = 10000000
2

= 128
10

(in normalized form)

Fraction is 1.11 (with an implicit leading 1) = 1 + 1×2-1 + 1×2-2 = 1.75

The number is +1.75 × 2 (128-127) = +3.5

Example 2.13: Suppose that IEEE-754 32-bit floating-point representation pattern is 1

01111110 100 0000 0000 0000 0000 0000. Find the decimal number.

Sign bit S = 1 (negative number)

E = 0111 1110
2

= 126
10

(in normalized form)

Fraction is 1.1 (with an implicit leading 1) = 1 + 2-1 = 1.5

The number is -1.5 × 2^(126-127) = -0.75D

Example 2.14: Suppose that IEEE-754 32-bit floating-point representation pattern is 1

01111110 000 0000 0000 0000 0000 0001. What is the decimal number?

Sign bit S = 1 (negative number)E = 0111 1110
2

= 126
10

(in normalized form)

Fraction is 1.000 0000 0000 0000 0000 0001B (with an implicit leading 1) = 1 + 2-23

The number is -(1 + 2-23) × 2(126-127) = -0.500000059604644775390625

Example 2.15: Express 85.125 in single and double precision.

85 = 1010101

0.125 = 001

10

Computer Organization & Instructions 1.20

20

85.125 = 1010101.001

=1.010101001 x 26

sign = 0

1. Single precision:

biased exponent 127+6=133

133 = 10000101

Normalisedmantisa = 010101001

The IEEE 754 Single precision = 0 10000101 01010100100000000000000

2. Double precision:

biased exponent 1023+6=1029

1029 = 10000000101

Normalisedmantisa = 010101001

The IEEE 754 Double precision=

0 10000000101 010101001000

 Floating point addition and subtraction

Floating-point numbers are coded as sign/magnitude, reversing the sign-bit inverses

the sign. Consequently the same operator performs as well addition or subtraction according

to the two operand’s signs. The steps in floating point addition are:

 Rewrite the smaller number such that its exponent matches with the exponent

of the larger number.

 Add the mantissas

 Renormalize the mantissa by shifting mantissa and adjusting the exponent.

 Check for overflow/underflow of the exponent after normalization.

 If the mantissa does not fit in the space reserved for it, it has to be rounded

off.

Arithmetic 2.21

Fig 2.11: Flowchart for floating point addition / subtraction

Computer Organization & Instructions 1.22

22

Fig 2.12: Hardware for floating point addition

The addition operation proceeds as the exponent of one operand is subtracted from

the other using the small ALU to determine which is larger and by how much. This difference

controls the three multiplexors; from left to right, they select the larger exponent, the

significand of the smaller number, and the significand of the larger number. The smaller

significand is shifted right, and then the significands are added together using the big ALU.

Arithmetic 2.23

The normalization step then shifts the sum left or right and increments or decrements the

exponent. Rounding then creates the final result, which may require normalizing again to

produce the final result.

Example 2.16: Add 0.5 + (-0.4375)

0.5 = 0.1 × 20 = 1.000 × 2-1 (normalised)

-0.4375 = -0.0111 × 20 = -1.110 × 2-2 (normalised)

Step 1: Rewrite the smaller number such that its exponent matches with the exponent of

the larger number.

-1.110 × 2-2 = -0.1110 × 2-1

Step 2:Add the mantissas

1.000 × 2-1 +

-0.1110 × 2-1

0.001 × 2-1

Step 3: Renormalize the mantissa by shifting mantissa and adjusting the exponent.s0.001

× 2-1 = 1.000 × 2-4

-126 <= -4 <= 127 (-4 is within the range of -126 and 127).No overflow or underflow

Step 4: The sum fits in 4 bits so rounding is not required

Example 2.17: Express the following numbers in IEEE 754 format and find their sum:

2345.125 and 0.75.Single precision format of 2345.125:

Single precision format of 0.75:

Exponent of 2345.125 > exponent of 0.75

10001010-01111110=00000110 = (12)
10

Shift 0.75 to 12 positions right: 0.00000000000110000000000
Add:

1. 00100101001001000000000 (1 is added before . since this is a positive number)

+ 0.00000000000110000000000 (0 is added before . since it is a negative number)

1. 00100101001111000000000

Computer Organization & Instructions 1.24

24

The sum is normalized. There is no underflow. The final sum is

The result is +ve hence 0 is filled in the sign field. The exponent value of 2345.125 is

copied in the exponent field of the result, since the 0.75 is adjusted to the exponent of

2345.125.

Example 2.18: Subtract -1.00000000000000010011010x2-1 from

1.00000000101100010001101x2-6 .

+1.00000000101100010001101x2-6

-1.00000000000000010011010x2-1

Change the +1.00000000101100010001101x2-6 into power of 2-6.

0.00001000000001011000100 01101x2-1

To perform subtraction take 2’s complement of-1.00000000000000010011010x2-1 which is

1 0.11111111111111101100110 x 2-1(Here first 1 is the overflow bit).

Now add both numbers

0 0.00001000000001011000100 01101x2-1

1 0.11111111111111101100110 x 2-11

1.00001000000001000101010 01101x2-1

 Floating point multiplication

The following are the steps in floating point multiplication:

1. Add the exponents

2. Multiply the significant digits

3. Normalize the product

4. Round-off the product (if necessary)

Arithmetic 2.25

Fig 2.13: Flowchart for Floating point multiplication

Computer Organization & Instructions 1.26

26

Example 2.19:Multiply 1.110 x 1010 by 9.200 x 10-5. Express the product in 3 decimal places.

1. Add the exponents

Exponent of the product=10-5=5

2. Multiply the significant digits

1.110 x 9.200=10.212000

3. Normalize the product

10.212 x 105= 1.0212 x 106

4. Round-off

1.0212 x 106= 1.021 x 106

Example 2.20: Perform binary multiplication on 0.5 and -0.4375.

0.5= 1.000 x 2-1

0.4375= -1.110 x 2-21.

Add the exponents

Exponent of the product=-1+-2=-3

2. Multiply the significant digits

1.000 x -1.110=-1.110

3. Normalize the product

-1.110 x 10-3 is already normalized.

Example 2.21: Multiply -1.110 1000 0100 0000 10101 0001 x 2-4 and 1.100 0000 0001 0000

0000 0000 x 2-2.

1. Add the exponents

Exponent of the product=-4 + -2=-6

2. Multiply the significant digits

-1.110 1000 0100 0000 10101 0001 x 1.100 0000 0001 0000 0000 0000

= 10.1011100011111011111100110010100001000000000000

3. Normalize the product 1.01011100011111011111100110010100001000000000000 x 2-5

4. Round-off (Only 23 fraction bits)

1.01011100011111011111100 x 2-5

Arithmetic 2.27

 MIPS floating point instructions

MIPS provide several instructions for floating point numbers for performing the following

operations:

 Arithmetic

 Data movement (memory and registers)

 Conditional jumps

Floating Point (FP) instructions work with a different bank of registers. Registers are named

$f0 to $f31. MIPS floating-point registers are used in pairs for double precision numbers

and referred using even numbers. Single precision numbers end with .s and double precision

numbers end with .d.

Category Example Description

FP add single add.s $f2, $f4, $f6 f2=f4 + f6

FP subtract single sub.s $f2, $f4, $f6 f2=f4 - f6

FP multiply single mul.s $f2, $f4, $f6 f2=f4 * f6

FP divide single div.s $f2, $f4, $f6 f2=f4 / f6

FP add double add.d $f2, $f4, $f6 f2=f4 + f6

FP subtract double sub.d $f2, $f4, $f6 f2=f4 - f6

FP multiply double mul.d $f2, $f4, $f6 f2=f4 * f6

FP divide double div.d $f2, $f4, $f6 f2=f4 -/f6

Load word copr,1 Lwcl $f1, 100 ($s2) F1=memory[s2+100]32 bit data to

FP register

Store word copr,1 Swcl $f1, 100 ($s2) Memory[s2+100]=f132 bit data to

memory

Branch on FP true Bclt 25 If(cond==1) goto PC+4+100PC

relative branch if cond is true

Branch on FP false Bclt 25 If(cond==0) goto PC+4+100PC

relative branch if cond is false

Computer Organization & Instructions 1.28

28

The transmit time of a logical unit is used as a time base in comparing the

operating speeds of different methods, and the number of individual logical units

required is used in the comparison of costs.

FP compare single

(eq, ne, li, le, gt, ge)

FP compare double

(eq, ne, li, le, gt, ge)

C.lt.s $f2, $f4

C.lt.d $f2, $f4

If(f2 < f4) Cond=1; else cond=0

If(f2 < f4) Cond=1; else cond=0

 HIGH PERFROMANCE ARTHMETIC

The performance improvement in arithmetic operations like addition, multiplication

and division will increase the overall computational speed of the machine.

 High performance adders

The high performance adders takes an extra input namely the transit time.

The two multi-bit numbers being added together will be designated as A and B, with

individual bits being A1, A2, B1, etc. The third input will be C. Outputs will be S (sum)

R (carry),and T (transmit). The two multibit numbers being added together will be designated

asA and B, with individual bits being A1, A2, B1, etc. Thethird input will be C. Outputs

will be S (sum) R (carry),and T (transmit).

The time required to perform an addition in conventional adder is dependent on the time

required for a carry originating in the first stage to ripple through all intervening stages

to the S or R output of the final stage. Using the transit time of a logical block as a unit

of time, this amounts to two levels to generate the carry in the first stage, plus two levels

per stage for transit through each intervening stage, plus two levels to form the sum in the

final stage, which gives a total of two times the number of stages.

C
n
=R

n-1

C
n
=D

n-1
|| T

n-1
R

n-2

C
n
=D

n-1
|| T

n-1
D

n-2
|| T

n-1
T

n2
R

n-3

By allowing n to have successive values starting with one and omitting all terms

containing a a resulting negative subscript, it may be seen that each stage of the adder will

Arithmetic 2.29

require one OR stage with n inputs and n AND circuits having one through n inputs, where

n is the position number of the particular stage under consideration.

High performance Multiplication

Multiplication using variable length shift

 The multiplier and the partial product will always be shifted the same amount and

at the same time.

 The multiplier is shifted in relation to the decoder, and the partial product with

relation to the multiplicand.

 Operation is assumed starting at the low-order end of the multiplier, which means

that

shifting is to the right.

 If the lowest-order bit of the multiplier is a one, it is treated as though it had been

approached by shifting across zeros.

Rules:

1. When shifting across zeros (from low order end of multiplier), stop at the first one.

a) If this one is followed immediately by a zero, add the multiplicand, then shift across

all following zeros.

b) If this one is followed immediately by a secondone, subtract the multiplicand, then

shift acrossall following ones.

2. When shifting across ones (from low order end ofmultiplier), stop at the first zero.

a) If this zero is followed immediately by a one,subtract the multiplicand, then shift

across all following ones.

b) If this zero is followed immediately by a secondzero, add the multiplicand, then

shift across all following zeros.

 A shift counter or some equivalent device must beprovided to keep track of the

number of shifts and torecognize the completion of the multiplication.

Computer Organization & Instructions 1.30

30

 If the high-order bit of the multiplier is a one and isapproached by shifting across

ones, that shift will beto the first zero beyond the end of the multiplier, andthat zero

along with the bit in the next higher orderposition of the register will be decoded

to determinewhether to add or subtract.

 For this reason, if the multiplier is initially located in the part of the register inwhich

the product is to be developed, it should be soplaced that there will be at least two

blank positionsbetween the locations of the low-order bit of the partialproduct and

the high-order bit of the multiplier.

 Otherwise the low-order bit of the product will be decoded aspart of the multiplier.

Multiplication Using Uniform Shifts

 Multiplication which uses shifts of uniform size and permits predictingthe number

of cycles that will be required from thesize of the multiplier is preferable to a method

that requires varying sizes of shifts.

 The most important use of this method is in the application of carry-save adders to

multiplication although it can also be used for otherapplications.

Uniform shifts of two

 Assume that the multiplier is divided into two-bitgroups, an extra zero being added

to the high-order end,if necessary, to produce an even number of bits.

 Onlyone addition or subtraction will be made for each group, and, using the position

of the low-order bit in the groupas a reference, this addition or subtraction will consist

of either two times or four times the multiplicand.

 Thesemultiples may be obtained by shifting the position ofentry of the multiplicand

into the adder one or twopositions left from the reference position.

 The last cycleof the multiplication may require special handling.

 Following any addition orsubtraction, the resulting partial product will be eithercorrect

or larger than it should be by an amount equalto one times the multiplicand.

 Thus, if the high-orderpair of bits of the multiplier is 00 or 10, the multiplicand would

be multiplied by zero or two and added, whichgives a correct partial product.

 If the high-order pairof bits is 01 or 11, the multiplicand is multiplied by two or four,

Arithmetic 2.31

not one or three, and added. This gives a partial product that is larger than it should

be, and the nextadd cycle must correct for this.

 Following the addition the partial product is shifted left- two positions. This multiplies

it by four, whichmeans that it is now larger than it should be by fourtimes the

multiplicand.

 This may be corrected duringthe next addition by subtracting the difference between

four and the desired multiplicand multiple.

 Thus, if a pair ends in zero, the resulting partial product will be correct and thefollowing

operation will be an addition.

 If a pair ends in a one, the resulting partialproduct will be too large, and the following

operationwill be a subtraction.

 It can now be seen that the operation to be performedfor any pair of bits of the

multiplier may be determinedby examining that pair of bits plus the low-order bit of

the next higher-order pair.

 If the bit of the higher-orderpair is a zero, an addition will result; if it is one, a

subtraction will result. If the low-order bit of a pair is considered to have a value of

one and the high-order bit avalue of two, then the multiple called for by a pair isthe

numerical value of the pair if that value is even andone greater if it is odd.

 If the operation is an addition,this multiple of the multiplicand is used. If the operation

is a subtraction (the low-order bit of the next higherorder pair a one), this value is

combined with minusfour to determine the correct multiple to use.

 The resultwill be zero or negative, with a negative result meaningsubtract instead of

add.

Multiplication Using Carry-Save Adders

 When successive additions are required before thefinal answer is obtained, it is possible

to delay the carry propagation beyond one stage until the completion of all of the

additions, and then let one carry-propagatecycle suffice for all the additions.Adders

used in this manner are called carry-save adders.

 A carry-save adder consists of a number of stages,each similar to the full adder. It

differs from the ripple-carry adder in that the carry (R) outputis not connected directly

Computer Organization & Instructions 1.32

32

n n

A subword is a lower precision unit of data contained within a word.

In subword parallelism, multiple subwords are packed into a word and

then process whole words.

to the next-higher-order stageof the same adder, but goes to an intermediate registeror

other device in the same manner as the sum (S) output.

 A carry-save adder has three inputs which, asfar as use is concerned, may be considered

identical,and two outputs which are not identical and must betreated in different

manners.

 The procedure for adding several binary numbers byusing a carry-save adder would

be as follows.

 Designate the inputs for the nth bit as A , B , and C, and the outputs for the same

bit as S
n

and R, where S
n

is thesum output and R. is the carry output.

 In the firstcycle enter three of the input numbers into A, B, and C.

 In the second cycle enter the S and R obtained from theprevious cycle into A and B

and the fourth input number into C.

 In this operation S
n

goes into A
n
, but R

n
goes into B

n+1
, where B

n+1
isin the next higher-

order bitposition than B.

 This is continued until all of the input numbers have been entered into the adder.

 Each add cycle advances all carries oneposition, add cycles as already described may

be continued with zeros being entered into the third inputeach time until the R outputs

of all stages become zero.

 The alternative is to enter S and R into a carry-propagate adder and allow time for

one cycle through it.

 Thiscarry-propagate adder may be completely separatefrom the carry-save unit, or it

may be a combined unitwith a control line for selecting either carry-save orcarry-

propagate operation.

 SUB WORD PARALLELISM

With the appropriate subword boundaries this technique results in parallel processing of

subwords. Since the same instruction is applied to all subwords within the word, This is a

Arithmetic 2.33

form of SIMD(Single Instruction Multiple Data) processing.It is possible to apply subword

parallelism to noncontiguous subwords of different sizes within a word. In practical implementation

is simple if subwords are same size and they are contiguous within a word. The data parallel

programs that benefit from subword parallelism tend to process data that are of the same

size.

Example:If word size is 64bits and subwords sizes are 8,16 and 32 bits. Hence an instruction

operates on eight 8bit subwords, four 16bit subwords, two 32bit subwords or one 64bit

subword in parallel.

Advantages of subword parallelism

 Subword parallelism is an efficient and flexible solution for media processing because

algorithm exhibit a great deal of data parallelism on lower precision data.

 It is also useful for computations unrelated to multimedia that exhibit data parallelism

on lower precision data.

 Graphics and audio applications can take advantage of performing simultaneous

operations on short vectors.

 One key advantage of subword parallelism is that it allows general-purpose processors

to exploit wider word sizes evenwhen not processing high-precision data.

 The processor can achieve more subwordparallelism on lower precision data rather

than wasting much of the word-orienteddata paths and registers.

Support for subword parallelism

 Data-parallel algorithms with lower precision data map well into subword-parallel

programs.

 The support required for suchsubword-parallel computations then mirrors the needs

of thedata-parallel algorithms.

 To exploit data parallelism, we need subword parallel compute primitives, which

perform the same operation simultaneously on subwords packed into a word.

 These may includebasic arithmetic operations like add, subtract, multiply,divide,

logical, and other compute operations.

Computer Organization & Instructions 1.34

34

 Data-parallel computations also need

1. Data alignment before or after certain operations for subwords representing fixed-point

numbers or fractions

2. Subword rearrangement within a register so that algorithms can continue parallel

processing at full clip

3. A way to expand data into larger containers for moreprecision in intermediate computations.

Similarly, a wayto contract it to a fewer number of bits after the computation’s

completion and before its output.

4. Conditional execution

5. Reduction operations that combine the packed subwordsin a register into a single value

or a smaller set of values.

6. A way to clip higher precision numbers to fewer bits for storage or transmission.

7. The ability to move data between processor registers andmemory, as well as the ability

to loop and branch to anarbitrary program location.

36

MIPS (Million Instructions Per Second)is a simple, streamlined, highly scalable

RISC architecture with adopted by the industries.

UNIT - III

THE PROCESSOR

INTRODUCTION

The key performance metrics of the computer systems are;

i. Instruction count: This depends on the compiler used and instruction set

architecture.

ii. Clock cycle time: This depends on processor implementation.

iii. Clock cycles per instruction (CPI): This depends on processor implementation.

 MIPS ARCHITECTURE

The features that makes its widely useable are:

 Simple load and store with large number of register

 The number and the character of the instructions

 Better pipelining efficiency with visible pipeline delay slots

 Efficiency with compilers

These features make the MIPS architecture to deliver the highest performance with high

levels of power efficiency. It is important to learn the architecture of MIPS to understand

the detailed working of the processors.

Implementation of MIPS

MIPS has 32 General purpose registers (GPR) or integer registers (64 bit) holding

integer data. Floating point registers (FPR) are also available in MIPS capable of holding

both single precision (32 bit) and double precision data (64 bit). The following are the data

types available for MIPS:

Computer Organization & Instructions 3.2

2

Size Name Registers

8 bits Byte Integer register

16 bits Half word Integer register

32 bits Word Floating point register

64 bits Double word Floating point register

With these resources the MIPS performs the following operations:

 Memory referencing: load word (lw) and store word (sw)

 Arithmetic-logical instructions: add, sub, and, or, and slt

 Branch instructions: equal (beq) and jump (j)

The common steps in load and store instructions are:

i. Set the program counter (PC) to the address of the code and fetch the instruction

from that memory.

ii. Read one or two registers, using fields of the instruction to select the registers

to read. For the load word instruction, read only one register and for store word

the processor has to operate on two registers.

The ALU operations are done and the result of the operation is stored in the destination

register using store operation. When a branching operation is involved, then next address

to be fetched must be changes based on the branch target.

The Processor 3.3

Fig 3.1 :Implementation of MIPS architecture with multiplexers and control lines

Sequence of operations

 Program Counter (PC): This register contains the address (location) of the instruction

currently getting executed. The PC is incremented to read the next instruction to be

executed.

 The operands in the instruction are fetched from the registers.

 The ALU or branching operations are done. The results of the ALU operations are

stored in registers. If the result is given in load and store forms, then the results are

written to the memory address and from there they are transferred to the registers.

 In case of branch instructions, the result of the branch operation is used to determine

the next instruction to be executed.

Computer Organization & Instructions 3.4

4

Opcode Rs Rt Immediate

Opcode Rs Rt Rd Shamt Funct

 The multiplexer (MUX1),selects one input control line from multiple inputs. This

acts as a data selector.

 This helps to control several units depending on the type of instruction.

 The top multiplexor controls the target value of the PC. To execute next instruction

the PC is set as PC+4. To execute a branch instruction set the PC to the branch target

address.

 The multiplexor is controlled by the AND gate that operates on the zero output

of the ALU and a control signal that indicates that the instruction is a branch.

 The multiplexor (MUX2) returns the output to the register file for loading the

resultant data of ALU operation into the registers.

 MUX3 determines whether the second ALU input is from the registers or from

the offset field of the instruction.

 The control lines determine the operation performed at the ALU. The control

lines decide whether to read or write the data.

MIPS instruction format

There are only three instruction formats in MIPS. The instructions belong to any one of

the following type:

 Arithmetic/logical/shift/comparison

 Control instructions (branch and jump)

 Load/store

 Other (exception, register movement to/from GP registers, etc.)

All the instructions are encoded in one of the following three formats:

I type: Load and store instructions

R-type: Register to register operations

The Processor 3.5

Offset Opcode

J-Type: Jump instructions

The data and memory are well separated in MIPS implementation because:

 The instruction formats for the operations are not unique; hence the memory access

will also be different.

 Maintaining separate memory area is less expensive.

 The operations of the processor are performed in single cycle. A single memory (for

both data and memory access) will not allow for two different accesses within one

cycle.

 LOGIC DESIGN CONVENTIONS

The information in a computer system is encoded in binary form (0 or 1). The high

voltage is encoded as 1 and low voltage as 0. The data is transmitted inside the processors

through control wires / lines. These lines are capable of carrying only one bit at a time. So

transfer of multiple data can be done through deploying multiple control lines or buses. The

data should be synchronised with time by transferring it according to the clock pulses. All

the internal operations inside the processor are implemented through logic elements. The

logic elements are broadly classified into: Combinatorial and Sequential elements.

Differences between Combinatorial and Sequential elements

Combinatorial Elements Sequential Elements

The output of the combinatorial circuit

depends only on the current input.

The output depends on the previous stage

outputs.

It has faster operation speed and

easy implementation.

It has comparatively low operation speed

Iand tough implementation.

No feedback connections. The output is connected with the input

through feedback connections.

For a given set of inputs, combinatorial

elements give the same output since

there is no storage of past data.

The outputs vary based on previous outputs.

Computer Organization & Instructions 3.6

6

A clocking methodology is a set of rules for interconnecting components and clock

signals that, when followed, guarantee proper operation of the resulting system.

The basic building blocks are gates,

which are time independent.

The basic building blocks are flip flops,

which are time dependent.

It is used for Arithmetic and Logic

operations.

It is used for data storage.

No need for trigger. Triggering is needed to control the clock

cycles.

No memory element. Memory element is needed which is used

to store the states.

Eg: Encoder, full adder, Decoder,

Multiplier

Eg: Counters

Importance of state elements

The state elements characterise the machines. The contain state or status values so

that the machine can be restored with the previous values by retaining the values in the state

element. A state element has at least two inputs and one output. The required inputs are

the data value to be written into the element and the clock, which determineswhen the data

value is written. The output from a state element provides the valuethat was written in an

earlier clock cycle. The following are the state elements in Fig 3.1: instructions, memories

and registers.

 Clocking Methodology

Fig 3.2 a: Combinatorial Logic Fig 3.2 b: Edge triggered Logic

The primary objective of clocking methodology is timing correlation.

The Processor 3.7

This allows the processor to read the register contents, send the value through

some combinatorial logic and write that register in same clock cycle under the

assumption that the state elements are controlled by implicit clock cycles.

 Here, thestored values are updated only on a clock edge.

A datapath is a representation of the flow of information (data and instructions)

through the CPU, implemented using combinatorial and sequential circuitry.

Edge triggered clocking methodology

 In combinatorial logic, the input must be read, processed and the output must be sent

to the location, all in one single clock cycle (Fig 3.2 a).

 The driving force of this combinatorial circuit will be a explicit control signal.

 All the changes occur only when the clock signal is triggered.

 In edge-triggered methodology, the contents of a register are read and the value is

sent through combinational logic, and written to that register in thesame clock cycle.

 This prevents the access of inconsistent intermediate data

 Feedback cannot occur within 1 clock cycle because of the edge-triggered update of

the state element.

 The clock cycle still must be long enough so that the input values are stable when

the active clock edge occurs.

 BUILDING A DATAPATH

Fig: 3.3 Components of Datapath

Computer Organization & Instructions 3.8

8

The fundamental operation in Instruction Fetch is to send the address in the

PC to the instruction memory and obtain the specified instruction, and the

increment the PC.

Datapath is a functional unit that operates or hold data. In the MIPS implementation the

datapath elements includes instruction and data memories, the register file, the arithmetic

logic unit (ALU), and adders. The functionalities of basic elements are listed below:

 Instruction Memory: It is a state element that provides read access because the

datapath do not perform write operation. This combinatorial memory always holds

contents of location specified by the address.

 Program Counter (PC): This is a 32 bit state register containing the address of the

current instruction that is being executed.It is updated after every clock cycle and

do not require an explicit write signal.

 Adder:This is a combinatorial circuit that updates the value of PC after every clock

cycle to get that address of the next instruction to be executed.

 Instruction Fetch:

Fig: 3.4: Instruction Fetch

The Processor 3.9

R type instructions:

 Theyall read two registers, perform an ALU operation on the contents of the registers,and

write the result.

 This instruction class includes add, sub, and, or, and slt.

 The processor’s 32 general-purpose registers are stored in a structure called aregister

file.

 A register file is a collection of registers in which any register can be read or written

by specifying the number of the register in the file.The register filecontains the

register state of the machine.

 The R-format always performs ALU operationthat has three register operands (2-read

and 1-write).

 The register number must be specified inorder to read the data from the register file.

Also the output from a register file will contain the data that is read from the register.

 The write operation to a register has two inputs: the register number and the value

to be written. This operation is edge triggered.

Load and Store instructions:

 The load and store instructions compute a memory address by adding the base

register.

 If the instruction is a load, the value read from memory must be written into the

register file in the specified register.

 The memory is computed by adding the address of base register and the16-bit signed

offset field (which is a part of the instruction).

 If the instruction is a store, the value to be stored must also be read from the register.

Fig 3.5: Data memory and sign extension unit

Computer Organization & Instructions 3.10

10

Branch Target is the address specified in a branch, which is used to update the

PC if the branch is taken. In the MIPS architecture the branch target is computed

as the sum of the offset field of the instruction and the address of the

instruction following the branch.

 The processor has a sign extension unit to sign-extend the 16-bit offset field in

theinstruction to a 32-bit signed value.

 The data memory unit is necessary to perform write operation of store instruction.

So it has bothread and write control signals, an address input and data input.

Branch Instructions:

 The beq instruction(branch instruction) has three operands, two registers that are

compared for equality, and a 16-bit offset to compute the branch target address.

beq t1, t2, offset

 Thus, the branch datapath must do two operations: compute the branch target

address and compare the register contents.

 Branch Taken is where the branch condition is satisfied and the program counter

(PC) loads the branch target. All unconditional branches are taken branches.

 Branch not Taken is where the branch condition is false and the program counter

(PC) loads the address of the instruction that sequentially follows the branch.

 The branch target is calculated by taking the address of the net instruction after the

branch instruction, since the PC value will be updated as PC+4 even before the branch

decision is taken

 The offset field is shifted left 2 bits to increase the effective range of the offset field

by afactor of four.

The Processor 3.11

Fig 3. 6: Datapath of branch Instructions

 The unit labelled Shift left 2 adds two zero’s to the low-order end of the sign-extended

offset field. This operation truncated the sign values.

 The control logic decides whether the incremented PC or branch target should replace

the PC, based on the Zero output of the ALU.

 The jump instruction operates by replacing the lower 28 bits of the PC with thelower

26 bits of the instruction shifted left by 2 bits. This shift is done by concatenating

00 to the jump offset.

 Delayed branch is where the instruction immediately following the branch is always

executed, independent of whether the branch condition is true or false.

 MIPS architecture implements delayed branch (i.e.) the instruction immediately

following the branch is always executed, independent of whether the branch condition

is true or false.

Computer Organization & Instructions 3.12

12

 When the condition is false, the execution looks like a normal branch.

 When the condition is true, a delayed branch first executes the instruction immediately

following the branch in sequential instruction order before jumping to the specified

branch target address.

 Delayed branches facilitate pipelining.

 Creating a single Datapath

 A simple implementation of a single datapath is to execute all operations within

one clock cycle.

 The datapath resources can be utilized only for one clock cycle. To facilitate this,

some resources must be duplicated for simultaneous access while other resources

will be shared .

 One example is having separate memory for instructions and memory.

 When a resource is used in shared mode, then multiple connections must be made.

The selection of which control will access the resource will be decided by a

multiplexer.

Fig: 3.7: Simple datapath

 The datapath illustrated in Fig 3.7 shows the assembling of individual elements

into a simple datapath.

The Processor 3.13

 To implement branch instructions the datapath must include an adder circuitry

to compute branch target (Refer Fig: 3.6).

 The control unit for this datapathmust take inputs and generate a write signal for

each state element. Apart from the inputs a selector control must be included for

each multiplexor and the ALU control.

 The operations of arithmetic-logical (or R-type) instructions and the memory

instructions datapath are almost similar.

 The arithmetic-logical instructions use the ALU with the inputs comingfrom the

two registers. The memory instructions can also use the ALUto do the address

calculation, but the second input is the sign-extended 16-bit offset field from the

instruction.

 SIMPLE IMPLEMENTATION SCHEME

The basic implementation includes a subset of the core MIPS instruction set:

 The memory-reference instructions load word (lw) and store word (sw).

 The arithmetic-logical instructions add, sub, AND, OR, and slt.

 The instructions branch equal (beq) and jump (j).

For any instruction, the following two steps are same:

1. Send the program counter (PC) to the memory that contains the code and fetch the

instruction from that memory.

2. Read one or two registers, using fields of the instruction to select the registers to read.

Load instruction needs to read only one register, but most other instructions require

reading two registers. The remaining actions required to complete the instruction

depend on the instruction class. For the three instruction classes namely memory-

reference, arithmetic-logical, and branches, the actions are mostly the same. This is

due to the simplicity and regularity of the MIPS instruction set.

Computer Organization & Instructions 3.14

14

Fig 3.8: An abstract view of MIPS implementation

Instruction Formats of MIPS

Fig 3.9: R-Format Instruction

Instruction format for R-format instructions have an opcode of 0. These instructions

have three register operands: sources: rs, rt, and destination: rd. The ALU function is in the

funct field and is decoded by the ALU control design in the previous section. This instruction

type is used to implement are add, sub, and, or, and slt. The shamt field is for shifting

operation.

Fig 3.10: Load or store instruction

The Processor 3.15

Instruction format for load specified by opcode = 35ten and store is specified by opcode

= 43ten) instructions. The register rs is the base register that is added to the 16-bit address

field to form the memory address. For loads, rt is the destination register for the loaded value.

For stores, rt is the source register whose value should be stored into memory.

Fig 3.11: Branch Instructions

Instruction format for branch equal (opcode = 4). The registers rs and rt are the source

registers that are compared for equality. The 16-bit address field is sign extended, shifted,

and added to the PC to compute the branch target address.

 All instruction classes, except jump, use the arithmetic-logical unit (ALU) after

reading the registers.

 The memory-reference instructions use the ALU for an address calculation, the

arithmetic-logical instructions for the operation execution, and branches for comparison.

 After using the ALU, the actions required to complete various instruction classes

differ.

 A memory-reference instruction will need to access the memory either to read data

for a load or write data for a store.

 An arithmetic-logical or load instruction must write the data from the ALU or

memory back into a register.

 Branch instruction need to change the next instruction address based on the comparison;

otherwise, the PC should be incremented by 4 to get the address of the next instruction.

 All instructions start by using the program counter to supply the instruction address

to the instruction memory.

 After the instruction is fetched, the register operands used by an instruction are

specified by fields of that instruction.

Computer Organization & Instructions 3.16

16

 Once the register operands have been fetched, they can be operated on to compute a

memory address (for a load or store), to compute an arithmetic result (for an integer

arithmetic-logical instruction), or a compare (for a branch).

 If the instruction is an arithmetic-logical instruction, the result from the ALU must

be written to a register.

 If the operation is a load or store, the ALU result is used as an address to either store

a value from the registers or load a value from memory into the registers.

 The result from the ALU or memory is written back into the register file.

 Branches require the use of the ALU output to determine the next instruction address,

which comes either from the ALU (where the PC and branch off set are summed)

or from an adder that increments the current PC by 4.

 The thick lines interconnecting the functional units represent buses, which consist

of multiple signals.

 Fig.3.12shows the data path of Fig 3.8 with the three required multiplexors added,

and control lines for the major functional units.

 A control unit, which has the instruction as an input, is used to determine how to

set the control lines for the functional units and two of the multiplexors.

 The third multiplexor, which determines whether PC + 4 or the branch destination

address is written into the PC, is set based on the Zero output of the ALU, which

is used to perform the comparison of a beq instruction.

The Processor 3.17

Fig 3.12: Implementation scheme with control lines

Operation of the Datapath given in Fig 3.12:

Four steps to execute the instruction; these steps are ordered by the flow of information:

1. The instruction is fetched, and the PC is incremented.

2. Two registers, $t2 and $t3, are read from the register file. the main control unit

computes the setting of the control lines during this step.

3. The ALU operates on the data read from the register file, using the function code

(bits 5:0, which is the funct field, of the instruction) to generate the ALU function.

4. The result from the ALU is written into the register file using bits 15:11 of the

instruction to select the destination register ($t1).

Computer Organization & Instructions 3.18

18

Effect of the control signals

Signal When deasserted When asserted

RegDst The register destination

number for Write register

comens from the rt field

(bits 20:16)

The register destination number for

Write register comes from the rd

field (bits 15:11)

RegWrite None The register on the Write register

input is written with the value on

the Write data input.

ALUSrc The second operand comes

from the second register

file output (Read data 2).

The second operand is the sign

extended lower 16 bits of the

instruction.

PCSrc The PC is replaced by the

output of the adder after

computing PC+4

The PC is replaced by the output

of the adder after computing the

branch target.

MemRead None Data memory contents designated

by the address input are placed on

the Read data input.

MemtoReg The value given to Write

data input is got from

the ALU.

The value given to Write data input

is got from the data memory.

The setting of the control lines is completely determined by the opcode fields of the

instruction as given below:

Instruc-

tion

Reg

Dst

ALU

Src

Memto

Reg

Reg

Write

Mem

Read

Mem

Write

Branch ALU

Op1

ALU

Op0

R-format 1 0 0 1 0 0 0 1 0

lw 0 1 1 1 1 0 0 0 0

sw x 1 x 0 0 1 0 0 0

beq x 0 x 0 0 0 1 0 1

The Processor 3.19

Pipelining is an implementation technique in which multiple instructions are

executed simultaneously by overlapping them in execution to save time and

resource. The previous instruction will be in the execution phase when the

current instruction is fetched from the memory.

Finalizing the Controls

The logic values for a comprehensive control unit can be expressed as a single large

truth table. This table combines all the outputs and uses the opcode bits as inputs. It

completely specifies the control function.

Input /

Output

Signal R-format

Name

Lw Sw Beq

Inputs Op5 0 1 1 0

Op4 0 0 0 0

Op3 0 0 1 0

Op2 0 0 0 1

Op1 0 1 1 0

Op0 0 1 1 0

Outputs RegDst 1 0 x x

ALUSrc 0 1 1 0

MemtoReg 0 1 x x

RegWrite 1 1 0 0

MemRead 0 1 0 0

MemWrite 0 0 1 0

Branch 0 0 0 1

ALUOp1 1 0 0 0

ALUOp0 0 0 0 1

PIPELINING

Computer Organization & Instructions 3.20

20

Need for Pipelining

Without a pipeline, a computer processor fetches the first instruction from memory,

performs the operation mentioned in it, and then goes to fetch the next instruction from

memory. While fetching the instruction, the arithmetic unit of the processor is idle. It must

wait until it is loaded with next instruction.

With pipelining, the computer architecture allows the next instructions to be fetched

while the processor is performing arithmetic operations, holding them in a buffer close to

the processor. The result is an increase in the number of instructions that can be performed

during a given time period.

 Stages in MIPS pipelining:

The following are the various stages in pipelining:

1. Instruction Fetch (IF):Fetch instruction from memory.

2. Instruction Decode (RD):Read registers while decoding the instruction. The format

of MIPS instructions allows reading and decoding to occur simultaneously.

3. Execute:Execute the operation or calculate an address. This involves ALU operations.

4. Memory access (MEM):Access an operand in data memory.

5. Write Back (WB):Write the result into a register.

Fig 3.13: 5 stage pipelining of MIPS architecture

The Processor 3.21

The pipelining speed can be manipulated using the expression:

Pipelining improves performance by increasing instruction throughput. It is not

decreasing the execution time of an individual instruction, but increases the number of

instructions that complete its execution for a given time period. Thus the overall performance

of the processor is improved both in terms of resource utilization and throughput.

Fig 3.14 a) Non pipelined Execution

Fig 3.14 b) Pipelined Execution

Computer Organization & Instructions 3.22

22

Hazards are situations that prevent the next instruction in the instruction cycle

from being executing during its designated clock cycle. Hazards reduce

the performance of the pipelining.

Fig 3.14 shows the comparison of execution of instructions with and without pipelining

on same hardware components. The timeline clearly indicates that there is a difference in

execution time and resource utilization. The challenges in implementing pipelining may arise

due to slowest resource.

 Designing instruction sets for Pipelining

 The simplicity and generality of MIPS instructionsare that they are of same length.

This facilitates easy instruction fetching in the first stage of pipelining.

 MIPS has only a few instruction formats. In every instruction format, the source

operand registeris located at the same position in the instruction format .

 This symmetry eases the instruction decode stage by reading the register file

simultaneously while the hardware is determining the type of instruction format.

 Also, the memory operands appear in only in load or store instruction type in MIPS.

So that the execute stage can calculate the memory address and then access memory

in the following stage.

 Operands must be aligned in memory. Hence, a singledata transfer instruction requiring

two data memory accesses can be done in a single pipeline stage.

 Hazards in Pipelining

They are attempt to use same resource by two or more instruction at the same time.

Example: In case of single memory is used for instructions and data access and when two

instructions are accessing the same register one at instruction fetch stage and other at memory

access stage. This leads to inconsistent data access.

Types of hazard:

1. Structural Hazards: They arise from resource conflicts when the hardware cannot

support all possible combinations of instructions in simultaneous overlapped execution.

The Processor 3.23

Data hazards occur when the pipeline must be stalled because one step must

waitfor another to complete.

2. Data Hazards: They arise when an instruction depends on the result of a previous

instruction in a way that is exposed by the overlapping of instructions in the pipeline.

3. Control Hazards: They arise from the pipelining of branches and other instructions that

change the PC. This is also known as branch hazard.The flow of instruction addresses

is not what the pipeline had expected. This results in control hazard.

 Data Hazards

Data hazards occur in register files due to inconsistencies in file. This is an occurrence

in which a planned instruction cannot execute in the proper clock cycle because data that

is needed to execute the instruction is not yet available. In other words, data hazards occur

when the pipeline must be stalled because one step must wait for another to complete. This

is due to the data dependence.

Example : Consider the following instructions:

add $s0, $t0, $t1

sub $t2, $s0, $t3

Here the sub instruction uses the result of add instruction ($s0). The add instruction

cannot not write its result until the fifth stage. This results in wasting three clock cycles in

the pipeline. Since the stall occurs due to the non availability of data, this is termed as data

hazards.

Fig 3.15: Data Hazard

Computer Organization & Instructions 3.24

24

A specific form of data hazard in which the data requested by a load instruction has

not yetbecome available when it is requested. This is Load-use data hazard.

Solution to resolve data hazard:

Forwarding or bypassing is a method of resolving a data hazard by retrieving themissing

data element from internal buffers rather than waiting for it to arrive from programmervisible

registers or memory. This can be done by adding extra memory element or hardware that

acts as an internal buffer.

Forwarding cannot be a universal solution to solve data hazards. Consider the

following instructions:

lw $s0, 20($t1)

sub $t2, $s0, $t3

The desired data would be available only after the fourth stage of the first instruction

in the dependence, which is too late for the input of the third stage of sub. Hence, even with

forwarding, there will be ahazard called as load-use data hazard.

Fig 3.16: Load-Use data hazard

The stall mentioned in Fig 3.16 is called bubble or pipeline stall.A pipeline stall

is a delay in execution of an instruction in order to resolve a hazard. During the decoding

stage, the control unit will determine if the decoded instruction reads from a register that

the instruction currently in the execution stage writes to.

The Processor 3.25

Problem 3.1

Find the hazards in the following code segment and reorder the instructionsto avoid any

pipeline stalls.

Solution :

lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1,$t2

sw $t3, 12($t0)

lw $t4, 8($01)

add $t5, $t1,$t4

sw $t5, 16($t0)

Both the add instructions have a hazard because of their dependence on the immediately

preceding lw instruction. Bypassing eliminates several other potential hazards including

the dependence of the first add on the first lw and any hazards for store instructions. Moving

up the third lw instruction eliminates both hazards. This is possible since the lw instruction

is independent of other operations:

lw $t1, 0($t0)

lw $t2, 4($t1)

lw $t4, 8($01)

add $t3, $t1,$t2

sw $t3, 12($t0)

add $t5, $t1,$t4

sw $t5, 16($t0)

 A PIPELINED DATAPATH

The stages of pipelined datapath are:

1. IF: Instruction fetch

2. ID: Instruction decode and register file read

Computer Organization & Instructions 3.26

26

3. EX: Execution or address calculation

4. MEM: Data memory access

5. WB: Write back

The two exceptions to the normal flow of instructions:

1. The write-back stage, which places the result back into the register file in the middle

of the datapath.

2. The selection of the next value of the PC, choosing between the incremented PC and

the branch address from the MEM stage.

Data flowing from right to left does not affect the current instruction; only later

instructions in the pipeline are influenced by these reverse data movements. Note

that the first right-to-left arrow can lead to data hazards and the second leads to

control hazards. One way to show what happens in pipelined execution is to pretend

that each instruction has its own datapath, and then to place these datapaths on a

time line to show their relationship.

Fig 3.17: Single cycle datapath

The Processor 3.27

Fig 3.18: Instructions in single cycle datapath

 The above fig shows that each instruction has its own datapath, and each stage is labeled

by the physical resource used in that stage, corresponding to the portions of the datapath.

 IM represents the instruction memory and the PC in the instruction fetch stage, Reg

stands for the register file and sign extender in the instruction decode/register file read

stage (ID), and so on.

 To maintain proper time order, the datapath breaks the register file into two logical parts:

registers read during register fetch (ID) and registers written during write back (WB).

 This dual use is represented by drawing the unshaded left half of the register file using

dashed lines in the ID stage, when it is not being written, and the unshaded right half

in dashed lines in the WB stage, when it is not being read.

 As before, we assume the register file is written in the first half of the clock cycle and

the register file is read during the second half.

Computer Organization & Instructions 3.28

28

Operations in each stage of Pipeline:

Fig 3.19: Five stages of Pipeline

1. Instruction fetch:

 The instruction is read from memory using the address in the PC and then placed

in the IF/ID pipeline register.

 The IF/ID pipeline register is similar to the Instruction register. The PC address is

incremented by 4 and then written back into the PC to be ready for the next clock

cycle.

 This incremented address is also saved in the IF/ID pipeline register in case it is

needed later for an instruction, such as beq.

 The computer cannot know which type of instruction is being fetched, so it must

prepare for any instruction, passing potentially needed information down the pipeline.

2. Instruction decode and register file read:

 The instruction portion of the IF/ID pipeline register supplying the 16-bit immediate

field, which is sign-extended to 32 bits, and the register numbers to read the two

registers.

The Processor 3.29

 All three values are stored in the ID/EX pipeline register, along with the incremented

PC address.

 Transfer everything that might be needed by any instruction during a later clock cycle.

 These first two stages are executed by all instructions, since it is too early to know

the type of the instruction.

3. Execute or address calculation:

 The load instruction reads the contents of register 1 and the sign-extended immediate

from the ID/EX pipeline register and adds them using the ALU.

 That sum is placed in the EX/MEM pipeline register.

4. Memory access:

 The load instruction reading the data memory using the address from the EX/MEM

pipeline register and loading the data into the MEM/WB pipeline register.

 The register containing the data to be stored was read in an earlier stage and stored

in ID/EX.

 The only way to make the data available during the MEM stage is to place the data

into the EX/MEM pipeline register in the EX stage, just as we stored the effective

address into EX/MEM.

5. Write back:

 This involves reading the data from the MEM/WB pipeline register and writing it

into the register file.

 PIPELINED CONTROL

This section describes the necessary control lines for implementing a pipelined

datapath. The control logicis needed for PC source, register destination number, and ALU

control. A 6-bit funct field (function code) is needed for the instruction in the EX stage as

input to ALU control, so these bits must also be included in the ID/EX pipeline register.

These 6 bits are the 6 least significant bits of the immediate field in the instruction, so the

ID/EX pipeline register can supply them from the immediate field since sign extension leaves

these bits unchanged.

Computer Organization & Instructions 3.30

30

Fig 3.20: Control signals in single cycled data path

Sequence of operations:

 The PC is written on each clock cycle, so there is no separate write signal for the

PC.

 There are no separate write signals for the pipeline registers (IF/ID, ID/EX, EX/

MEM, and MEM/WB), since the pipeline registers are also written during each clock

cycle.

 To specify control for the pipeline, set the control values during each pipeline stage.

Because each control line is associated with a component active in only a single

pipeline stage.

 The control lines are also divided into five groups according to the pipeline stage:

The Processor 3.31

Data hazards occur when the pipeline must be stalled because one step must

waitfor another to complete.

1. Instruction fetch: The control signals to read instruction memory and to write the PC

are always asserted, so there is nothing special to control in this pipeline stage.

2. Instruction decode/register file read: As in the previous stage, the same thing happens

at every clock cycle, so there are no optional control lines to set.

3. Execution/address calculation: The signals to be set are RegDst, ALUOp, and ALUSrc.

The signals select the Result register, the ALU operation, and either Read data 2 or a sign-

extended immediate for the ALU.

4. Memory access: The control lines set in this stage are Branch, MemRead, and MemWrite.

These signals are set by the branch equal, load, and store instructions, respectively.

5. Write back: The two control lines are MemtoReg, which decides between sending the

ALU result or the memory value to the register file, and RegWrite, which writes the

chosen value.

Implementing control means setting the nine control lines to these values in each

stage for each instruction (explained in simple implementation scheme). The simplest way

to do this is to extend the pipeline registers to include control information.

 DATA HAZARDS

Data hazards occur in register files due to inconsistencies in file. This is an occurrence

in which a planned instruction cannot execute in the proper clock cycle because data that

is needed to execute the instruction is not yet available. In other words, data hazards occur

when the pipeline must be stalled because one step must wait for another to complete. This

is due to the data dependence.

Forwarding or Bypassing

Forwarding or bypassing is a method of resolving a data hazard by retrieving the

missing data element from internal buffers rather than waiting for it to arrive from programmer

visible registers or memory. This can be done by adding extra memory element or hardware

that acts as an internal buffer.

Computer Organization & Instructions 3.32

32

A specific form of data hazard in which the data requested by a load instruction has

not yetbecome available when it is requested. This is Load-use data hazard.

Forwarding cannot be a universal solution to solve data hazards. Consider the following

instructions:

lw $s0, 20($t1)

sub $t2, $s0, $t3

The desired data would be available only after the fourth stage of the first instruction in

the dependence, which is too late for the input of the third stage of sub. Hence, even with

forwarding, there will be a hazard called as load-use data hazard.

Consider the following code:

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

There are several dependences in this code fragment:

 The first instruction, SUB, stores a value into $2.

 That register is used as a source in the rest of the instructions This is no problem

for 1-cycle and multicycledatapath.

 Each instruction executes completely before the next begins.

 This ensures that instructions 2 through 5 above use the new value of $2.

Fig 3.21: Pipelined diagram

The Processor 3.33

 The SUB does not write to register $2 until clock cycle 5 causing 2 data hazards

in our pipelined datapath.

 The AND reads register $2 in cycle 3. Since SUB hasn’t modified the register yet,

this is the old value of $2

 The OR instruction uses register $2 in cycle 4, again before it’s actually updated by

SUB.

To avoid data hazard, rewite the instructions (sll means stall):

sub $2, $1, $3

sll $0, $0, $0

sll $0, $0, $0

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Since it takes two instruction cycles to get the value stored, one solution is for the assembler

to insert no-ops or for compilers to reorder instructions to do useful work while the pipeline

proceeds. Since the pipeline registers already contain the ALU result, we could just forward

the value to later instructions, to prevent data hazards

 In clock cycle 4, the AND instruction can get the value of $1 - $3 from the EX/MEM

pipeline register used by SUB.

 Then in cycle 5, the OR can get that same result from the MEM/WB pipeline register

being used by SUB.

Computer Organization & Instructions 3.34

34

Forward the data as soon as it is available to any units that need it before it is

available to read from the register file. This is forwarding in data hazards.

Fig 3.22: Pipelined dependencies

When an instruction tries to use a register in its EX stage that an earlier instruction

intends to write in its WB stage, we actually need the values as inputs to the ALU. Te general

format for specifying dependencies is given by:

Pipeline register. Field in the register

Example: ID/EX.RegisterRs- refers that the value is found in the pipeline register ID/EX

in the field RegisterRs. The dependencies in the given example are:

 EX/MEM.RegisterRd = ID/EX.RegisterRs

 EX/MEM.RegisterRd = ID/EX.RegisterRt

 MEM/WB.RegisterRd = ID/EX.RegisterRs

 MEM/WB.RegisterRd = ID/EX.RegisterRt

The Processor 3.35

The first hazard in the sequence is on register $2, between the result of sub $2,$1,$3 and

the first read operand of and $12,$2,$5. This hazard can be detected when the and instruction

is in the EX stage and the prior instruction is in the MEM stage.

EX/MEM.RegisterRd = ID/EX.RegisterRs = $2

Forwarding the inputs to the ALU from any pipeline registers done by adding multiplexors

to the input of the ALU and with the proper controls. By this the pipeline can be executed

at full speed in the presence of these data dependences.

 Stalling

Fig 3.23: Introducing stalls in pipelining

A bubble is inserted beginning in clock cycle 4, by changing the and instruction to a nop

(no operation). Note that the and instruction is really fetched and decoded in clock cycles

2 and 3, but its EX stage is delayed until clock cycle 5. The or instruction is fetched in clock

cycle 3, but its IF stage is delayed until clock cycle 5. After insertion of the bubble, all

the dependences go forward in time and no further hazards occur.

In short forwarding requires:

Computer Organization & Instructions 3.36

36

Control or branching hazards arise from resource conflicts when the hardware

cannot support all possible combinations of instructions in simultaneous

overlapped execution.

(a) Recognizing when a potential data hazard exists, and

(b) Revising the pipeline to introduce forwarding paths.

 CONTROL HAZARDS

This occurs when there is a need for an instruction to take a decision based on the

results of another instruction’s result that has no yet completed its execution.

Instructions that disrupt the sequential flow of control present problems for pipelines are

potential candidates for control hazards. The effects of these instructions cannot be exactly

determined until late in the pipeline, so instruction fetch cannot continue unless it is explicitly

managed. The following types of instructions can introduce control hazards:

 Unconditional branches

 Conditional branches

 Indirect branches

 Procedure calls

 Procedure returns

Example:

 ld r2, 0(r4) // r2 := memory at r4

ld r3, 4(r4) // r3 := memory at r4+4

sub r1, r2, r3 // r1 := r2 - r3

beqz r1, L1 // if r1 is not 0, goto L1

ldi r1, 1 // r1 := 1

L1: not r1, r1 // r1 := not r1

 st r1, 0(r5) // store r1 to memory at r5

The Processor 3.37

This code compares two memory locations and stores the result of that comparison

(1 for equal, 0 for not equal) to another location. If the beqz branch is taken, then a 1 is

stored; otherwise, a 0 is stored. The beqz instruction sources two hazards:

1. When the beqz instruction is in the decode stage, the sub instruction is in the execute

stage. The branch cannot read the output of the sub until it has been written to the

register file; if it reads it early, it will read the wrong value.

2. The instruction that is to be fetched after beqz is not known in advance. At this point,

the status of the branch instruction is totally unknown whether it depends on the

previous instruction or not. This is because it hasn’t been decoded yet, so bypassing

also can’t help in resolving the hazard. Even if the decision is known, the location

from where to fetch the instruction if the branch is taken is unknown because the

effective address computation for branches do not happen until the EX stage.

Solutions for control hazards:

The following are solutions that can reduce control hazards:

1. Pipeline stall cycles: Freeze the pipeline until the branch outcome and target are

known, then proceed with fetch. Thus, every branch instruction incurs a penalty equal

to the number of stall cycles. This solution is unsatisfactory if the instruction mix

contains many branch instructions, and/or the pipeline is very deep.

2. Branch delay slots: The instruction set architecture is constructed such that one or

more instructions sequentially following a conditional branch instruction are executed

whether or not the branch is taken. The compiler or assembly language writer must

fill these branch delay slots with useful instructions or NOPs (no-operation opcodes).

3. Branch prediction: The outcome and target of conditional branches are predicted

using some heuristic. Instructions are speculatively fetched and executed down the

predicted path, but results are not written back to the register file until the branch

is executed and the prediction is verified. When a branch is predicted, the processor

enters a speculative mode in which results are written to another register file that

mirrors the architected register file. Another pipeline stage called the commit stage

is introduced to handle writing verified speculatively obtained results back into the

real register file. Branch predictors can’t be 100% accurate, so there is still a penalty

for branches that is based on the branch misprediction rate.

Computer Organization & Instructions 3.38

38

Branch prediction is a method of resolving a branch hazard that assumes a given

outcome for the branch and proceeds from that assumption rather than waiting

for the actual outcome.

4. Indirect branch prediction: Branches such as virtual method calls, computed gotos

and jumps through tables of pointers can be predicted using various techniques.

5. Return address stack (RAS): Procedure returns are a form of indirect jump that

can be perfectly predicted with a stack as long as the call depth doesn’t exceed the

stack depth. Return addresses are pushed onto the stack at a call and popped off at

a return.

 Static Branch Prediction

 In general, the bottoms of loops are branches that jump back to the top of the loop.

These types of loops can easily be predicted as branch taken.

 The decision about a branch whether taken or not taken is arrived from the heuristics.

 Dynamic hardware predictors, guess the behaviour of each branch and may change

predictions for a branch over the life of a program.

 Dynamic prediction is performed by maintaining a history for each branch as taken

or untaken, and then using the recent past behavior to predict the future.

 When the guess is wrong, the pipeline control must ensure that the instructions

following the wrongly guessed branch have no effect and must restart the pipeline

from the proper branch address.

Fig 3.24 a) Branch not taken

The Processor 3.39

The delayed branch always executes the next sequential instruction, with the branch

taking place after that one instruction delay. It is hidden from the MIPS assembly

language programmer because the assembler can automatically arrange the

instructions to get the branch behaviour desired by the programmer.

Fig 3.24 b) Branch taken

Branch Stalling

 This is stalling the instructions until the branch is complete is too slow.

 One improvement over branch stalling is to predict that the branch will not be taken

and thus continue execution down the sequential instruction stream.

 If the branch is taken, the instructions that are being fetched and decoded must be

discarded. Execution continues at the branch target.

 If branches are untaken half the time, and if it costs little to discard the instructions,

this optimization halves the cost of control hazards.

 To discard instructions, change the original control values to 0s.

Delayed Branches:

 One way to improve branch performance is to reduce the cost of the taken branch.

 The MIPS architecture was designed to support fast single-cycle branches that could

be pipelined with a small branch penalty.

Computer Organization & Instructions 3.40

40

Prediction of branches at runtime using runtime information is called dynamic

branch prediction.

 Moving the branch decision up requires two actions to occur earlier:

1. Computing the branch target address

2. Evaluating the branch decision.

 The easy part of this change is to move up the branch address calculation.

 Despite these difficulties, moving the branch execution to the ID stage is an improvement,

because it reduces the penalty of a branch to only one instruction if the branch is

taken, namely, the one currently being fetched.

 Dynamic Branch Prediction

 One implementation of that approach is a branch prediction buffer or branch history

table.

 A branch prediction buffer is a small memory indexed by the lower portion of the

address of the branch instruction.

 The memory contains a bit that says whether the branch was recently taken or not.

1 bit Prediction scheme

This scheme will be incorrect twice when not taken:

 Assume predict_bit=0 to start (indicates branch not taken) and loop control is at the

bottom of the code.

 First iteration in the loop, the predictor mispredicts the branch since the branch is

taken back to the top of the loop. Now invert the prediction bit (predict_bit=1).

 Till the branch is taken, the prediction is correct.

 Exiting the loop, the predictor againmispredicts the branch since this time the branch

is not taken falling out of the loop. Now invert the prediction bit (predict_bit=0).

The Processor 3.41

Loop: first loop instruction

Second loop instruction

-

-

-

Last loop instruction

Bne $1,$2, loop

Fall out instruction

2 bit prediction scheme:

By using 2 bits rather than 1, a branch that strongly favors taken or not taken—as many

branches do—will be mispredicted only once. The 2 bits are used to encode the four

states in the system. The two-bit scheme is a general instance of a counter-based predictor,

which is incremented when the prediction is accurate and decremented otherwise, and

uses the midpoint of its range as the division between taken and not taken.

Fig 3.24: 2 bit prediction scheme

Branch delay slot:

 The slot directly after a delayed branch instruction, which in the MIPS architecture

is filled by an instruction that does not affect the branch.

Computer Organization & Instructions 3.42

42

 The limitations on delayed branch scheduling arise from

(1) the restrictions on the instructions that are scheduled into the delay slots

(2) theability to predict at compile time whether a branch is likely to be taken or

not.

 Delayed branching was a simple and effective solution for a five-stage pipeline

issuing one instruction each clock cycle.

 As processors go to both longer pipelines and issuing multiple instructions per clock

cycle, the branch delay becomes longer, and a single delay slot is insufficient.

 Hence, delayed branching has lost popularity compared to more expensive but more

flexible dynamic approaches.

 EXCEPTIONS

Control is the most challenging aspect of processor design: One of the hardest parts

of control is implementing exceptions and interrupts events other than branches or jumps

that change the normal flow of instruction execution. They were initially created to handle

unexpected events from within the processor, like arithmetic overflow. The term exception

refer to any unexpected change in control flow without distinguishing whether the cause is

internal or external. Interrupt is when the event is externally caused. The following are the

causes of exceptions:

 R-type arithmetic overflow

 Executing undefined instruction

 I/O device request

 OS service request

 Hardware malfunction

Event Location MIPS term

I/O device request External Interrupt

OS service request Internal Exception

R-type arithmetic overflow Internal Exception

Executing undefined instruction Internal Exception

Hardware malfunction Either Exception / Interrupt

The Processor 3.43

Detecting exceptional conditions and taking the appropriate action is often on the

critical timing path of a processor, which determines the clock cycle time and performance.

Exception Handling in the MIPS Architecture:

 The two types of exceptions that MIPS implementation can generate are executionof

an undefined instruction and an arithmetic overflow.

 The basic action that the processor must perform when an exception occurs is to save

the address of the off ending instruction in the exception program counter (EPC)

and then transfer control to the operating system at some specified address.

 The operating system can then take the appropriate action, which may involve

providing some service to the user program, taking some predefined action in response

to an overflow, or stopping the execution of the program and reporting an error.

 After performing whatever action is required because of the exception, the operating

system can terminate the program or may continue its execution, using the EPC to

determine where to restart the execution of the program.

 For the operating system to handle the exception, it must know the reason for the

exception, in addition to the instruction that caused it.

 There are two main methods used to communicate the reason for an exception.

1. The method used in the MIPS architecture is to include a status register :the Cause

register that holds a field indicating the reason of exception.

2. Use vectored interrupts. In a vectored interrupt, the address to which control is

transferred is determined by the cause of the exception. This demands the inclusion

of two external registers :

EPC: A 32-bit register used to hold the address of the affected instruction.

Cause: A register used to record the cause of the exception. In the MIPS

architecture, this register is 32 bits, although some bits are currently unused.

Exceptions in a Pipelined Implementation:

A pipelined implementation treats exceptions as another form of control hazard.

For example, suppose there is an arithmetic overflow in an add instruction. Flush the

instructions that follow the add instruction from the pipeline and begin fetching instructions

Computer Organization & Instructions 3.44

44

The simultaneous execution of multiple instructions from a program is called

Instruction Level Parallelism (ILP). It is a measure of how many of the instructions

in a computer program can be executed simultaneously.

In Multiple Issue technique, multiple instructions are launched in one clock cycle.

from the new address. This is done by turning the IF stage into a nop. Because of careful

planning, the overflow exception is detected during the EX stage; hence, we can use the

EX.Flush signal to prevent the instruction in the EX stage from writing its result in the WB

stage. The final step is to save the address of the off ending instruction in the exception

program counter (EPC). In reality, we save the address +4, so the exception handling

the software routine must first subtract 4 from the saved value.

 PARALLELISM VIA INSTRUCTIONS

The ILP increases the depth of the pipeline to overlap more instructions. This is

facilitated by adding extra hardware resources to replicate the internal component of the

computer, so that it can launch multiple instructions in every pipeline stages. This is called

multiple issue.

This will improve the performance of the processor. The pipelined performance is estimated

from the given formula (CPI-Cycles Per Instruction):

Launching multiple instructions per stage allows the instruction execution rate (CPI)

to be less than 1. To obtain substantial increase in performance, we need to exploit

parallelism across multiple basic blocks.

Implementing multiple issue processor

 Static multiple issue processor: Here the decisions are made by the compiler before

execution.

 Dynamic multiple issue processor: Here the decisions are made during the execution

by the processor.

Pipeline CPI = Ideal CPI + Structural stalls + RAW stalls + WAR stalls + WAW

stalls + Control stall

The Processor 3.45

Speculation is an approach whereby the compiler or processor guesses the outcome

of an instruction to remove it as a dependence in executing other instructions.

The challenges in implementing a multiple issue pipeline are:

 Packaging instructions into issue slots: Issue slots are the positions from which instructions

could be issued in a given clock cycle. To find the exact location of the current issue

slot is the greatest challenge. So the process partiallyhandled by the compiler. ; In

dynamic issue designs, it is normally dealt withat runtime by the processor.

 Dealing with data and control hazards: In static issue processors, the consequences

of data and control hazards are handled statically bythe compiler. In dynamic issue

processors, use hardware techniques to mitigate the control and data hazard.

Speculation

 This allows the execution of complete instructions or parts of instructions before being

certain whether this execution should take place.

 A commonly used form of speculative execution is control flow speculation where

instructions past a control flow instruction are executed before the target of the control

flow instruction is determined.

 Speculation may be done in the compiler or by the hardware.

 The uses speculation to reorder instructions, moving an instruction across a branch or

a load across a store. The compiler usually inserts additional instructions that check the

accuracy of the speculation and provide a fix-up routine to use when the speculation was

incorrect.

 The processor hardware can perform the same transformation at runtime using techniques.

The processor usually buffers the speculative results until it knows they are no longer

speculative. If the speculation was correct, the instructions are completed by allowing

the contents of the buffers to be written to the registers or memory. If the speculation

was incorrect, the hardware flushes the buffers and re executes the correct instruction

sequence.

Issue in Speculation:

Speculating on certain instructions may introduce exceptions that were formerly not

present. The result would be that an exception that should not have occurred will occur. In

Computer Organization & Instructions 3.46

46

The set of instructions that issues together in 1 clock cycle; the packet may

bedetermined statically by the compiler or dynamically by the processor.

Loop Unrolling is a technique to get more performance from loops that access

arrays, inwhich multiple copies of the loop body are made and instructions from

different iterationsare scheduled together.

compiler-based speculation, such problems are avoided by adding special speculation support

that allows such exceptions to be ignored until it is clear that they really should occur. In

hardware-based speculation, exceptions are simply buffered until it is clear that the instruction

causing them is no longer speculative and is ready to complete; at that point the exception

is raised, and normal exception handling proceeds.

Static Multiple Issue

Static multiple-issue processors use compiler to assist with packaginginstructions and

handling hazards. The issue packet is treated as one large instruction with multiple operations.

This is otherwise termed as Very Long Instruction Word(VLIW).Since the Intel IA-64

architecture supports this approach, it is known as Explicitly Parallel Instruction Computer

(EPIC).

Loop unrolling is a technique used by compiler to solve static multiple issue.

Loop unrolling is a compiler optimization applied to certain kinds of loops to reduce the

frequency of branches and loop maintenance instructions. It is easily applied to sequential

array processing loops where the number of iterations is known prior to execution of the

loop.Afterunrolling, there is more ILP available by overlapping instructions from different

iterations.

 During the unrolling process, the compiler introduced additional registers, since

multiple copies of the loop body are made.

 Augmenting new registers in loop unrolling is called register renaming. This is done

to eliminate dependences that are not true data dependences, but may lead to potential

hazards or may prevent the compiler from scheduling the code.

 To identify the independent instructions, it is necessary to trace the data dependencies.

 If there is no data values flow between the instructions, it is termed as anti-dependence

or name dependence. This is an ordering forced purely by the reuse of a name.

The Processor 3.47

 Renaming the registers during the unrolling process allows the compiler tothe independent

instructions for better code schedule.

 An instruction group is a sequence of consecutive instructions with no register data

dependences among them.

 All the instructions in a group could be executed in parallel if sufficient hardware

resources existed and if any dependences through memory were preserved.

 The compiler must explicitly indicate the boundary between one instruction group

and another. This boundary is indicated by placing a stop between two instructions

that belong to different groups.

 An explicit indicator of a break between independent and dependent instructions is

termed as stop.

 Predication is a technique that can be used to eliminate branches by making the

execution of an instruction dependent on a predicate, rather than dependent on a

branch.

 Speculation and Predication improves ILP. Branches reduce the opportunity to exploit

ILP by restricting the movement of code.

 Branches within a loop cannot be eliminated by loop unrolling. Predicationeliminates

this branch, by allowing more flexible exploitation ofparallelism.

 Speculation consists of separate support for control speculation, which deals with

deferring exceptions for speculatedinstructions, and memory reference speculation,

which supports speculation of loadinstructions.

 Deferred exception handling is supported by adding speculative loadinstructions,

which, when an exception occurs, tag the result as poison.

 Poison is the result generatedwhen a speculative load yieldsan exception, or an

instructionuses a poisoned operand. When a poisoned result is used by an instruction,

the result is also poison, the software can thencheck for a poisoned result when it

knows that the execution is no longer speculative.

 The speculation on memory references can be made by moving loads earlier than

stores on which they may depend. This is done with an advanced load instruction.

Computer Organization & Instructions 3.48

48

 Advanced load is speculative load instructionwith support to check for aliases that

could invalidate the load. This demands the use of a special table to track the address

that theprocessor loaded from.

 A subsequent instructionmust be used to check the status of the entry after the load

is no longer speculative.

Dynamic Multiple-Issue Processors

 Dynamic multiple issue processors are implemented using superscalar processors

that are capable of executing more thanone instruction per clock cycle.

 The compiler must schedule the instructions to the processors without any dependencies.

 To facilitate this, dynamic pipelinescheduling is performed by providing hardware

supportfor reordering the order ofinstruction execution so as toavoid stalls.

Fig 3.25: Units of dynamic scheduling pipeline

The Processor 3.49

The following are the important components of dynamic scheduling pipelines:

 Instruction Fetch Unit: This unit fetches instructions, decodes them, and sends

eachinstruction to a corresponding functional unit for execution.

 Functional unit: They have buffers, called reservation stations, that hold the operands

and the operation.As soon as the buffer contains all its operands and thefunctional

unit is ready to execute, the result is calculated. When the result is completed, it is

sent to any reservation stations waiting for this particular result as wellas to the

commit unit.

 Commit Unit:This buffers the result until it is safe to put the result intothe register

file or, for a store, into memory. The buffer in the commit unit, called the reorder

buffer, is also used to supply operands, in much the same wayas forwarding logic

does in a statically scheduled pipeline. Once a result is committed to the register file,

it can be fetched directly from there, just as in a normalpipeline.

Operation of dynamic scheduling pipeline:

 When an instruction issues, if either of its operands is in the register file orthe reorder

buffer, it is copied to the reservation station immediately, whereit is buffered until

all the operands and an execution unit are available. Forthe issuing instruction, the

register copy of the operand is no longerrequired, and if a write to that register

occurred, the value could be overwritten.

 If an operand is not in the register file or reorder buffer, it must be waitingto be

produced by a functional unit. The name of the functional unit thatwill produce the

result is tracked. When that unit eventually produces theresult, it is copied directly

into the waiting reservation station from thefunctional unit bypassing the registers.

Dynamic scheduling is often extended by including hardware-based speculation, especially

for branch outcomes. By predicting the direction of a branch, adynamically scheduled

processor can continue to fetch and execute instructionsalong the predicted path.

50

Principle of locality or locality of reference is the tendency of a processor to access

the same set of memory locations repetitively over a short period of time.

Memory hierarchy is a structure that uses multiple levels of memories; as the distance

from the CPU increases, the size of the memories and the access time both increase.

UNIT - IV

MEMORY AND I/O ORGANIZATION

 INTRODUCTION

Memory unit enables us to store data inside the computer. The computer memory always

adheres to principle of locality.

Two different types of locality are:

 Temporal locality: The principle stating that if a data location is referenced

then it will tend to be referenced again soon.

 Spatial locality: The locality principle stating that if a data location is

referenced, data locations with nearby addresses will tend to be referenced soon.

The locality of reference is useful in implementing the memory hierarchy.

A memory hierarchy consists of multiple levels of memory with different speeds and sizes. The

faster memories are more expensive per bit than the slower memories and thus smaller.

Fig 4.1 Memory Hierarchy

Computer Organization & Instructions 4.2

2

Cache memory (CPU memory) is high-speed SRAM that a computer

microprocessor can access more quickly than it can access regular RAM.

This memory is typically integrated directly into the CPU chip or placed on a

separate chip that has a separate bus interconnect with the CPU.

 Main memory is implemented from Dynamic Random Access Memory (DRAM).

 The levels closer to the processor (caches) use Static Random Access Memory

(SRAM).

 DRAM is less costly per bit than SRAM, although it is substantially slower.

 For each k, the faster, smaller device at level k serves as a cache for the larger,

slower device at level k+1.

 The computer programs tend to access the data at level k more often that at level

k+1.

 The storage at level at k+1 can be slower

Fig 4.2: Data access by processor

The data transfer between various levels of memory is done through blocks. The minimum

unit of information is called a block. If the data requested by the processor appears in some block

Memory and I/O Organization 4.3

The fraction of memory accesses found in a cache is termed as hit rate or hit ratio.

in the upper level, this is called a hit. If the data is not found in the upper level, the request is

called a miss. The lower level in the hierarchy is then accessed to retrieve the block containing

the requested data.

Miss rate is the fraction of memory accesses not found in a level of the memory hierarchy.

Hit time is the time required to access a level of the memory hierarchy, including the time

needed to determine whether the access is a hit or a miss.

Because the upper level is smaller and built using faster memory parts, the hit time

will be much smaller than the time to access the next level in the hierarchy, which is the

major component of the miss penalty.

 MEMORY HIERARCHY

A memory unit is a collection of semi-conductor storage cells with circuits to access

the data stored in them. The data storage in memory is done in words. The number of bits

in a word depends on the architecture of the computer. Generally a word is always multiple

of 8. Memory is accessed through unique system assigned address. The accessing of data

from memory is based on principle of locality.

 Principle of Locality

The locality of reference or the principle of locality is the term applied to situations

where the same value or related storage locations are frequently accessed. There are three

basic types of locality of reference:

 Temporal locality: Here a resource that is referenced at one point in time is referenced

again soon afterwards.

 Spatial locality: Here the likelihood of referencing a storage location is greater if a

storage location near it has been recently referenced.

 Sequential locality: Here storage is accessed sequentially, in descending or ascending

order.The locality or reference leads to memory hierarchy.

Miss penalty is the time required to fetch a block into a level of the memory

hierarchyfrom the lower level, including the time to access the block, transmit it

from one level to the other, and insert it in the level that experienced the miss.

Computer Organization & Instructions 4.4

4

 Need for memory hierarchy

Memory hierarchy is an approach for organizing memory and storage systems. It

consist of multiple levels of memory with different speeds and sizes. The following are the

reasons for such organization:

 Fast storage technologies cost more per byte and have less capacity

 Gap between CPU and main memory speed is widening

 Well-written programs tend to exhibit good locality.

The memory hierarchy is shown in Fig 4.1. The entire memory elements of the computer

fall under the following three categories:

 Processor Memory:

This is present inside the CPU for high-speed data access. This consists of small set

of registers that act as temporary storage. This is the costliest memory component.

 Primary memory:

This memory is directly accessed by the CPU. All the data must be brought inside main

memory before accessing them. Semiconductor chips acts as main memory.

 Secondary memory:

This is cheapest, large and relatively slow memory component. The data from the

secondary memory is accessed by the CPU only after it is loaded to main memory.

There is a trade-off among the three key characteristics of memory namely-

 Cost

 Capacity

 Access time

Terminologies in memory access

 Block or line: The minimum unit of information that could be either present or totally

absent.

 Hit: If the requested data is found in the upper levels of memory hierarchy it is called

hit.

Memory and I/O Organization 4.5

 Miss: If the requested data is not found in the upper levels of memory hierarchy it is

called miss.

 Hit rate or Hit ratio: It is the fraction of memory access found in the upper level .It

is a performance metric.

Hit Ratio = Hit/(Hit + Miss)

 Miss rate: It is the fraction of memory access not found in the upper level (1-hit rate).

 Hit Time: The time required for accessing a level of memory hierarchy, including the

time needed for finding whether the memory access is a hit or miss.

 Miss penalty: The time required for fetching a block into a level of the memory

hierarchy from the lower level, including the time to access, transmit, insert it to new

level and pass the block to the requestor.

 Bandwidth: The data transfer rate by the memory.

 Latency or access time: Memory latency is the length of time between the memory’s

receipt of a read request and its release of data corresponding with the request.

 Cycle time: It is the minimum time between requests to memory.

Fig 4.2: Memory level vs Access Time

The memory access time increases as the level increases. Since the CPU registers

are located in very close proximity to the CPU they can be accessed very quickly and they

are the more costly. As the level increases, the memory access time also increases thereby

decreasing the costs.

Computer Organization & Instructions 4.6

6

 Levels in Memory Hierarchy

The following are the levels in memory hierarchy:

 CPU Registers:

They are at the top most level of this hierarchy, they hold the most frequently used data.

They are very limited in number and are the fastest. They are often used by the CPU

and the ALU for performing arithmetic and logical operations, for temporary storage

of data.

 Static Random Access Memory (SRAM):

Static Random Access Memory (Static RAM or SRAM) is a type of RAM that holds

data in a static form, that is, as long as the memory has power. SRAM stores a bit of

data on four transistors using two cross-coupled inverters. The two stable states characterize

0 and 1. During read and write operations another two access transistors are used to

manage the availability to a memory cell.

 Main memory or Dynamic Random Access Memory (DRAM):

Dynamic random access memory (DRAM) is a type of memory that is typically used

for data or program code that a computer processor needs to function. In other words

it is said to be the main memory of the computer. Random access allows processor

to access any part of the memory directly rather than having to proceed sequentially

from a starting place. The main advantages of DRAM are its simple design, speed and

low cost in comparison to alternative types of memory. The main disadvantages of

DRAM are volatility and high power consumption relative to other options.

 Local Disks (Local Secondary Storage):

A local drive is a computer disk drive that is installed directly within the host or the

local computer. It is a computer’s native hard disk drive (HDD), which is directly

accessed by the computer for storing and retrieving data. It is a cheaper memory with

more memory access time.

 Remote Secondary Storage:

This includes Distributed file system (DFS) and online storage like cloud. The storage

area is vast with low cost but larger access time.

Memory and I/O Organization 4.7

Distinction between Static RAM and Dynamic RAM

SRAM DRAM

Stores data till the power is supplied. Stored data only for few milliseconds

irrespective of the power supply.

Uses nearly 6 transistors for each memory cell. Uses single transistor and capacitor

for each memory cell.

Do not refresh the memory cell. Refreshing circuitry is needed.

Faster data access. Slower access.

Consumes more power. Low power consumption.

Cost pet bit is high. Comparatively lower costs.

They are made of more number of

components per cells.

They are made of less number of

components per cells.

 CLASSIFICATION OF MEMORY

Fig 4.3: Classification of Memory

The instructions and data are stored in memory unit of the computer system are divided into

following main groups:

 Main or Primary memory

 Secondary memory.

Computer Organization & Instructions 4.8

8

Primary Memory:

Primary memory is the main area in a computer in which data is stored for quick access

by the computer’s processor. It is divided into two parts:

i) Random Access Memory (RAM):

RAM is a type of computer primary memory. It accessed any piece of data at any

time. RAM stores data for as long as the computer is switched on or is in use. This type

of memory is volatile. The two types of RAM are:

 Static RAM: This type of RAM is static in nature, as it does not have to be refreshed

at regular intervals. Static RAM is made of large number of flip-flops on IC. It is being

costlier and having packing density.

 Dynamic RAM:This type of RAM holds each bit of data in an individual capacitor in

an integrated circuit. It is dynamic in the sense that the capacitor charge is repeatedly

refreshed to ensure the data remains intact.

ii) Read Only Memory (ROM):

The ROM is nonvolatile memory. It retains stored data and information if the power

is turned off. In ROM, data are stored permanently and can’t alter by the programmer.There

are four types of ROM:

 MROM (mask ROM): MROM (mask ROM) is manufacturer-Programmed ROM in

which data is burnt in by the manufacturer of the electronic equipment in which it is

used and it is not possible for a user to modify programs or data stored inside the ROM

chip.

 PROM (programmable ROM): PROM is one in which the user can load and store

“read-only” programs and data. In PROM the programs or data are stored only fast time

and the stored data cannot modify the user.

 EPROM (erasable programmable ROM): EPROM is one in which is possible to erase

information stored in an EPROM chip and the chip can be reprogrammed to store new

information. When an EPROM is in use, information stored in it can only be “read”

and the information remains in the chip until it is erased.

 EEPROM (electronically erasable and programmable ROM):EEPROM is one type

of EPROM in which the stored information is erased by using high voltage electric pulse.

It is easier to alter information stored in an EEPROM chip.

Memory and I/O Organization 4.9

The basic memory element called cell can be in two states (0 or 1). The data can

be written into the cell and can be read from it.

Secondary Memory:

Secondary memory is where programs and data are kept on a long time basis. It is

cheaper from of memory and slower than main or primary memory. It is non-volatile and

cannot access data directly by the computer processor. It is the external memory of the

computer system.

Example: hard disk drive, floppy disk, optical disk/ CD-ROM.

 MEMORY CHIP ORGANISATION

A memory consists of cells in the form of an array. The basic element of the

semiconductor memory is the cell. Each cell is capable of storing one bit of information.

Each row of the cells constitutes a memory words and all cells of a row are connected to

a common line referred to as a word line. AW×b memory has w words, each word having

‘b’ number of bits.

Fig 4.4: Organisation of 16 x 8 memory

Computer Organization & Instructions 4.10

10

0, 1, 3,… 15.
 In the above diagram there are 16 memory locations named as w w w w Each

location can store atmost 8 bits of data (b
0
, b

1
, b

3,
…, b

7
). Each location (w

n
) is the

wordline. The wordline of Fig 4.4 is 8.

 Each row of the cell is a memory word. The memory words are connected to a common

line termed as word line. The word line is activated based on the address it receives

from the address bus.

 An address decoder is used to activate a word line.

 The cells in the memory are connected by two bit lines (column wise). These are

connected to data input and data output lines through sense/ write circuitry.

 Read Operation: During read operation the sense/ write circuit reads the information

by selecting the cell through wordline and bit lines. The data from this cell is transferred

through the output data line.

 Write Operation: During write operation, the sense/ write circuitry gets the data and

writes into the selectedcell.

 The data input and ouput line of sense / write circuit is connected to a bidirectional

data line.

 It is essential to have n bus lines to read 2nwords.

Organisation of 1M x 1 memory chip:

Theorganisation of 1024 x 1 memory chips, has 1024 memory words of size 1 bit

only. The size of data bus is 1 bit and the size ofaddress bus is 10 bits. A particular memory

location is identified by thecontents of memory address bus. A decoder is used to decode

the memory address.

Organisation of memory word as a row:

 The whole memory address bus is usedtogether to decode the address of the

specifiedlocation.

.

Memory and I/O Organization 4.11

Fig 4.5: Organisation of memory word as row

Organisation ofseveral memory words in row:

 One group is used to form the row address and the second group is used to form the

column address.

 The 10-bit address is divided into two groups of 5 bits each to form the row and column

address of the cell array.

 A row address selects a row of 32 cells, all of which could be accessed in parallel.

 Regarding the column address, only one of these cells is connected to the external data

line via the input output multiplexers

Computer Organization & Instructions 4.12

12

Fig 4.6: Organisation ofseveral memory words in row

Signals used in memory chip:

 A memory unit of 1MB size is organised as 1M x 8 memory cells.

 It has got220 memory location and each memory location contains 8 bits of information.

 The size of address bus is20 and the size of data bus is 8.

 The number of pins of a memory chip depends on the data bus and address bus of the

memory module.

 To reduce the number of pins required for the chip, thecells are organized in the form

of a square array.

 The address bus is divided into two groups, one forcolumn address and other one is

for row address.

 In this case, high- and low-order 10 bits of 20-bitaddress constitute of row and column

address of a given cell, respectively.

 In order to reduce thenumber of pin needed for external connections, the row and column

addresses are multiplexed on tenpins.

Memory and I/O Organization 4.13

 During a Read or a Write operation, the row address is applied first. In response to a

signal pulseon the Row Address Strobe (RAS) input of the chip, this part of the address

is loaded into the rowaddress latch.

 All cell of this particular row is selected. Shortly after the row address is latched, the

column address isapplied to the address pins.

 It is loaded into the column address latch with the help of Column AddressStrobe (CAS)

signal,similar to RAS.

 The information in this latch is decoded and the appropriateSense/Write circuit is

selected.

Fig 4.7: Signals in accessing the memory

 Each chip has a control input line called Chip Select (CS). A chip can be enabled to

accept data input or to place the data on the output bus by setting its Chip Select input

to 1.

 The address bus for the 64K memory is 16 bits wide.

 The high order two bits of the address are decoded to obtain the four chip select control

signals.

Computer Organization & Instructions 4.14

14

Cache memory or CPU memory, is high-speed SRAM that a processor can access

more quickly than a regular RAM. This memory is integrated directly into the

CPU chip or placed on a separate chip that has a separate bus interconnect

with the CPU.

 The remaining 14 address bits are connected to the address lines of all the chips.

 They are used to access a specific location inside each chip of the selected row.

 The R/ W inputs of all chips are tied together to provide a common read / write control.

 CACHE MEMORY

The cache memory exploits the locality of reference to enhance the speed of the

processor.

The cache memory stores instructions and data that are more frequently used or data

that is likely to be used next. The processor looks first in the cache memory for the data.

If it finds the instructions or data then it does perform a more time-consuming reading of

data from larger main memory or other data storage devices.

The processor do not need to know the exact location of the cache. It can simply

issue read and write instructions. The cache control circuitry determines whether the requested

data resides in the cache.

 Cache and temporal reference: When data is requested by the processor, the data

should be loaded in the cache and should be retained till it is needed again.

 Cache and spatial reference: Instead of fetching single data, a contiguous block of

data is loaded into the cache.

Terminologies in Cache

 Split cache: It has separate data cache and a separate instruction cache. The two caches

work in parallel, one transferring data and the other transferring instructions.

 A dual or unified cache:The data and the instructions are stored in the same cache.

A combined cache with a total size equal to the sum of the two split caches will usually

have a better hit rate.

 Mapping Function: The correspondence between the main memory blocks and those

in the cache is specified by a mapping function.

Memory and I/O Organization 4.15

Hit ratio = hit / (hit + miss) = Number of hits/ Total accesses to the cache

CPU execution time=(CPU clock cycles + memory stall cycles (if any))

x Clock cycle time

 Cache Replacement: When the cache is full and a memory word that is not in the cache

is referenced, the cache control hardware must decide which block should be removed

to create space for the new block that contains the referenced word. The collection of

rules for making this decision is the replacement algorithm.

 Cache performance:

When the processor needs to read or write a location in main memory, it first checks

for a corresponding entry in the cache.If the processor finds that the memory location is in

the cache, a cache hit has said to be occurred. If the processor does not find the memory

location in the cache, a cache miss has occurred. When a cache miss occurs, the cache

replacement is made by allocating a new entry and copies in data from main memory. The

performance of cache memory is frequently measured in terms of a quantity called Hit ratio.

Miss penalty or cache penalty is the sum of time to place a bock in the cache and time to

deliver the block to CPU.

Cache performance can be enhanced by using higher cache block size, higher associativity,

reducing miss rate, reducing miss penalty, and reducing the time to hit in the cache. CPU

execution Time of a given task is defined as the time spent by the system executing that

task, including the time spent executing run-time or system services.

The memory stall cycles are a measure of count of the memory cycles during which the

CPU is waiting for memory accesses. This is dependent on caches misses and cost per miss

(cache penalty).

Memory stall cycles = number of cache misses x miss penalty

= Instruction Count x (misses/ instruction) x miss penalty

= Instruction Count (IC) x (memory access/ instruction) x miss penalty

= IC x Reads per instruction x Read miss rate X Read miss penalty

+ IC x Write per instruction x Write miss rate X Write miss penalty

Miss Penalty= time for block replacement + time to deliver the block to CPU

Computer Organization & Instructions 4.16

16

Cache mapping is a technique by which the contents of main memory

are brought into the cache memory.

Misses / instruction = (miss rate x memory access)/ instruction

Issues in Cache memory:

 Cache placement: where to place a block in the cache?

 Cache identification: how to identify that the requested information is available in the

cache or not?

 Cache replacement: which block will be replaced in the cache, making way for an

incoming block?

 Cache Mapping Policies:

These policies determine the way of loading the main memory to the cache block.

Main memory is divided into equal size partitions called as blocks or frames. The cache

memory is divided into fixed size partitions called as lines. During cache mapping, block

of main memory is copied to the cache and further access is made from the cache not from

the main memory.

Fig 4.8: Cache mapping

Memory and I/O Organization 4.17

The direct mapping concept is if the ith block of main memory has to be placed

at the jth block of cache memory.j = i % (number of blocks in cache memory)

There are three different cache mapping policies or mapping functions:

i) Direct mapping

ii) Fully Associative mapping

iii) Set Associative mapping

Direct Mapping

 The simplest technique is direct mapping that maps each block of main memory into

only one possible cache line.

 Here, each memory block is assigned to a specific line in the cache.

 If a line is previously taken up by a memory block and when a new block needs to be

loaded, then the old block is replaced.

 Direct mapping‘s performance is directly proportional to the Hit ratio.

 Consider a 128 block cache memory. Whenever the main memory blocks 0, 128, 256

are loaded in the cache, they will be allotted cache block 0, since j= (0 or 128 or 256)

% 128 is zero).

 Contention or collision is resolved by replacing the older contents with latest contents.

 The placement of the block from main memory to the cache is determined from the

16 bit memory address.

 The lower order four bits are used to select one of the 16 words in the block.

 The 7 bit block field indicates the cache position where the block has to be stored.

 The 5 bit tag field represents which block of main memory resides inside the cache.

 This method is easy to implement but is not flexible.

 Drawback: The problem was that every block of main memory was directly mapped

to the cache memory. This resulted in high rate of conflict miss. Cache memory has

to be very frequently replaced even when other blocks in the cache memory were present

as empty.

Computer Organization & Instructions 4.18

18

Fig 4.9: Direct memory mapping

Associative Mapping:

 The associative memory is used to store content and addresses of the memory word.

 Any block can go into any line of the cache. The 4 word id bits are used to identify

which word in the block is needed and the remaining 12 bits represents the tag bit that

identifies the main memory block inside the cache.

 This enables the placement of any word at any place in the cache memory. It is

considered to be the fastest and the most flexible mapping form.

 The tag bits of an address received from the processor are compared to the tag bits of

each block of the cache to check, if the desired block is present. Hence it is known

as Associative Mapping technique.

 Cost of an associated mapped cache is higher than the cost of direct-mapped because

of the need to search all 128 tag patterns to determine whether a block is in cache.

Memory and I/O Organization 4.19

Fig 4.10: Associative Mapping

Set associative mapping:

 It is the combination of direct and associative mapping technique.

 Cache blocks are grouped into sets and mapping allow block of main memory to reside

into any block of a specific set.

 This reduces contention problem (issue in direct mapping) with low hardware cost (issue

in associative mapping).

 Consider a cache with two blocks per set. In this case, memory block 0, 64, 128,…..,4032

map into cache set 0 and they can occupy any two block within this set.

 It does this by saying that instead of having exactly one line that a block can map to

in the cache, we will group a few lines together creating a set. Then a block in memory

can map to any one of the lines of a specific set.

 The 6 bit set field of the address determines which set of the cache might contain the

desired block. The tag bits of address must be associatively compared to the tags of

the two blocks of the set to check if desired block is present.

Computer Organization & Instructions 4.20

20

Fig 4.11: Set associative mapping

 Handling Cache misses:

When a program accesses a memory location that is not in the cache, it is called a

cache miss. The performance impact of a cache miss depends on the latency of fetching the

data from the next cache level or main memory. The cache miss handling is done with the

processor control unit and with a separate controller that initiates the memory access and

refills the cache. The following are the steps taken when a cache miss occurs:

 Send the original PC value (PC - 4) to the memory.

 Instruct main memory to perform a read and wait for the memory to complete its access.

 Write the cache entry, putting the data from memory in the data portion of the entry,

writing the upper bits of the address (from the ALU) into the tag field, and turning the

valid bit on.

 Restart the instruction execution at the first step, which will refetch the instruction, this

time finding it in the cache.

 Writing to a cache:

 Suppose on a store instruction, the data is written into only the data cache (without

changing main memory); then, after the write into the cache, memory would have a

different value from that in the cache. This leads to inconsistency.

Memory and I/O Organization 4.21

Write through is a scheme in which writes always update both the cache and the

memory, ensuring that data is always consistent between the two.

Write buffer is a queue that holdsdata while the data are waiting tobe

written to memory.

Write-back is a scheme that handles writes by updating values only to the block in

the cache, then writing the modified block to the lower level of the hierarchy when

the block is replaced.

 The simplest way to keep the main memory and the cache consistent is to always write

the data into both the memory and the cache. This scheme is called write-through.

 With a write-through scheme, every write causes the data to be written to main memory.

These writes will take a long time.

 A potential solution to this problem is deploying write buffer.

 A write buffer stores thedata while it is waiting to be written to memory.

 After writing the data into thecache and into the write buffer, the processor can continue

execution.

 When awrite to main memory completes, the entry in the write buffer is freed.

 If the writebuffer is full when the processor reaches a write, the processor must stall

untilthere is an empty position in the write buffer.

 If the rate at which the memory can complete writes is less than the rate at which the

processor is generating writes, no amount of buffering can help because writes are being

generated faster than the memory system can accept them.

 The rate at which writes are generated may also be less than the rate at which the memory

can accept them, and yet stalls may still occur. To reduce the occurrence of such stalls,

processors usually increase the depth of the write buffer beyond a single entry.

 Another alternative to a write-through scheme is a scheme called write-back. When a

write occurs, the new value is written only to the blockin the cache.

 The modified block is written to the lower level of the hierarchywhen it is replaced.

 Write-back schemes can improve performance, especiallywhen processors can generate

writes as fast or faster than the writes can be handled by main memory; a write-back

scheme is, however, more complex to implement than write-through.

Computer Organization & Instructions 4.22

22

 Cache Replacement Algorithms

When a main memory block needs to be brought into the cache while all the blocks

are occupied, then one of them has to be replaced. This selection of the block to be

replaced is using cache replacement algorithms. Replacement algorithms are only needed

for associative and set associative techniques. The following are the common replacement

techniques:

 Least Recently Used (LRU): This replaces the cache line that has been in the cache

thelongest with no references to it.

 First-in First-out (FIFO): This replaces the cache line that has been in the cache

thelongest.

 Least Frequently Used (LFU): This replaces the cache line that has experienced the

fewestreferences.

 Random: This picks a line at random from the candidate lines.

Example 4.1: Program P runs on computer A in 10 seconds. Designer says clock rate can

be increased significantly, but total cycle count will also increase by 20%. What clock rate

do we need on computer B for P to run in 6 seconds? (Clock rate on A is 100 MHz).

The new machine is B. We want CPU Time_B = 6 seconds.

We know that Cycles count_B = 1.2 Cycles count_A. Calculate Cycles count_A.

CPU Time_A = 10 sec. = ; Cycles count_A = 1000 x 106 cycles

Calculate Clock rate_B:

CPU Time_B = 6 sec. = ; Clock rate_B = = 200 MHz

Machine B must run at twice the clock rate of A to achieve the target execution time.

Example 4.2: We have two machines with different implementations of the same ISA.

Machine A has a clock cycle time of 10 ns and a CPI of 2.0 for program P; machine B has

a clock cycle time of 20 ns and a CPI of 1.2 for the same program. Which machine isfaster?

Let IC be the number of instructions to be executed. Then

Cycles count_A = 2.0 IC

Cycles count_B = 1.2 IC

calculate CPU Time for each machine:

CPU Time_A = 2.0 IC x 10 ns = 20.0 IC ns

CPU Time_B = 1.2 IC x 20 ns = 24.0 IC ns

» Machine A is 20%faster.

Memory and I/O Organization 4.23

Virtual memory is a memory management capability of an operating system that

uses hardware and software to allow a computer to compensate for physical

memory shortages by temporarily transferring data from RAM to disk storage.

Example 4.3: Consider an implementation of MIPS ISA with 500 MHz clock and

– each ALU instruction takes 3 clock cycles,

– each branch/jump instruction takes 2 clock cycles,

– each sw instruction takes 4 clock cycles,

– eachlw instruction takes 5 clock cycles.

Also, consider a program that during its execution executes:

– x=200 million ALU instructions

– y=55 million branch/jump instructions

– z=25 million sw instructions

– w=20 million lw instructions

Find CPU time. Assume sequentially executing CPU.

Clock cycles for a program = (3x + 2y + 4z + 5w)

= 910 x 106 clock cycles

CPU_time = Clock cycles for a program / Clock rate

= 910 x 106 / 500 x 106 = 1.82 sec

Example 4.4: Consider another implementation of MIPS ISA with 1 GHz clock

and

– each ALU instruction takes 4 clock cycles,

– each branch/jump instruction takes 3 clock cycles,

– each sw instruction takes 5 clock cycles,

– eachlw instruction takes 6 clock cycles.

Also, consider the same program as in Example 1.

Find CPI and CPU time. Assume sequentially executing CPU.

CPI = (4x + 3y + 5z + 6w) / (x + y + z + w)

= 4.03 clock cycles/ instruction

CPU time = Instruction count x CPI / Clock rate

= (x+y+z+w) x 4.03 / 1000 x 106

= 300 x106 x 4.03 /1000 x 106

= 1.21 sec

 VIRTUAL MEMORY

Computer Organization & Instructions 4.24

24

The concept of virtual memory in computer organisation is allocating memory from the

hard disk and making that part of the hard disk as a temporary RAM. In other words,

it is a technique that uses main memory as a cache for secondary storage. The motivations

for virtual memory are:

 To allow efficient and safe sharing of memory among multiple programs

 To remove the programming burdens of a small, limited amount of main memory.

Virtual memory provides an illusion to the users that the PC has enough primary memory

left to run the programs. Sometimes the size of programs to be executed may sometimes

very bigger than the size of primary memory left, the user never feels that the system

needs a bigger primary storage to run that program. When the RAM is full, the operating

system occupies a portion of the hard disk and uses it as a RAM. In that part of the

secondary storage, the part of the program which not currently being executed is stored

and all the parts of the program that are executed are first brought into the main memory.

This is the theory behind virtual memory.

Terminologies:

 Physical address is an address in main memory.

 Protection is a set of mechanisms for ensuring that multiple processes sharing the

processor, memory, or I/O devices cannot interfere, with one another by reading or

writing each other’s data.

 Virtual memory breaks programs into fixed-size blocks called pages.

 Page fault is an event that occurs when an accessed page is not present in main memory.

 Virtual address is an address that corresponds to a location in virtual space and is

translated by address mapping to a physical address when memory is accessed.

 Address translation or address mapping is the process by which a virtual address is

mapped to an address used to access memory.

Working mechanism

 In virtual memory, blocks of memory are mapped from one set of addresses (virtual

addresses) to another set (physical addresses).

Memory and I/O Organization 4.25

 The processor generates virtual addresses while the memory is accessed using physical

addresses.

 Both the virtual memory and the physical memory are broken into pages, so that a virtual

page is really mapped to a physical page.

 It is also possible for a virtual page to be absent from main memory and not be mapped

to a physical address, residing instead on disk.

 Physical pages can be shared by having two virtual addresses point to the same physical

address. This capability is used to allow two different programs to share data or code.

 Virtual memory also simplifies loading the program for execution by providing relocation.

Relocation maps the virtual addresses used by a program to different physical addresses

before the addresses are used to access memory. This relocation allows us to load the

program anywhere in main memory.

Fig 4.12: Mapping of virtual and physical memory

 Addressing in virtual memory

 A virtual address is considered as a pair (p,d) where lower order bits give an offset d

within the page and high-order bits specify the page p.

 The job of the Memory Management Unit (MMU) is to translate the page number p

to a frame number f.

Computer Organization & Instructions 4.26

26

 The physical address is then (f,d), and this is what goes on the memory bus.

 For every process, there is a page and page-number p is used as an index into this array

for the translation.

 The following are the entries in page tables:

1. Validity bit: Set to 0 if the corresponding page is not in memory

2. Frame number: Number of bits required depends on size of physical memory

3. Protection bits: Read, write, execute accesses

4. Referenced bit is set to 1 by hardware when the page is accessed: used by page

replacement policy

5. Modified bit (dirty bit) set to 1 by hardware on write-access: used to avoid writing

when swapped out.

Fig 4.13: Conversion of logical address to physical address

Role of control bit in page table

The control bit (v) indicates whether the page is loaded in the main memory. It also

indicates whether the page has been modified during its residency in the main memory.

This information is crucial to determine whether to write back the page to the disk before

it is removed from the main memory during next page replacement.

Memory and I/O Organization 4.27

Page replacement is a process of swapping out an existing page from the frame

of a main memory and replacing it with the required page.

Fig 4.14: Page table

 Page faults and page replacement algorithms

A page fault occurs when a page referenced by the CPU is not found in the main memory.

The required page has to be brought from the secondary memory into the main memory.

A page that is currently residing in the main memory, has to be replaced if all the frames

of main memory are already occupied.

Page replacement is done when all the frames of main memory are already occupied

and a page has to be replaced to create a space for the newly referenced page.A good

replacement algorithm will have least number of page faults.

Computer Organization & Instructions 4.28

28

Fig 4.14: Occurrence of page fault

The following are the page replacement algorithms:

1. FIFO Page Replacement Algorithm

2. LIFO Page Replacement Algorithm

3. LRU Page Replacement Algorithm

4. Optimal Page Replacement Algorithm

5. Random Page Replacement Algorithm

1. First In First Out (FIFO) page replacement algorithm

It replaces the oldest page that has been present in the main memory for the longest

time. It is implemented by keeping track of all the pages in a queue.

Example 4.5. Find the page faults when the following pages are requested to be loaded

in a page frame of size 3: 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1

Page faults= 15

2. Last In First Out (LIFO) page replacement algorithm

It replaces the newest page that arrived at last in the main memory. It is implemented

by keeping track of all the pages in a stack.

3. Least Recently Used (LRU) page replacement algorithm

The new page will be replaced with least recently used page.

Example 4.6: Consider the following reference string. Calculate the number of page

faults when the page frame size is 3 using LRU policy.7, 0, 1, 2, 0, 3, 4, 2, 3, 0, 3,

2, 1, 2, 0, 1, 7, 0, 1

Page faults= 12 (F bit indicates the occurrence of page faults)

Memory and I/O Organization 4.29

A translation lookaside buffer (TLB) is a memory cache that stores recent

translations of virtual memory to physical addresses for faster retrieval.

4. Optimal page replacement algorithm

In this method, pages are replaced which would not be used for the longest duration

of time in the future.

Example 4.7: Find the number of misses and hits while using optimal page replacement

algorithm on the following reference string with page frame size as 4: 2, 3, 4, 2, 1, 3,

7, 5, 4, 3, 2, 3, 1.

Page fault=13Number of page hit= 6Number of page misses=7

5. Random page replacement algorithms

Random replacement algorithm replaces a random page in memory. This eliminates the

overhead cost of tracking page references.

 Translation Lookaside Buffer (TLB)

The page tables are stored in main memory and every memory access by a program

to the page table takes longer time. This is because it does one memory access to obtain

the physical address and a second access to get the data. The virtual to physical memory

address translation occurs twice. But a TLB will exploit the locality of reference and

can reduce the memory access time.

TLB hit is a condition where the desired entry is found in translation look aside buffer.

If this happens then the CPU simply access the actual location in the main memory.

If the entry is not found in TLB (TLB miss) then CPU has to access page table in the

main memory and then access the actual frame in the main memory. Therefore, in the

case of TLB hit, the effective access time will be lesser as compare to the case of TLB

miss.

Computer Organization & Instructions 4.30

30

Effective access time = P (t + m) + (1 - p) (t + k.m + m)

If the probability of TLB hit is P% (TLB hit rate) then the probability of TLB miss

(TLB miss rate) will be (1-P) %. The effective access time can be defined as

Where, p is the TLB hit rate, t is the time taken to access TLB, m is the time taken

to access main memory. K indicates the single level paging has been implemented.

Fig 4.15: Cache access levels

Memory and I/O Organization 4.31

System call is a special instruction that transfers control from user mode to a

dedicated location in supervisor code space, invoking the exception

mechanism in the process.

4.3.5 Protection in Virtual memory

 Virtual memory allows sharing of main memory by multiple processes. So protection

mechanisms, while providing memory protection.

 The protection mechanism must ensure one process cannot write into the address space

of another user process or into the operating system.

 Memory protection can be done at two levels: hardware and software levels.

Hardware Level:

Memory protection at hardware level is done in three methods:

 The machine should support two modes: supervisor mode and user mode. This indicates

whether the current running process is a user or supervisory process. The processes

running in supervisor or kernel mode is an operating system process.

 Include user / supervisor bit in TLB to indicate whether the process is in user or

supervisor mode. This is an access control mechanism imposed on the user process only

to read from the TLB and not write to it.

 The processors can switch between user and supervisor mode. The switching from user

to system mode is done through system calls, that transfers control to a dedicated

location in supervisor code space.

 PARALLEL BUS ARCHITECTURES

Single bus architectures connect multiple processors with their own cache memory using

shared bus. This is a simple architecture but it suffers from latency and bandwidth issues.

This naturally led to deploying parallel or multiple bus architectures. Multiple bus

multiprocessor systems use several parallel buses to interconnect multiple processors

with multiple memory modules. The following are the connection schemes in multi bus

architectures:

1. Multiple-bus with full bus–memory connection (MBFBMC)

This has all memory modules connected to all buses. The multiple-bus with single bus–

Computer Organization & Instructions 4.32

32

memory connection has each memory module connected to a specific bus. For N

processors with M memory modules and B buses, the number of connections requires

are: B(N+M) and the load on each bus will ne N+M.

2. Multiple bus with partial bus–memory connection (MBPBMC)

The multiple-bus with partial bus–memory connection, has each memory module connected

to a subset of buses.

3. Multiple bus with class-based memory connection (MBCBMC)

The multiple-bus with class-based memory connection (MBCBMC), has memory modules

grouped into classes whereby each class is connected to a specific subset of buses. A

class is just an arbitrary collection of memory modules.

4. Multiple bus with single bus memory connection (MBSBMC)

Here, only single bus will be connected to single memory, but the processor can access

all the buses.The numbers of connections:

and load on each bus is given by

Fig 4.16 a) Multiple-bus with full bus–memory connection (MBFBMC)

Memory and I/O Organization 4.33

Fig 4.16 b) Multiple bus with single bus memory connection (MBSBMC)

Fig 4.16 c) Multiple bus with partial bus–memory connection (MBPBMC)

Fig 4.16 d) Multiple bus with class-based memory connection (MBCBMC)

Computer Organization & Instructions 4.34

34

 Bus Synchronisation:

 In a single bus multiprocessor system, bus arbitration is required in order to resolve

the bus contention that takes place when more than one processor competes to access

the bus.

 A bus can be classified as synchronous or asynchronous. The time for any transaction

over a synchronous bus is known in advance. Asynchronous bus depends on the availability

of data and the readiness of devices to initiate bus transactions.

 The processors that want to use the bus submit their requests to bus arbitration logic.

The latter decides, using a certain priority scheme, which processor will be granted

access to the bus during a certain time interval (bus master).

 The process of passing bus mastership from one processor to another is called handshaking,

which requires the use of two control signals: busrequest and bus grant.

 Bus request indicates that a given processor is requesting mastership of the bus.

 Bus grant: indicates that bus mastership is granted.

 Bus busy: is usually used to indicate whether or not the bus is currently being used.

 In deciding which processor gains control of the bus, the bus arbitration logic uses a

predefined priority scheme.

 Among the priority schemes used are random priority, simple rotating priority, equal

priority, and least recently used (LRU) priority.

 After each arbitration cycle, in simple rotating priority, all priority levels are reduced

one place, with the lowest priority processor taking the highest priority. In equal priority,

when two or more requests are made, there is equal chance of any one request being

processed.

 In the LRU algorithm, the highest priority is given to the processor that has not used

the bus for the longest time.

Memory and I/O Organization 4.35

Fig 4.17: Bus synchronisation

 INTERNAL COMMUNICATION METHODOLOGIES

CPU of the computer system communicates with the memory and the I/O devices in

order to transfer data between them. The method of communication of the CPU with

memory and I/O devices is different. The CPU may communicate with the memory

either directly or through the Cache memory. However, the communication between the

CPU and I/O devices is usually implemented with the help of interface. There are three

types of internal communications:

 Programmed I/O

 Interrupt driven I/O

 Direct Memory Access (DMA)

 Programmed I/O

 Programmed I/O is implicated to data transfers that are initiated by a CPU, under driver

software control to access Registers or Memory on a device.

 With programmed I/O, data are exchanged between the processor and the I/O module.

Computer Organization & Instructions 4.36

36

 The processor executes a program that gives it direct control of the I/O operation,

including sensing device status, sending a read or write command, and transferring the

data.

 When the processor issues a command to the I/O module, it must wait until the I/O

operation is complete.

 If the processor is faster than the I/O module, this is wasteful of processor time. With

interrupt-driven I/O, the processor issues I/O command, continues to execute other

instructions, and is interrupted by the I/O module when the latter has completed its work.

 With both programmed and interrupt I/O, the processor is responsible for extracting data

from main memory for output and storing data in main memory for input.

 The alternative is known as direct memory access. In this mode, the I/O module and

main memory exchange data directly, without processor involvement.

 With programmed I/O, the I/O module will perform the requested action and then set

the appropriate bits in the I/O status register.

 The I/O module takes no further action to alert the processor.

 When the processor is executing a program and encounters an instruction relating to

I/O, it executes that instruction by issuing a command to the appropriate I/O module.

In particular, it does not interrupt the processor.

 It is the responsibility of the processor periodically to check the status of the I/O module.

Then if the device is ready for the transfer (read/write).

 The processor transfers the data to or from the I/O device as required. As the CPU is

faster than the I/O module, the problem with programmed I/O is that the CPU has to

wait a long time for the I/O module of concern to be ready for either reception or

transmission of data.

 The CPU, while waiting, must repeatedly check the status of the I/O module, and this

process is known as Polling.

 The level of the performance of the entire system is severely degraded.

Memory and I/O Organization 4.37

Fig 4.18: Workflow in programmed I/O

 Interrupt Driven I/O

 The CPU issues commands to the I/O module then proceeds with its normal work until

interrupted by I/O device on completion of its work.

 For input, the device interrupts the CPU when new data has arrived and is ready to be

retrieved by the system processor. The actual actions to perform depend on whether the

device uses I/O ports, memory mapping.

 For output, the device delivers an interrupt either when it is ready to accept new data

or to acknowledge a successful data transfer. Memory-mapped and DMA-capable devices

usually generate interrupts to tell the system they are done with the buffer.

 Although Interrupt relieves the CPU of having to wait for the devices, but it is still

inefficient in data transfer of large amount because the CPU has to transfer the data

word by word between I/O module and memory.

 Below are the basic operations of Interrupt:

Computer Organization & Instructions 4.38

38

1. CPU issues read command

2. I/O module gets data from peripheral whilst CPU does other work

3. I/O module interrupts CPU

4. CPU requests data

5. I/O module transfers data

 Direct Memory Access (DMA)

 Direct Memory Access (DMA) means CPU grants I/O module authority to read from

or write to memory without involvement.

 DMA module controls exchange of data between main memory and the I/O device.

 Because of DMA device can transfer data directly to and from memory, rather than using

the CPU as an intermediary, and can thus relieve congestion on the bus.

 CPU is only involved at the beginning and end of the transfer and interrupted only after

entire block has been transferred.

Fig 4.19: CPU bus signals for DMA transfer

 The CPU programs the DMA controller by setting its registers so it knows what to

transfer where.

 It also issues a command to the disk controller telling it to read data from the disk into

its internal buffer and verify the checksum.

Memory and I/O Organization 4.39

 When valid data are in the disk controller’s buffer, DMA can begin. The DMA controller

initiates the transfer by issuing a read request over the bus to the disk controller.

 This read request looks like any other read request, and the disk controller does not

know whether it came from the CPU or from a DMA controller.

 The memory address to write to is on the bus address lines, so when the disk controller

fetches the next word from its internal buffer, it knows where to write it.

 The write to memory is another standard bus cycle.

 When the write is complete, the disk controller sends an acknowledgement signal to

the DMA controller, also over the bus.

 The DMA controller then increments the memory address to use and decrements the

byte count. If the byte count is still greater than 0, steps 2 through 4 are repeated until

the count reaches 0.

 At that time, the DMA controller interrupts the CPU to let it know that the transfer is

now complete.

 When the operating system starts up, it does not have to copy the disk block to memory;

it is already there.

 The DMA controller requests the disk controller to transfer data from the disk controller’s

buffer to the main memory. In the first step, the CPU issues a command to the disk

controller telling it to read data from the disk into its internal buffer.

Fig 4.20: Operations in DMA

Computer Organization & Instructions 4.40

40

Serial Peripheral Interface (SPI) is an interface bus designed by Motorola to

send data between microcontrollers and small peripherals such as shift registers,

sensors, and SD cards. It uses separate clock and data lines, along with

a select line to choose the device.

 SERIAL BUS ARCHITECTURES

The peripheral devices and external buffer that operate at relatively low frequencies

communicate with the processor using serial bus. There are two popular serial buses:

Serial Peripheral Interface (SPI) and Inter-Integrated Circuit (I2C).

 Serial Peripheral Interface (SPI)

 A standard SPI connection involves a master connected to slaves using the serial clock

(SCK), Master Out Slave In (MOSI), Master In Slave Out (MISO), and Slave Select

(SS) lines.

 The SCK, MOSI, and MISO signals can be shared by slaves while each slave has a

unique SS line.

 The SPI interface defines no protocol for data exchange, limiting overhead and allowing

for high speed data streaming.

 Clock polarity (CPOL) and clock phase (CPHA) can be specified as ‘0’ or ‘1’ to form

four unique modes to provide flexibility in communication between master and slave.

 If CPOL and CPHA are both ‘0’ (defined as Mode 0) data is sampled at the leading

rising edge of the clock. Mode 0 is by far the most common mode for SPI bus slave

communication.

 If CPOL is ‘1’ and CPHA is ‘0’ (Mode 2), data is sampled at the leading falling edge

of the clock.

 Likewise, CPOL = ‘0’ and CPHA = ‘1’ (Mode 1) results in data sampled at on the trailing

falling edge and CPOL = ‘1’ with CPHA = ‘1’ (Mode 3) results in data sampled on the

trailing rising edge.

Memory and I/O Organization 4.41

Fig 4.21: SPI master with three slaves

Mode CPOL CPHA

0 0 0

1 0 1

2 1 0

3 1 1

Fig 4.22: Modes in SPI

 In addition to the standard 4-wire configuration, the SPI interface has been extended

to include a variety of IO standards including 3-wire for reduced pin count and dual

or quad I/O for higher throughput.

 In 3-wire mode, MOSI and MISO lines are combined to a single bidirectional data line.

 Transactions are half-duplex to allow for bidirectional communication. Reducing the

number of data lines and operating in half-duplex mode also decreases maximum

possible throughput; many 3-wire devices have low performance requirements and are

instead designed with low pin count in mind.

Computer Organization & Instructions 4.42

42

An inter-integrated circuit (Inter-IC or I2C) is a multi-master serial bus that

connects low-speed peripherals to a motherboard, mobile phone, embedded

system or other electronic devices.

 Multi I/O variants such as dual I/O and quad I/O add additional data lines to the standard

for increased throughput.

 Components that utilize multi I/O modes can rival the read speed of parallel devices

while still offering reduced pin counts. This performance increase enables random

access and direct program execution from flash memory (execute-in-place).

 Inter-Integrated Circuit (I2C)

 Philips Semiconductor created I2C with an intention of communication between chips

reside on the same Printed Circuit Board (PCB).

 It is a multi-master, multi-slave protocol.

 It is designed to lessen costs by streamlining massive wiring systems with an easier

interface for connecting a central processing unit (CPU) to peripheral chips in a television.

 It had a battery-controlled interface but later utilized an internal bus system.

 It is built on two lines

 SDA (Serial Data) – The line for the master and slave to send and receive data

 SCL (Serial Clock) – The line that carries the clock signal.

 Devices on an I2C bus are always a master or a slave. Master is the device which always

initiates a communication and drives the clock line (SCL). Usually a microcontroller

or microprocessor acts a master which needs to read data from or write data to slave

peripherals.

 Slave devices are always responds to master and won’t initiate any communication by

itself. Devices like EEPROM, LCDs, RTCs acts as a slave device. Each slave device

will have a unique address such that master can request data from or write data to it.

 The master device uses either a 7-bit or 10-bit address to specify the slave device as

its partner of data communication and it supports bi-directional data transfer.

Memory and I/O Organization 4.43

Working of I2C

 The I2C, data is transferred in messages, which are broken up into frames of data. Each

message has an address frame that contains the binary address of the slave, and one

or more data frames that contain the data being transmitted.

 The message also includes start and stop conditions, read/write bits, and ACK/NACK

bits between each data frame.

 The following are the bits in data frames:

1. Start Condition: The SDA line switches from a high voltage level to a low voltage

level before the SCL line switches from high to low.

2. Stop Condition: The SDA line switches from a low voltage level to a high voltage level

after the SCL line switches from low to high.

3. Address Frame: A 7 or 10 bit sequence unique to each slave that identifies the slave

when the master wants to talk to it.

4. Read/Write Bit: A single bit specifying whether the master is sending data to the slave

(low voltage level) or requesting data from it (high voltage level).

5. ACK/NACK Bit: Each frame in a message is followed by an acknowledge/no-acknowledge

bit. If an address frame or data frame was successfully received, an ACK bit is returned

to the sender from the receiving device.

Fig 4.23: I2C Message Format

Addressing:

 I2C doesn’t have slave select lines like SPI, so it needs another way to let the slave know

that data is being sent to it, and not another slave. It does this by addressing. The address

frame is always the first frame after the start bit in a new message.

Computer Organization & Instructions 4.44

44

 The master sends the address of the slave it wants to communicate with to every slave

connected to it. Each slave then compares the address sent from the master to its own

address.

 If the address matches, it sends a low voltage ACK bit back to the master. If the address

doesn’t match, the slave does nothing and the SDA line remains high.

Read/Write Bit

 The address frame includes a single bit at the end that informs the slave whether the

master wants to write data to it or receive data from it. If the master wants to send data

to the slave, the read/write bit is a low voltage level. If the master is requesting data

from the slave, the bit is a high voltage level.

Data Frame

 After the master detects the ACK bit from the slave, the first data frame is ready to

be sent.

 The data frame is always 8 bits long, and sent with the most significant bit first.

 Each data frame is immediately followed by an ACK/NACK bit to verify that the frame

has been received successfully.

 The ACK bit must be received by either the master or the slave (depending on who

is sending the data) before the next data frame can be sent.

 After all of the data frames have been sent, the master can send a stop condition to

the slave to halt the transmission.

 The stop condition is a voltage transition from low to high on the SDA line after a low

to high transition on the SCL line, with the SCL line remaining high.

Steps in Data transmission

1. The master sends the start condition to every connected slave by switching the SDA

line from a high voltage level to a low voltage level before switching the SCL line from

high to low.

2. The master sends each slave the 7 or 10 bit address of the slave it wants to communicate

with, along with the read/write bit.

Memory and I/O Organization 4.45

Mass storage refers to various techniques and devices for storing large amounts of

data.Mass storage is distinct from memory, which refers to temporary storage areas

within the computer. Unlike main memory, mass storage devices retain data even

when the computer is turned off.

3. Each slave compares the address sent from the master to its own address. If the address

matches, the slave returns an ACK bit by pulling the SDA line low for one bit. If the

address from the master does not match the slave’s own address, the slave leaves the

SDA line high.

4. The master sends or receives the data frame.

5. After each data frame has been transferred, the receiving device returns another ACK

bit to the sender to acknowledge successful receipt of the frame.

6. To stop the data transmission, the master sends a stop condition to the slave by switching

SCL high before switching SDA high.

Advantages

 It uses two wires.

 This supports multiple masters and multiple slaves.

 ACK/NACK bit gives confirmation that each frame is transferred successfully.

 Well known and widely used protocol

Disadvantages

 Slower data transfer rate than SPI.

 The size of the data frame is limited to 8 bits

 More complicated hardware needed to implement than SPI.

 MASS STORAGE

The mass storage medium includes:

 solid-state drives (SSD)

 hard drives

 external hard drives

 optical drives

Computer Organization & Instructions 4.46

46

 tape drives

 RAID storage

 USB storage

 flash memory cards

Solid State Devices

 Solid-state devices are electronic devices in which electricity flows through solid

semiconductor crystals like silicon, gallium arsenide, germanium rather than through

vacuum tubes.

 It do not involve any moving parts or magnetic materials.

 RAM is a solid state device that consists of microchips that store data on non-moving

components, providing for fast retrieval of that data.

 Transistors are the most important solid state devices. The transistors contain two p–

n junctions, have three contacts or terminals.

 They require the action of perpendicular electrical fields, their behavior is more difficult

to understand than that of diodes.

 The different types of transistors are: bipolar junction transistor (BJT) where the current

is amplified, while in the field effect transistor (FET) a voltage controls a current.

 In a solid-state component, the current is confined to solid elements and compounds

engineered specifically to switch and amplify it.

 Current flows in two forms: as negatively charged electrons, and as positively charged

electron deficiencies called holes.

 In some semiconductors, the current consists mostly of electrons; in other semiconductors,

it consists mostly of holes. Both the electron and the hole are called charge carriers.

Hard Drives

 A hard disk drive is a non-volatile memory hardware device that permanently stores

and retrieves data on a computer.

 A hard drive is a secondary storage device that consists of one or more platters to which

data is written using a magnetic head, all inside of an air-sealed casing.

Memory and I/O Organization 4.47

 Internal hard disks reside in a drive bay, connect to the motherboard using an ATA, SCSI,

or SATA cable, and are powered by a connection to the power supply unit.

External Hard Drives

 An external hard drive is a portable storage device that can be attached to a computer

through a USB or FireWire connection, or wirelessly.

 External hard drives typically have high storage capacities and are often used to back

up computers or serve as a network drive.

Optical Drives

 An Optical Drive refers to a computer system that allows users to use DVDs, CDs and

Blu-ray optical drives.

 The drive contains some lenses that project electromagnetic waves that are responsible

for reading and writing data on optical discs.

 An optical disk drive uses a laser to read and write data. A laser in this context means

an electromagnetic wave with a very specific wavelength within or near the visible light

spectrum.

 An optical drive that works with all types of discs will have two separate lenses: one

for CD/DVD and one for Blu-ray.

 An optical drive has a rotational mechanism to spin the disc. Optical drives were

originally designed to work at a constant linear velocity (CLV) (i.e.) the disc spins at

varying speeds depending on where the laser beam is reading, so the spiral groove of

the disc passes by the laser at a constant speed.

 An optical drive also needs a loading mechanism: A tray-loading mechanism, where

the disc is placed onto a motorized tray, which moves in and out of the computer case

and slot-loading mechanism, where the disc is slid into a slot and motorized rollers

are used to move the disc in and out.

Tape disks

 A tape drive is a device that stores computer data on magnetic tape, especially for backup

and archiving purposes.

Computer Organization & Instructions 4.48

48

 Tape drives work either by using a traditional helical scan where the recording and

playback heads touch the tape, or linear tape technology, where the heads never actually

touch the tape.

 Drives can be rewinding, where the device issues a rewind command at the end of a

session, or non-rewinding.

 Rewinding devices are most commonly used when a tape is to be unmounted at the end

of a session after batch processing of large amounts of data.

 Non-rewinding devices are useful for incremental backups and other applications where

new files are added to the end of the previous session’s files.

 The different types of tapes are audio, video and data storage tape.

Redundant Array of Inexpensive Disks (RAID) Storage

 RAID is a way of storing the same data in different places on multiple hard disks to

protect data in the case of a drive failure.

 RAID works by placing data on multiple disks and allowing input/output (I/O) operations

to overlap in a balanced way, improving performance. Because the use of multiple disks

increases the mean time between failures (MTBF), storing data redundantly also increases

fault tolerance.

 A RAID controller can be used as a level of abstraction between the OS and the physical

disks, presenting groups of disks as logical units. Using a RAID controller can improve

performance and help protect data in case of a crash.

 Levels in RAID:

1. RAID 0 (Disk striping):

RAID 0 splits data across any number of disks allowing higher data throughput. An

individual file is read from multiple disks giving it access to the speed and capacity

of all of them. This RAID level is often referred to as striping and has the benefit of

increased performance.

2. RAID 1 (Disk Mirroring):

RAID 1 writes and reads identical data to pairs of drives. This process is often called

data mirroring and it’s a primary function is to provide redundancy. If any of the disks

in the array fails, the system can still access data from the remaining disk(s).

Memory and I/O Organization 4.49

3. RAID 5 (Striping with parity):

RAID 5 stripes data blocks across multiple disks like RAID 0, however, it also stores

parity information (Small amount of data that can accurately describe larger amounts

of data) which is used to recover the data in case of disk failure. This level offers both

speed (data is accessed from multiple disks) and redundancy as parity data is stored

across all of the disks.

4. RAID 6 (Striping with double parity):

Raid 6 is similar to RAID 5, however, it provides increased reliability as it stores an

extra parity block. That effectively means that it is possible for two drives to fail at

once without breaking the array.

5. RAID 10 (Striping + Mirroring):

RAID 10 combines the mirroring of RAID 1 with the striping of RAID 0. Or in other

words, it combines the redundancy of RAID 1 with the increased performance of RAID

0. It is best suitable for environments where both high performance and security is

required.

Universal Serial Bus (USB) Devices

 USB is a system for connecting a wide range of peripherals to a computer, including

pointing devices, displays, and data storage and communications products.

 The Universal Serial Bus is a network of attachments connected to the host computer.

 These attachments come in two types known as Functions and Hubs.

 Functions are the peripherals such as mice, printers, etc.

 Hubs basically act like a double adapter does on a power-point, converting one socket,

called a port, into multiple ports.

 Hubs and functions are collectively called devices.

 When a device is attached to the USB system, it gets assigned a number called its

address. The address is uniquely used by that device while it is connected.

 Each device also contains a number of endpoints, which are a collection of sources and

destinations for communications between the host and the device.

 The combination of the address, endpoint number and direction are what is used by the

host and software to determine along which pipe data is travelling.

Computer Organization & Instructions 4.50

50

Flash Drives

 A flash drive stores data using flash memory. Flash memory uses an electrically erasable

programmable read-only (EEPROM) format to store and retrieve data.

 Flash drives are non-volatile, which means they do not need a battery backup.

 Most computers come equipped with USB ports, which detect inserted flash drives and

install the necessary drivers to make the data retrievable.

 Computer users can store and retrieve data once the operating system has detected a

connection to the USB port.

 Flash drives have a USB mass storage device classification, which means they do not

require additional drivers.

 The computer’s operating system recognizes a block-structured logical unit, which

means it can use any file system or block addressing system to read the information

on the flash drive.

 A flash drive enters emulation mode, or acts a hard drive, once it has connected to the

USB port. This makes it easier to transfer data between the flash drive and the computer.

 Flash memory is known as a solid state storage device, meaning there are no moving

parts — everything is electronic instead of mechanical.

 INPUT AND OUTPUT DEVICES

The common input and output devices are discussed here:

Input Devices

Keyboard

 A keyboard has its own processor and circuitry that carries information to and from that

processor.

 A large part of this circuitry makes up the key matrix which is arranged in rows and

columns.

 The key matrix is a grid of circuits underneath the keys.

 In all keyboards each circuit is broken at a point below each key. When a key is presses,

it presses a switch, completing the circuit and allowing a tiny amount of current to flow

through.

Memory and I/O Organization 4.51

 The mechanical action of the switch causes some vibration, called bounce, which the

processor filters out.

 If the key is pressed and held continuously, the processor recognizes it as the equivalent

of pressing a key repeatedly.

 Another type of keyboard has three layers: top plasticized layer with key positions

marked on the top surface and conducting traces on another side; middle layer made

of rubber with hole for key positions; bottom metallic layer with raised bumps for key

positions.

 When a key is pressed the trace underneath the top layer comes in contact with the bump

in the last layer, thus completing an electrical circuit. The current flow is sensed by

the microcontroller.

Fig 4.24: Layers in keyboard

Mouse

 A computer mouse is a hand-held pointing device that detects two-dimensional motion

relative to a surface.

 This motion is typically translated into the motion of a pointer on a display, which

allows a smooth control of the graphical user interface.

 There are two main kinds of mice: rolling rubber ball mouse or optical mouse.

 As the mouse is moved, the ball rolls under its own weight and pushes against two plastic

rollers linked to thin wheels.

 One of the wheels detects movements in an up-and-down direction (y-axis) and the other

detects side-to-side movements (x-axis).

 If the mouse is moved straight up, only the y-axis wheel turns. If the mouse is moved

to the right, only the x-axis wheel turns.

Computer Organization & Instructions 4.52

52

 The optical mouseshines a bright light down onto the desk from an LED mounted on

the bottom of the mouse.

 The light bounces straight back up off the desk into a photocell also mounted under

the mouse, a short distance from the LED.

 The photocell has a lens in front of it that magnifies the reflected light, so the mouse

can respond more precisely to your hand movements.

 As the mouse is pushed, the pattern of reflected light changes, and the chip inside the

mouse uses this to figure out the motion.

Trackball, Joystick and Touch pad

 A trackball can also be used as an alternative to a mouse. This device also has buttons

similar to those on a mouse.

 It holds a large moving ball on the top. The body of the trackball is not moved. The

ball is rolled with fingers. The position of the cursor on the screen is controlled by

rotating the ball.

 The main benefit of the trackball over a mouse is that it takes less space to move. The

trackball is often included in laptop computers. The standard desktop computer also

uses a trackball operated as a separate input device.

 A touchpad is a small, plane surface over which the user moves his finger. The user

controls the movement of the cursor on the screen by moving his fingers on the touchpad.

It is also known as a trackpad.

 A touchpad also has one or more buttons near it. These button work like mouse buttons.

Touchpads are commonly used with notebook computers.

 A joystick consists of a base and a stick. The stick can be moved in several directions

to shift an object anywhere on the computer screen.

 A joystick can perform a similar function to a mouse or trackball. It is often considered

less comfortable and efficient. The most common use of a joystick is for playing

computer games.

Memory and I/O Organization 4.53

Scanners

 Scanners operate by shining light at the object or document being digitized and directing

the reflected light onto a photosensitive element.

 In most scanners, the sensing medium is an electronic, light-sensing integrated circuit

known as a charged coupled device (CCD).

 Light-sensitive photosites arrayed along the CCD convert levels of brightness into

electronic signals that are then processed into a digital image.

 A scanner consists of a flat transparent glass bed under which the CCD sensors, lamp,

lenses, filters and also mirrors are fixed.

 The document has to be placed on the glass bed. There will also be a cover to close

the scanner.

 The lamp brightens up the text to be scanned. Most scanners use a cold cathode

fluorescent lamp (CCFL).

 A stepper motor under the scanner moves the scanner head from one end to the other.

The movement will be slow and is controlled by a belt.

 The scanner head consists of the mirrors, lens, CCD sensors and also the filter. The

scan head moves parallel to the glass bed and that too in a constant path.

 As the scan head moves under the glass bed, the light from the lamp hits the document

and is reflected back with the help of mirrors angled to one another.

 According to the design of the device there may be either 2-way mirrors or 3-way

mirrors.

 The mirrors will be angled in such a way that the reflected image will be hitting a smaller

surface.

 In the end, the image will reach a lens which passes it through a filter and causes the

image to be focussed on CCD sensors.

 The CCD sensors convert the light to electrical signals according to its intensity.

 The electrical signals will be converted into image format inside a computer.

Computer Organization & Instructions 4.54

54

Output Devices Video

Displays

 The CRT monitors were fundamental output display device.

 The CRT or cathode ray tube, is the picture tube of a monitor.

 The back of the tube has a negatively charged cathode.

 The electron gun shoots electrons down the tube and onto a charged screen.

 The screen is coated with a pattern of dots using phospher that glow when struck by

the electron stream.

 The image on the monitor screen is usually made up from at least tens of thousands

of such tiny dots glowing on command from the computer.

 The closer together the pixels are, the sharper the image on screen.

 The distance between pixels on a computer monitor screen is called its dot pitch and

is measured in millimeters. Most monitors have a dot pitch of 0.28 mm or less.

 There are two electromagnets around the collar of the tube which deflect the electron

beam.

 The beam scans across the top of the monitor from left to right, is then blanked and

moved back to the left-hand side slightly below the previous trace (on the next scan

line), scans across the second line and so on until the bottom right of the screen is

reached.

 The beam is again blanked, and moved back to the top left to start again.

 This process draws a complete picture, typically 50 to 100 times a second.

 The number of times in one second that the electron gun redraws the entire image is

called the refresh rate and is measured in hertz (cycles per second).

 It is common, particularly in lower priced equipment, for all the odd-numbered lines

of an image to be traced, and then all the even-numbered lines; the circuitry of such

an interlaced display need to be have only half the speed of a non-interlaced display.

 An interlaced display, particularly at a relatively low refresh rate, can appear to some

observers to flicker, and may cause eye strain and nausea.

Memory and I/O Organization 4.55

 The intensity or strength of the electron beam is controlled by setting the voltage levels.

 The number of electrons that hits the screen determines the light emitted by the screen.

When the voltage is varied in the electron gun, the brightness of the display also varies.

 The focusing hardware focuses the beam at all positions on the screen.

 The deflection of electron beam is controlled by electric or magnetic fields.

 Two pairs of coils mounted on the CRT to produce the necessary defection.

 The coils are placed in such a way that, the magnetic field produced by them results

in traverse deflection force that is perpendicular to the magnetic field and electron beam.

Fig 4.25: CRT Monitor

 An LED screen is an LCD screen, but instead of having a normal CCFL backlight, it

uses light-emitting diodes (LEDs) as a source of light behind the screen.

 An LED is more energy efficient and a lot smaller than a CCFL, enabling a thinner

television screen.

Printers

 A printer is an electromechanical device which converts the text and graphical documents

from electronic form to the physical form.

 They are the external peripheral devices which are connected with the computers or

laptops through a cable or wirelessly to receive input data and print them on the papers.

 Quality of printers is identified by its features like color quality, speed of printing,

resolution etc. Modern printers come with multipurpose functions i.e. they are combination

of printer, scanner, photocopier, fax, etc.

 Broadly printers are categorized as impact and non impact printers.

Computer Organization & Instructions 4.56

56

Daisy Wheel Printers

 Daisy wheel printers print only characters and symbols and cannot print graphics. They

are generally slow with a printing speed of about 10 to 75 characters per second.

 A circular printing element is the heart of these printers that contains all text, numeric

characters and symbols mould on each petal on the circumference of the circle.

 The printing element rotates rapidly with the help of a servo motor and pauses to allow

the printing hammer to strike the character against the paper.

Dot Matrix Printers

 It is a popular computer printer that prints text and graphics on the paper by using tiny

dots to form the desired shapes.

 It uses an array of metal pins known as printhead to strike an inked printer ribbon and

produce dots on the paper.

 These combinations of dots form the desired shape on the paper.

 The key component in the dot matrix printer is the ‘printhead’ which is about one inch

long and contains a number of tiny pins aligned in a column varying from 9 to 24.

 The printhead is driven by several hammers which force each pin to make contact with

the paper at the certain time. These hammers are pulled by small electromagnet which

is energized at a specific time depending on the character to be printed.

 The timings of the signals sent to the solenoids are programmed in the printer for each

character.

Inkjet printers

 Inkjet printers are most popular printers for home and small scale offices as they have

a reasonable cost and a good qualityof printing as well.

 An inkjet printer is made of the following parts:

i) Printhead – It is the heart of the printer which holds a series a nozzles which sprays

the ink drops over the paper.

ii) Ink cartridge – It is the part that contains the ink for printing. Generally monochrome

(black & white) printers contain a black colored ink cartridges and a color printer

Memory and I/O Organization 4.57

contains two cartridges – one with black ink and other with primary colors (cyan,

magenta and yellow).

iii) Stepper motor – It is housed in the printer to move the printerhead and ink cartridges

back and forth across the paper.

iv) Stabilizer bar – A stabilizer bar is used in printer to ensure the movement of printhead

is précised and controlled over the paper.

v) Belt – A belt is used to attach the printhead with the stepper motor.

vi) Paper Tray – It is the place where papers are placed to be printed.

vii) Rollers – Printers have a set of rollers that helps to pull paper from the tray for printing

purpose.

viii) Paper tray stepper motor- another stepper motor is used to rotate the rollers in order

to pull the paper in the printer.

ix) Control Circuitry – The control circuit takes the input from the computer and by

decoding the input controls all mechanical operation of the printer.

Laser Printers

 Laser printers are the most popular printers that are mainly used for large scale qualitative

printing.

 They are among the most popularly used fastest printers available in the market.

 A laser printer uses a slight different approach for printing. It does not use ink like inkjet

printers, instead it uses a very fine powder known as Toner.

 The control circuitry is the part of the printer that talks with the computer and receives

the printing data.

 A Raster Image Processor (RIP) converts the text and images in to a virtual matrix of

dots.

 The photoconducting drum which is the key component of the laser printer has a special

coating which receives the positive and negative charge from a charging roller.

 A rapidly switching laser beam scans the charged drum line by line. When the beam

flashes on, it reverses the charge of tiny spots on the drum, respecting to the dots that

are to be printed black.

Computer Organization & Instructions 4.58

58

 As soon the laser scans a line, a stepper motor moves the drum in order to scan the

next line by the laser.

 A developer roller plays the vital role to paste the tonner on the paper. It is coated with

charged tonner particles.

 As the drum touches the developer roller, the charged tonner particles cling to the

discharged areas of the drum, reproducing your images and text reversely.

 Meanwhile a paper is drawn from the paper tray with help of a belt. As the paper passes

through a charging wire it applies a charge on it opposite to the toner’s charge.

 When the paper meets the drum, due to the opposite charge between the paper and toner

particles, the toner particles are transferred to the paper.

 A cleaning blade then cleans the drum and the whole process runs smoothly continuously.

 Finally paper passes through the fuser which is a heat and presser roller, melts the toner

and fixes on the paper perfectly.

Flynn’s taxonomy is a specific classification of parallel computer architectures that

are based on the number of concurrent instruction (single or multiple) and data

streams (single or multiple) available in the architecture.

UNIT - V

ADVANCED COMPUTER ARCHITECTURE

PARALLEL PROCESSING ARCHITECTURES

Parallel computing architectures breaks the job into discrete parts that can be executed

concurrently. Each part is further broken down to a series of instructions. Instructions from

each part execute simultaneously on different CPUs. Parallel systems deal with the simultaneous

use of multiple computer resources that can include a single computer with multiple processors,

a number of computers connected by a network to form a parallel processing cluster or a

combination of both. Parallel systems are more difficult to program than computers with a

single processor because the architecture of parallel computers varies accordingly and the

processes of multiple CPUs must be coordinated and synchronized. The crux of parallel

processing arethe CPUs.

Parallelism in computer architecture is explained used Flynn’s taxonomy. This

classification is based on the number of instruction and data streams used in the architecture.

The machine structure is explained using streams which are sequence of items. The four

categories in Flynn’s taxonomy based on the number of instruction streams and data streams

are the following:

 (SISD) single instruction, single data

 (MISD) multiple instruction, single data

 (SIMD) single instruction, multiple data

 (MIMD) multiple instruction, multiple data

SISD (Single Instruction, Single Data stream)

 Single Instruction, Single Data (SISD) refers to an Instruction Set Architecture in

which a single processor (one CPU) executes exactly one instruction stream at a time.

 It also fetches or stores one item of data at a time to operate on data stored in a single

memory unit.

Computer Organization & Instructions 5.2

2

 Most of the CPU design is based on the von Neumann architecture and the follow

SISD.

 The SISD model is a non-pipelined architecture with general-purpose registers,

Program Counter (PC), the Instruction Register (IR), Memory Address Registers

(MAR) and Memory Data Registers (MDR).

Fig 5.1: Single Instruction, Single Data Stream

SIMD (Single Instruction, Multiple Data streams)

 Single Instruction, Multiple Data (SIMD) is an Instruction Set Architecture that have

a single control unit (CU) and more than one processing unit (PU) that operates like

a von Neumann machine by executing a single instruction stream over PUs, handled

through the CU.

 The CU generates the control signals for all of the PUs and by which executes the

same operation on different data streams.

 The SIMD architecture is capable of achieving data level parallelism.

Advanced Computer Architecture 5.3

Fig 5.2:Single Instruction, Multiple Data streams

MISD (Multiple Instruction, Single Data stream)

 Multiple Instruction, Single Data (MISD) is an Instruction Set Architecture for

parallel computing where many functional units perform different operations by

executing different instructions on the same data set.

 This type of architecture is common mainly in the fault-tolerant computers executing

the same instructions redundantly in order to detect and mask errors.

Fig 5.3:Multiple Instruction, Single Data stream

Computer Organization & Instructions 5.4

4

MIMD (Multiple Instruction, Multiple Data streams)

 Multiple Instruction stream, Multiple Data stream (MIMD) is an Instruction Set

Architecture for parallel computing that is typical of the computers with multiprocessors.

 Using the MIMD, each processor in a multiprocessor system can execute asynchronously

different set of the instructions independently on the different set of data units.

 The MIMD based computer systems can used the shared memory in a memory pool

or work using distributed memory across heterogeneous network computers in a

distributed environment.

 The MIMD architectures is primarily used in a number of application areas such as

computer-aided design/computer-aided manufacturing, simulation, modelling,

communication switches etc.

Fig 5.4:Multiple Instruction, Multiple Data streams

Single Multiple

Single SISD MISD

Von Neumann Single computer May be pipelined computers

Multiple SIMD MIMD

Vector processors Fine grained Multi computers

dataParallel computers Multiprocessors

Fig 5.5: Comparison of Flynn’s taxonomy

Advanced Computer Architecture 5.5

 Challenges in Parallelism

The following are the design challenges in parallelism:

 Available parallelism.

 Load balance: Some processors work while others wait due to insufficient

parallelism or unequal size tasks.

 Extra work.

 Managing parallelism

 Redundant computation

 Communication

HARDWARE MULTITHREADING

Multithreading enables the processing of multiple threads at one time, rather than

multiple processes. Since threads are smaller, more basic instructions than processes,

multithreading may occur within processes. Threads are instruction stream with state (registers

and memory). The register state is also called thread context. Threads could be part of the

same process or from different programs. Threads in the same program share the same

address space and hence consume fewer resources.

The terms multithreading, multiprocessing and multitasking are used interchangeably.

But each has its unique meaning:

 Multitasking: It is the process of executing multiple tasks simultaneously. In multitasking,

when a new thread needs to be executed, old thread’s context in hardware written

back to memory and new thread’s context loaded.

 Multiprocessing: It is using two or more CPUs within a single computer system.

 Multithreading: It is executing several parts of a program in parallel by dividing

the specific operations within a single application into individual threads.

Granularity: The threads are categorized based on the amount of work done by the thread.

This is known as granularity. When the hardware executes from the hardware contexts

determines the granularity of multithreading.

Computer Organization & Instructions 5.6

6

Hardware multithreading is having multiple threads contexts to span in same

processor.This is supported by the CPU.

Hardware vs Software multithreading

Software Multithreading Hardware Multithreading

Execution of concurrent threads is

supported by OS.

Execution of concurrent threads is supported

by CPU.

Large number of threads can be span. Very limited number of threads can span.

Context switching is heavy. It involves

more operations.

Light/ immediate context switching with

limited operations.

The following are the objectives of hardware multithreading:

 To tolerate latency of memory operations, dependent instructions, branch resolution

by utilizing processing resources more efficiently. When one thread encounters a long-

latency operation, the processor can execute a useful operation from another thread.

 To improve system throughput By exploiting thread-level parallelism by improving

superscalar processor utilization

 To reduce context switch penalty

Advantages of hardware multithreading:

 Latency tolerance

 Better hardware utilization

 Reduced context switch penalty

Cost of hardware multithreading:

 Requires multiple thread contexts to be implemented in hardware.

 Usually reduced single-thread performance

 Resource sharing, contention

 Switching penalty (can be reduced with additional hardware)

Advanced Computer Architecture 5.7

Fine grained multithreading is a mechanism in which switching among threads

happen despite the cache miss or stall caused by the thread instruction.

 Types of hardware multithreading

The hardware multithreading is classified based on the granularity of the threads as:

 Fine grained

 Coarse grained

 Simultaneous

Fine Grained Multithreading

 Here, the CPU switch to another thread at every cycle such that no two instructions

from the thread are in the pipeline at the same time. Hence it is also known as

interleaved multithreading.

 The threads are executed in a round-robin fashion in consecutive cycles.

 The CPU checks every cycle if the current thread is stalled or not.

 If stalled, a hardware scheduler will change execution to another thread that is ready

to run.

 Since the hardware is checking every cycle for stalls, all stall types can be dealt with,

even single cycle stalls.

 This improves pipeline utilization by taking advantage of multiple threads

 It tolerates the control and data dependency latencies by overlapping the latency with

useful work from other threads

 Fine-grained parallelism is best exploited in architectures which support fast

communication.

 Shared memory architecture which has a low communication overhead is most

suitable for fine-grained parallelism.

 This requires more threads to keep the CPU busy.

Advantages:

 No need for dependency checking between instructions since only one instruction

in pipeline from a single thread.

Computer Organization & Instructions 5.8

8

Coarse grained multithreading is a mechanism in which the switch only happens

when the thread in execution causes a stall, thus wasting a clock cycle.

 No need for branch prediction logic.

 The bubble cycles used for executing useful instructions from different threads.

 Improved system throughput, latency tolerance, utilization.

Disadvantages:

 Extra hardware complexity because of implementation of multiple hardware contexts

and thread selection logic.

 Reduced single thread performance as one instruction fetched every N cycles.

 Resource contention between threads in caches and memory.

 Dependency checking logic between threads remains.

Coarse grained multithreading

 In this type, the instructions of other threads are executed successively until an event

in current execution thread cause latency. This delay event induces a context switch.

 When a thread is stalled due to some event, the CPU switch to a different hardware

context. This is known as Switch-on-event multithreading or blocked multithreading.

 This is less efficient that fine grained multithreading but requires only few threads

to improve CPU utilization.

 The events that causes latency or stalls are: Cache misses, Synchronization events

and floating point operations.

 Resource sharing in space and time always requires fairness considerations. This is

implemented by considering how much progress each thread makes.

 The time allocated to each thread affects both fairness and system throughput. The

allocation strategies depends on the answers to the following questions:

 When do we switch?

 For how long do we switch?

 When do we switch back?

Advanced Computer Architecture 5.9

 How does the hardware scheduler interact with the software scheduler for

fairness?

 What is the switching overhead vs. benefit?

 Where do we store the contexts?

 A trade off must be done between fairness and system throughput: Switch not only

on miss, but also on data return.

 This has a severe problem because switching has performance overhead as it requires

flushing of pipeline and window; reduced locality and increased resource contention.

 One possible solution is to estimate the slowdown of each thread compared to when

run alone. Then enforce switching when slowdowns become significantly unbalanced.

Advantages:

 Simpler to implement, can eliminate dependency checking and branch prediction

logic completely

 Switching need not have any performance overhead.

 Higher performance overhead with deep pipelines andlarge windows

Disadvantages

 Low single thread performance: each thread gets 1/Nth of thebandwidth of the

pipeline

Simultaneous Multithreading (SMT)

 Here instructions can be issued from multiple threads in any given cycle.

 Instructions are simultaneously issued from multiple threads to the execution units

of a superscalar processor. Thus, the wide superscalar instruction issue is combined

with the multiple-context approach.

 In fine-grained and coarse-grained architectures, multithreading can start execution

of instructions from only a single thread at a given cycle.

 Execution unit or pipeline stage utilization can be low if there are not enough

instructions from a thread to dispatch in one cycle

Computer Organization & Instructions 5.10

10

A multi-core processor is a single computing component with two or more

independent processing units called cores, which read and execute program

instructions. A shared-memory multiprocessor is a computer system composed of

multiple independent processors that execute different instruction streams.

 Unused instruction slots, which arise from latencies during the pipelined execution

of single-threaded programs by amicroprocessor, are filled by instructions of other

threads within a multithreaded processor.

 The executions units aremultiplexed among those thread contexts that are loaded in

the register sets.

 Underutilization of asuperscalar processor due to missing instruction-level parallelism

can be overcome by simultaneousmultithreading, where a processor can issue multiple

instructions from multiple threads in each cycle.

 Simultaneous multithreadedprocessors combine the multithreading technique with a

wide-issue superscalar processor to utilize a larger part of the issue bandwidth by

issuing instructions from different threads simultaneously.

Fig 5.6: Hardware multithreading

 MULTICORE AND SHARED MEMORY MULTIPROCESSORS

 Multi-core is usually the term used to describe two or more CPUs working together

on the same chip. It is a type of architecture where a single physical processor

contains the core logic of two or more processors.

Advanced Computer Architecture 5.11

 Shared Memory Processor (SMP) follows multiple-instruction multiple-data (MIMD)

architecture.

 The processors share a common memory address space and communicate with each

other via memory. All the processors will have dedicated cache memory.

 In a multiprocessor system all processes on the various CPUs share a unique logical

address space, which is mapped on a physicalmemory that can be distributed among

the processors.

 Each process can read and write a data item simply using load andstore operations,

and process communication is through sharedmemory.

 It is the hardware that makes all CPUs access and use the samemain memory.

 Since all CPUs share the address space, only a single instance of the operating system

is required.

 When a process terminates or goes into a wait state for whichever reason, the O.S.

can look in the process table for another process to be dispatched to the idle CPU.

 On the contrary, in systems with no shared memory, each CPU must have its own

copy of the operating system, and processes can only communicate through message

passing.

 The basic issue in shared memory multiprocessor systems is memory itself, since the

larger the number of processors involved, the more difficult to work on memory

efficiently.

 All modern OS support symmetric multiprocessing, with a scheduler running on every

processor the ready to run processes can be inserted into a single queue, that can

be accessed by every scheduler, alternatively there can be a “ready to run” queue

for each processor.

 When a scheduler is activated in a processor, it chooses one of the ready to run

processes and dispatches it on its processor.

Load Balancing:

 A distinct feature in multiprocessor systems is load balancing.

Computer Organization & Instructions 5.12

12

 It is useless having many CPUs in a system, if processes are not distributed evenly

among the cores.

 With a single ready-to-run queue, load balancing is usually automatic: if a processor

is idle, its scheduler will pick a process from the shared queue and will start it on

that processor.

 Modern OSs designed for SMP often have a separate queue for each processor to

avoid the problems associated with a single queue.

 There is an explicit mechanism for load balancing, by which a process on the wait

list of an overloaded processor is moved to the queue of another, less loaded processor.

 Types of shared memory multiprocessors

There are three types of shared memory multiprocessors:

i) Uniform Memory Access (UMA)

ii) Non Uniform Memory Access (NUMA)

iii) Cache Only Memory Access (COMA)

i) Uniform Memory Access (UMA)

 Here, all the processors share the physical memoryin a centralized manner with equal

access time to all the memory words.

 Each processor may have a private cache memory. Same rule is followed for peripheral

devices.

 When all the processors have equal access to all the peripheral devices, the system

is called a symmetric multiprocessor.

 When only one or a few processors can access the peripheral devices, the system

is called an asymmetric multiprocessor.

 When a CPU wants to access a memory location, it checks if the bus is free, then

it sends the request to the memory interface module and waits for the requested data

to be available on the bus.

 Multicore processors are small UMA multiprocessor systems, where the first shared

cache is actually the communication channel.

Advanced Computer Architecture 5.13

 Shared memory can quickly become a bottleneck for system performances, since all

processors must synchronize on the single bus and memory access.

Fig 5.7: Uniform memory access model

ii) Non-uniform Memory Access (NUMA)

 In NUMA multiprocessor model, the access time varies with the location of the

memory word.

 Here, the shared memory is physically distributed among all the processors, called

local memories.

 The collection of all local memories forms a global address space which can be

accessed by all the processors.

 NUMA systems also share CPUs and the address space, but each processor has a local

memory, visible to all other processors.

 In NUMA systems access to local memory blocks is quicker than access to remote

memory blocks.

 Programs written for UMA systems run with no change in NUMA ones, possibly with

different performances because of slower access times to remote memory blocks.

 Single bus UMA systems are limited in the number of processors, and costly hardware

is necessary to connect more processors.

Computer Organization & Instructions 5.14

14

 Current technology prevents building UMA systems with more than 256 processors.

 To build larger processors, a compromise is mandatory: not all memory blocks can

have the same access time with respect to each CPU.

 Since all NUMA systems have a single logical address space shared by all CPUs,

while physical memory is distributed among processors, there are two types of

memories: local and remote memory.

Fig 5.8:Non-uniform Memory Access model

 There are two types of NUMA systems: Non-Caching NUMA (NC-NUMA) Cache-

Coherent NUMA (CC-NUMA).

 Non-Caching NUMA (NC-NUMA):

 In a NC-NUMA system, processors have no local cache. Each memory

access is managed with a modified MMU, which controls if the request

is for a local or for a remote block; in the latter case, the request is

forwarded to the node containing the requested data.

Advanced Computer Architecture 5.15

 Obviously, programs using remote data will run much slower than what

they would, if thedata were stored in the local memory. In NC-NUMA

systems there is no cache coherency problem, because there is no caching

at all: each memory item is in a single location.

 Remote memory access is however very inefficient. For this reason, NC-

NUMA systems can resort to special software that relocatesmemory

pages from one block to another, just to maximise performances.

Fig 5.9:Non-Caching NUMA

 Cache-Coherent NUMA (CC-NUMA):

 Caching can alleviate the problem due to remote data access, but brings the cache

coherency issue.

 A method to enforce coherency is obviously bus snooping, but this techniques

gets too expensive beyond a certain number of CPUs, and it is much too difficult

to implement in systems that do not rely on bus-based interconnections.

 The common approach in CC-NUMA systems with many CPUs to enforce cache

coherency is the directory-based protocol.

 The basic idea is to associate each node in the system with a directory for its

RAM blocks: a database stating in which cache is located a block, and what is

its state.

 When a block of memory is addressed, the directory in the node where the block

is located is queried, to know if the block is in any cache and, if so, if it has

been changed respect to the copy in RAM.

Computer Organization & Instructions 5.16

16

 Since a directory is queried at each access by an instruction to the corresponding

memory block, it must be implemented with very quick hardware, as an instance

with an associative cache, or at least with static RAM.

Fig 5.10:Cache-Coherent NUMA

iii) Cache Only Memory Access (COMA)

 The COMA model is a special case of the NUMA model. Here, all the distributed

main memories are converted to cache memories.

 In a monoprocessor architecture and in shared memory architectures each block

and each line are located in a single, precise position of the logical address space,

and have therefore an address called home address.

 When a processor accesses a data item, its logical address is translated into the

physical address, and the content of the memory location containing the data is

copied into the cache of the processor, where it can be read and/or modified.

 In the last case, the copy in RAM will be eventually overwritten with the updated

copy present in the cache of the processor that modified it.

 This property turns the relationship between processors and memory into a critical

one, both in UMA and in NUMA systems:

 In NUMA systems, distributed memory can generate a high number of messages

to move data from one CPU to another, and to maintain coherency in home

address values. Remote memory references are much slower than local memory

ones.

Advanced Computer Architecture 5.17

A Graphics Processing Unit (GPU) is a single-chip processor primarily used to

manage and boost the performance of video and graphics. It is a dedicated parallel

processor for accelerating graphical and deeper computations.

 In CC-NUMA systems, this effect is partially hidden by the caches.

 In UMA systems, centralized memory causes a bottleneck, and limit its the

interconnection between CPU and memory, and its scalability.

 In COMA, there is no longer a home address, and the entire physical address

space is considered a huge, single cache.

 Data can migrate within the whole system, from a memory bank to another,

according to the request of a specific CPU, that requires that data.

 GRAPHICS PROCESSING UNITS

GPU is designed to lessen the work of the CPU and produce faster video and graphics.

GPU can be thought as an extension of CPU with thousands of cores. A GPU is extensively

used in a PC on a video card or motherboard, mobile phones, display adapters, workstations

and game consoles. They are mainly used for offloading computation intensive application.

This is also known as a visual processing unit (VPU).

Differences between CPU and GPU

GPU CPU

They facilitate highly parallel operations. This supports serial execution of programs.

This has more number of cores

(in thousands).

This has less number of cores.

They need special faster interfaces to

facilitate faster data transfers.

No such special interfaces are required.

They have deeper pipelines. They have comparatively shallow pipelines.

Computer Organization & Instructions 5.18

18

Fig 5.11: CPU vs GPU architecture

 GPU features

The following are prominent features of GPU:

 2-D or 3-D graphics

 Digital output to flat panel display monitors

 Texture mapping

 Application support for high-intensity graphics software such as AutoCAD

 Rendering polygons

 Support for YUV color space

 Hardware overlays

 MPEG decoding

 Development of GPU

 The first GPU was developed by NVidia in 1999 and named as GeForce 256.

 This GPU model could process 10 million polygons per second and had more than

22 million transistors.

 This is a single-chip processor with integrated transform, drawing and BitBLT support,

lighting effects, triangle setup /clipping and rendering engines.

Advanced Computer Architecture 5.19

 The GPU is connected to the CPU and is completely separate from the motherboard.

 The RAM is connected through the Accelerated Graphics Port (AGP) or the PCI

express bus.

 Sometimes, GPUs are integrated into the northbridge on the motherboard and use

the main memory as a digital storage area, but these GPUs are slower and have poorer

performance.

 The accelerated memory in GPU is used for mapping vertices and can also supports

programmable shaders implementing textures, mathematical vertices and accurate

color formats.

 Applications such as Computer-Aided Design (CAD) can process over 200 billion

operations per second and deliver up to 17 million polygons per second.

 The main configurations of GPU processor are: Graphics coprocessor which is

independent of CPU and Graphics accelerator that is based on commands from CPU.

Fig 5.12: GPU Pipeline

Computer Organization & Instructions 5.20

20

A cluster is a collection of desktop computers or servers connected together by a

local area network to act as a single larger computer. A warehouse-scale computer

(WSC) is a cluster comprised of tens of thousands of servers

Input Assembler stage

 This stage is the communication bridge between the CPU and GPU.

 It receives commands from the CPU and also pulls geometry information from system

memory.

 It outputs a stream of vertices in object space with all their associated information.

Vertex Processing

 This processes vertices performing operations like transformation, skinning and

lighting.

 A vertex shader takes a single input vertex and produces a single output vertex.

Pixel Processing

 Each pixel provided by triangle setup is fed into pixel processing as a set of attributes

which are used to compute the final color for this pixel.

 The computations taking place here include texture mapping and math operations

Output Merger Stage

 The output-merger stage combines various types of output data to generate the final

pipeline result.

 CLUSTERS AND WAREHOUSE SCALE COMPUTERS

Warehouse-scale computers form the foundation of internet services. The present days WSCs

act as one giant machine. The main parts of a WSC are the building with the electrical and

cooling infrastructure, the networking equipment and the servers.

WSCs as Servers

The following features of WSCs that makes it work as servers:

 Cost-performance: Because of the scalability, the cost-performance becomes very

critical. Even small savings can amount to a large amount of money.

Advanced Computer Architecture 5.21

 Energy efficiency: Since large numbers of systems are clustered, lot of money

isinvested in power distribution and for heat dissipation. Work done per joule is

critical for both WSCs and servers because of the high cost of building the power

and mechanical infrastructure for a warehouse of computers and for the monthly

utility bills to power servers. If servers are not energy-efficient they will increase

 cost of electricity

 cost of infrastructure to provide electricity

 cost of infrastructure to cool the servers.

 Dependability via redundancy: The hardware and software in a WSC must collectively

provide at least 99.99% availability, while individual servers are much less reliable.

Redundancy is the key to dependability for both WSCs and servers. WSC architects

rely on multiple cost-effective servers connected by a low cost network and redundancy

managed by software. Multiple WSCs may be needed to handle faults in whole WSCs.

Multiple WSCs also reduce latency for services that are widely deployed.

 Network I/O: Networking is needed to interface to the public as well as to keep data

consistent between multiple WSCs.

 Interactive and batch-processing workloads: Search and social networks are interactive

and require fast response times. At the same time, indexing, big data analytics etc.

create a lot of batch processing workloads also. The WSC workloads must be designed

to tolerate large numbers of component faults without affecting the overall performance

and availability.

Differences between WSCs and data centers

Data Centers WSCs

Data centres hosts services for multiple

providers.

WSCs are run by only one client.

There will be little commonality between

hardware and software.

Homogenous hardware and software

management.

Third party software solutions. In-house middle ware.

Computer Organization & Instructions 5.22

22

WSC are not servers:

The following features of WSCs make them different from servers:

 Ample parallelism:

 Servers need not to worry about the parallelismavailable in applications to

justify the amount of parallel hardware.

 But in WSCs most jobs are totally independent and exploit request-level

parallelism.

 Request-Level parallelism (RLP) is a way of representing tasks which are

set of requests which are to be to run in parallel.

 Interactive internet service applications, the workload consists of independent

requests of millions of users.

 Also, the data of many batch applications can be processed in independent

chunks, exploiting data-level parallelism.

 Operational costs count:

 Server architects normally design systems for peak performance within a cost

budget.

 Power concerns are not too much as long as the cooling requirements are

maintained. The operational costs are ignored.

 WSCs, however, have a longer life times and the building, electrical and

cooling costs are very high.

 So, the operational costs cannot be ignored. A

 ll these add up to more than 30% of the costs of a WSC in 10 years.

 Power consumption is a primary, not secondary constraint when designing the

WSC system.

 Scale and its opportunities and problems:

 The WSCs are massive internally, so it gets volume discounts and economy

of scale, even if there are not too many WSCs.

 On the other hand, customized hardware for WSCs can be very expensive,

particularly if only small numbers are manufactured.

Advanced Computer Architecture 5.23

 The economies of scale lead to cloud computing, since the lower per-unit

costs of WSCs lead to lower rental rates.

 Even if a server had a Mean Time To Failure (MTTF) of twenty five years,

the WSC architect should design for five server failures per day.

 Architecture of WSC

The height of the servers is measured by rack units. A typical rack is 42 rack units.

But the standard dimension to hold the servers is 48.26 cm.

1 rack unit (U)=1.75 inches or 44.45 mm.

Fig 5.13: Architecture of WSCs

The fig 5.13 shows a WSC system with 1Unit server, 7 inch rack with an Ethernet

switch. This figure shows a high end server. But low end servers are of 1U size mounted

within a rack and connected with Ethernet switch. These rack level switches use 1 or 10

Gbps links with a number of uplink connections to cluster level switches. The second level

switching can span more than 10,000 individual servers.

 Programming model for WSC

There is a high variability in performance between the different WSC servers because

of:

Computer Organization & Instructions 5.24

24

 varying load on servers

 file may or may not be in a file cache

 distance over network can vary

 hardware anomalies

A WSC will start backup executions on other nodes when tasks have not yet completed and

take the result that finishes first. Rely on data replication to help with read performance

and availability. A WSC also has to cope with variability in load. Often WSC services are

performed with in-house software toreduce costs and optimize for performance.

 Storage of WSC

 A WSC uses local disks inside the servers as opposed to network attached storage

(NAS).

 The Google file system (GFS) uses local disks and maintains at least three replicas

to improve dependability by covering not only disk failures, but also power failures

to a rack or a cluster of racks by placing the replicas on different clusters.

 A read is serviced by one of the three replicas, but a write has to go to all three

replicas.

 Google uses a relaxed consistency model in that all three replicas have to eventually

match, but not all at the same time.

 WSC networking

 A WSC uses a hierarchy of networks for interconnection.

 The standard rack holds 48 servers connected by a 48-port Ethernet switch. A rack

switch has 2 to 8 uplinks to a higher switch.

 So the bandwidth leaving the rack is 6 (48/8) to 24 (48/2) times less than the

bandwidth within a rack.

 There are array switches that are more expensive to allow higher connectivity.

 There may also be Layer 3 routers to connect the arrays together and to the Internet.

 The goal of the software is to maximize locality of communication relative to the

rack.

Advanced Computer Architecture 5.25

 Performance

Power Utilization Effectiveness (PUE) is widely used metric to estimate the performance

of WSCs.

Total _ utility _ power
PUE=

IT _ equipment _ power

Bandwidth is an important metric as there may be manysimultaneous user requests or

metadata generation batch jobs.Latency is also equally important metric as it is seen by

users whenthey make requests. Users will use a search engine less as theresponse time

increases. Also users are more productive inresponding to interactive information when

the systemresponse time is faster as they are less distracted.

 MULTIPROCESSOR NETWORK TOPOLOGIES

Multiprocessor system consists of multiple processing units connected via some

interconnection network plus the software needed to make the processing units work together.

There are two major factors used to categorize such systems:

 the processing units

 the interconnection network

A number of communication styles exist for multiprocessing networks. These can be

broadly classified according to the communication model as shared memory (single address

space) versus message passing(multiple address spaces).

 Design Issues Of Interconnection Networks

The important issue in the design of multiprocessor systems is how to cope with the

problem of an adequate design of the interconnection network in order to achieve the desired

performance at low cost. The choice of the interconnection network may affect several

characteristics of the system such as node complexity, scalability and cost etc. The following

are the issues which should be considered while designing an interconnection network.

 Dimension and size of network: It should be decided how many processing element

are there in the network and what the dimensionality of the network is i.e. with how

many neighbors, each processor is connected.

Computer Organization & Instructions 5.26

26

 Symmetry of the network: It is important to consider whether the network is

symmetric or not i.e., whether all processors are connected with same number of

processing elements or the processing elements of corners or edges have different

number of adjacent elements.

 Message Size: Message size is dependent on the amount of data that can be transferred

in one unit time.

 Data transfer Time: The time taken for a message to reach to another processor,

Whether this time is a function of link distance between two processors or it depends

upon the number of nodes coming in between are chief factors

 Startup Time: It is the time of initiation of the process.

 Performance parameters

 Number of nodes (N): The number of nodes in a multiprocessor network plays a

dynamic role by virtue of which the performance of the system is evaluated. Higher

number of nodes means higher complexity but higher is the system performance.

Therefore, number of processors should be optimal.

 Node degree(D): The node degree of the network is defined as the number of edges

connected with the nodes. It is the connectivity among different nodes in a network.

The connectivity of the nodes determines the complexity of the network. The greater

number of links in the network means greater is the complexity. If the edge carries

data from the node, it is called out degree and if this carries data into the node then

it is called in degree.

 Diameter (D):The network diameter is defined as the maximum shortest path between

the source and destination node. The path length is measured by the number of links

traversed. This virtue is important in determining the distance involved in communication

and hence the performance of parallel systems. The low diameter is always better

because the diameter puts a lower bound on the complexity of parallel algorithms

requiring communication between arbitrary pairs of nodes.

 Cost (C): It is defined as the product of the diameter and the degree of the node

for a symmetric network.

Cost (C) = Diameter * Degree = D * d

Advanced Computer Architecture 5.27

Greater number of nodes means greater the cost of the network. It is good creation

to measure the hardware cost and the performance of the multiprocessor network and

gives more insight to design a cost-effective parallel system.

 Extensibility

It is virtue which facilitates large sized system out of small ones with minimum

changes in the configuration of the nodes. It is the smallest increment by which the

system can be expanded in a useful way. A network with large number of links or

a large node degree tends to increase the hardware cost. Expandability is an important

parameter to evaluate the performance of a multiprocessor system. The feasibility

to extend a system while retaining its topological characteristics enables to design

large scale parallel systems.

 Network Topologies

The multiprocessor networks are classified in two broad categories based on their

topological properties. These are given below:

 Cube based network

 Linearly Extensible Network

Cube Based Network

 The cube based architectures are widely used networks in parallel systems. They have

good topological properties such as symmetry, scalability and possess a rich

interconnection topology. The types of cube based networks are:

 Binary hypercube or n-cube:

 This is a loosely coupled parallel multiprocessor based on the binary n-cube

network.

 An n-dimensional hypercube contains 2n nodes and has n edges per node.

 In hypercube, the number of communication links for each node is a logarithmic

function of the total number of nodes.

 The hypercube organization has low diameter and high bisection width at the

expense of the number of edges per node and the length of the longest edge.

Computer Organization & Instructions 5.28

28

 The length of the longest edge in a hypercube network increases as the number

of nodes in the network increases.

 The node degree increases exponentially with respect to the dimension, making

it difficult to consider the hypercube a scalable architecture.

 The major drawback of the hypercube is the increase in the number of

communication links for each node with the increase in the total number of

nodes.

 Cube Connected Cycle (CCC)

Fig 5.14: Hypercube

 The CCC architecture is an attractive parallel computation network suitable

for VLSI implementation while preserving all the desired features of hypercube.

 The CCC is constructed from the n- dimensional hypercube by replacing

each node in hypercube with a ring containing n node.

 Each node in a ring then connects to a distinct node to one of the n dimensions.

 The advantage of the cube- connected cycles is that node’s degree is always

3, independent of the value of n. This architecture is modified from hypercube

i.e. a 3-cube is modified to form a 3-cube-connected cycles (CCC) restricted

the node degree to 3.

 The idea is to replace the corner nodes (vertices) of the 3-cube with a ring

of 3-nodes.

 In general one can construct k-cube-connected cycles from a k-cube with n=2k

rings nodes.

Advanced Computer Architecture 5.29

 Folded HyperCube (FHC)

 The FHC is the variation of the hypercube network and constructed by

introducing some extra links to the hypercube.

 Halved diameter, better average distance, shorter delay in communication

links, less message traffic density, lower cost make it very promising.

 The hardware overhead is almost 1/n, n being the dimensionality of the

hypercube, which is negligible for large n.

 Optimal routing algorithms are developed are developed and proven to be

remarkably more efficient than those of the conventional n-cube.

 A folded hypercube of dimension n is called FHC (n).

 The FHC (n) is a regular network of node connectivity (n+1)and the hypercube

of degree 3 is converted to FHC (n) network.

 Extended versions of FHC (n) is called Extended Folded Cube (EFC). The

EFC hasbetter properties than the other variations of basic hypercube in terms

of parameter.

 It hasconstant node degree, smaller diameter, and lower cost and also it

maintains severalnumerous desirable characteristics including symmetry,

hierarchical, expansive, recursive.

Fig 5.15: Folded Hypercube

Computer Organization & Instructions 5.30

30

 Crossed Cube

 The Crossed Cube (CC) has the same node and link complexity as the hypercube

and has most of its desirable properties including regularity, recursive structure,

partition ability, strong connectivity and ability to simulate other architectures.

 Its diameter is only half of the diameter of the hypercube.

 Mean distance between vertices is smaller and it can simulate a hypercube through

dilation 2 embedding.

 The basic properties of the CC, optimal routing and broadcasting algorithms are

developed.

 The CC is derived from a hypercube by changing the way of connection of some

hypercube links.

 The diameter of CC is almost half of that of its corresponding hypercube.

 Reduced Hypercube (RHC)

Fig 5.16: Crossed Cube

 The RH (k, m) is obtained from the n- dimensional hypercube by reducing node edges

in hypercube by following rules where k+2m= n.

 The lower VLSI complexity of RH’s permit the construction of systems with more

processing elements than are found in conventional hypercube.

 There are clusters and each cluster is a conventional k- dimensional hypercube.

 Of the higher n-k=2m dimensions, a node has only one direct connection is decided

by the leftmost m bits in the k-bits field, i.e., the (2i + k) dimension, where i is the

value of the m-bit binary number.

Advanced Computer Architecture 5.31

Fig 5.17: Reduced Hypercube

 Hierarchal Cube Network (HCN)

 The Hierarchical Cube Network (HCN) is interconnection network for large-scale

distributed memory multiprocessors.

 HCN has about three-fourths the diameter of acomparable hypercube, although it uses

about half as many links per node-a fact that haspositive ramifications on the

implementation of HCN-connected systems.

 The HCN (n, n)has 2n clusters, where each cluster is an n-cube.

 Each node in the HCN (n, n) has n+1 linksconnected to it. n links are used inside

the cluster. The additional links are used toconnect nodes among clusters.

 The advantage of HCN is that the number of links required is reduced approximately

to halfas many links per node and the diameter is reduced to about three-fourth of

a correspondinghypercube.

Fig 5.18: Hierarchical Cube Network

Computer Organization & Instructions 5.32

32

 Dual Cube (DC)

 The DC is a new interconnection topology for large-scale distributed memory

Multiprocessors that reduces the problem of increasing number of links in the

large-scale hypercube network.

 This preserves most of the topological properties of the hypercube network.

 The DC shares the desired properties of the hypercube, however increases tremendously

the total number of nodes in the system with limited links per node.

 The key properties of hypercube are also true in the dual-cube: each node can be

represented by unique binary number such that two nodes are connected by an

edge if and only if the two binary numbers differ in one bit only.

 However, the size of the dual-cube can be as large as eight thousands with up to eight

links per node.

 A dual-cube uses binary hypercube as basic components. Each such hypercube

component is referred to as a cluster.

 Assume that the number of nodes in a cluster is 2m. In a dual cube, there are two

 classeswith each class consisting of 2m clusters.

 The total number of nodes is 2m or 2m+1. Therefore, the nodes address has 2m+1 bits

 The leftmost bit is used to indicate the type of the class (class 0 and class 1).

 For the class 0, the rightmost m bits are used as the node ID within the cluster.

 Each node in cluster of class 0 has one and only one extra connection to a node in

a cluster of class 1.

 Meta Cube (MC)

 The MC is an interconnection topology for a very large parallel system. Meta cube

network has two level cube structures. An MC (k, m) network can connect 2k+m2k

nodes with (k+m) links per node where k is the dimension of the high-level cubes

(classes) and m is the dimension of the low-level cubes (clusters).

 In this network, the number of nodes is much larger than the hypercube with a small

number of links per node.

Advanced Computer Architecture 5.33

 An MC network is a symmetric network with short diameter, easy and efficient

routing

 similar to that of the hypercube.

 The meta cube has tremendous potential to be used as an interconnection network

for very large scale parallel computers since the meta cube can connect hundreds of

millions nodes with up to six links per node and it keeps some desired properties

of the hypercube that are useful efficient communication among the nodes.

 Folded Dual Cube (FDC)

 The FDC is a new cube based Interconnection topology for parallel systems with

reduced diameter, cost and constructed from DC and FHC.

 The FDC is a graph Fr (V, E), where V represents a set of vertices and E represent

a set of links.

 The FDC is to be slightly greater than Dualcube but quite less than HC and FHC.

 Diameter of FDC is found to be smaller than that of Dualcube and with the comparison

of Dualcube, HC and FHC.

 FDC exhibits quite a good improvement in broadcast time over its parent networks

with millions of nodes.

 The cost of the FDC topology is found to be less. The FDC will help to speed up

the overall operation of large scale parallel systems.

 Folded Metacube (FMC)

Fig 5.19: Folded Dual Cube

 The FMC is an efficient large scale parallel interconnection topology with better

features such as reduced diameter, cost, improved broadcast time and constructed

from MC.

Computer Organization & Instructions 5.34

34

 The FMC is a graph G (V, E), where V represents a set of vertices and E represent

a set of links.

 The FMC is to be slightly greater than metacubebut quite less than HC and FHC.

 Diameter of FMC is found to be smaller than that of Metacube.

 FMC exhibits quite a good improvement in broadcast time over its parent network

while connecting millions of nodes.

 The cost of the FMC is found to be less and will help to speed the overall operation

of large scale parallel systems.

 Necklace Hypercube (NH)

 NH is an array of processors attached to each two adjacent nodes of the hypercube

network.

 It is highly scalable architecture while preserving most of the desirable properties

of hypercube such as logarithmic diameter, fault tolerance etc.

 It has also some other properties such as hardware scalability and efficient VLSI

layout that make it more attractive than an equivalent hypercube network.

 The Necklace-Hypercube is an undirected graph which has a necklace of processors

to each edge of hypercube.

 The necklace length may be fixed or variable for different edge necklaces.

Fig 5.20: Necklace Hypercube

Advanced Computer Architecture 5.35

Linearly Extensible Network

The Linearly Extensible Networks is another class of multiprocessor architectures which

reduces some of the drawbacks of HC architectures. The complexity of these networks is

lesser as they do not have exponential expansion. Besides the scalability, other parameters

to evaluate the performance of such networks are degree, number of nodes, diameter,

bisection width and fault tolerance. Selection of a better interconnection network may have

several applications with lesser complexities and improved power-efficiency.

 Linear Array (LA)

 It is one dimensional network having the simplest topology with n-nodes having n-

1

 communication links.

 The internal nodes have degree 2 and the termination nodes have degree1.

 The diameter is n-1, which is long for large n and the bisection width is 1.

 It is asymmetric network. Linear array are the simplest connection topology.

 As the diameter increases linearly with respect to n, it should not be used for large

n. For every small n, it is rather economical to implement a linear array.

 Binary Tree (BT)

 A binary tree is either empty or consists of node called the root together with two

binary trees called left subtree and the right subtree.

 When h is equal to height of a binary tree then maximum leaves are equal to 2h

 and maximum nodes are 2h+1-1.

 In a binary tree network there is only one path between any two nodes.

 The binary tree is scalable architecture with a constant node degree and constant

bisection width. In general, an n-level, complexity balanced binary tree should have

N=2n-1 nodes.

 The maximum node degree is 3 and the diameter is 2(n-1). But has a poor bisection

width of 1.

Computer Organization & Instructions 5.36

36

 Ring (R)

 This is a simple linear array where the end nodes are connected. It is equivalent to

mesh with wrap around connections.

 The data transfer in a ring is normal one direction. A ring is obtained by connecting

the two terminal nodes of a linear array with one extra link.

 A ring network can be uni-or bidirectional and it is symmetric with a constant.

 It has a constant node degree of d=2, the diameter is N/2for a bidirectional ring and

N for unidirectional ring.

 A ring network has a constant width 2.

 Linearly Extensible Tree (LET)

 The Linearly Extensible Tree (LET) architecture exhibits better connectivity, lesser

number of nodes over cube based networks.

 The LET network has low diameter, hence reduce the average pathlengthtraveled by

all message and contains a constant degree per node.

 The LET network grows linearly in a binary tree like shape.

 In a binary tree the number of nodes at level n is 2n whereas in LET network the

number is (n+1).

Fig 5.21: Linearly Extensible Tree

Advanced Computer Architecture 5.37

Linearly Extensible Cube (LEC)

 The LEC network grows linearly and possesses some of the desirable topological

properties topological properties such as small diameter, high connecting constant

node degree with high scalability.

 It has constant expansion of only two processors at each level of the extension while

preserving all the desirable topological properties.

 The LEC network can maintain a constant node degree regardless of the increase in

size in a network.

 The number of nodes in LEC network is 2 * n for n > 0 whereas the number of nodes

in the hypercube is 2n. The diameter of network is N. It has a constant node degree

4.

Fig 5.22:Linearly Extensible Cube

Page | 1

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COMMON FOR: DEPARTMENT OF INFORMATION TECHNOLOGY

CS8492 – DATABASE MANAGEMENT SYSTEMS

YEAR / SEM : II / III

R – 2017

LECTURE NOTES

Page | 2

Unit – III

Transactions

Introduction

Single-User System: Onlyone user can use the system at a time.

Multiuser System: Manyusers canaccess the systemconcurrently.

Concurrency

Interleaved Processing: Concurrentexecutionofprocesses is interleaved in asingle CPU.

Parallel Processing: Processesareconcurrentlyexecuted in multiple CPUs.

Transaction Concepts

Write short notes on transaction concepts. (Nov/Dec 2014)

A transaction can be defined as a group of tasks. It is a logical unit of work on the database processing that

includesoneormoreaccessoperations(read-retrieval,write-insertor update, delete).

(Or)

Collectionsofoperationsthatformasinglelogicalunit of workarecalled transactions.

 A database system must ensure proper execution of transactions despite failures—either the entire transaction

executes, or none of it does.

Usually, a transaction is initiated by a user program written in a high-level data- manipulation language

(typically SQL), or programming language (for example, C++, or Java), with embedded database accesses in

JDBC or ODBC.

A transaction is delimited by statements (or function calls) of the form begin transaction

and end transaction.

Thetransaction consistsof all operationsexecutedbetween the begin transaction and end transaction.

Transaction Concepts – ACID Properties – Schedules – Serializability – Concurrency Control –

Needfor Concurrency– Locking Protocols– Two Phase Locking– Deadlock– Transaction Recovery

Page | 3

A Simple Transaction Model / Simple Model of a Database (for purposes of transactions):

A database - collection of named data items

Granularityofdata-afield, arecordorawholediskblock(Conceptsareindependentof granularity)

Basic operations are read and write.

o read_item(X): Reads a database item named X into a program variable. To simplify our notation, we

assume that the program variable is also named X.

o write_item(X): Writes the value of program variable X into the database item named X.

Read Operation:

Basicunitofdatatransferfromthedisk tothecomputermain memory is oneblock.

In general, a data item (what is read or written) will be the field of some record in the database, although it

maybealargerunitsuch as arecordorevenawholeblock.

read_item(X) command includes the following steps:

 Find the address of the disk block that contains item X.

 Copythatdiskblockintoabuffer inmainmemory(ifthatdisk block isnot already in some main

memory buffer).

 Copyitem X fromthebuffer to theprogramvariable named X.

Write Operation:

write_item(X) command includes the following steps:

 Find the address of the disk block that contains item X.

 Copythatdiskblockintoabuffer in mainmemory(ifthatdiskblock is notalready in some main

memory buffer).

 Copy item X from the program variable named X into its correct location in the buffer.

 Store the updated block from the buffer back to disk (either immediately or at some later point intime).

Figure: Two sample transactions. (a) Transaction T1 (b) Transaction T2

Let Ti be a transaction that transfers $50 from account A to account B. This transaction can be definedas:

Ti : read(A);

A := A − 50;

write(A);

read(B);

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 4

B:=B+50;

write(B).

Storage Structure

To understand how to ensure the atomicity and durability properties of a transaction, we must gain a better

understanding of howthevariousdataitems in thedatabasemaybe stored andaccessed.

Volatile Storage

Informationresidinginvolatilestoragedoesnotusuallysurvivesystemcrashes.

Examples of such storage are main memory and cache memory.

Nonvolatile Storage

Informationresiding in nonvolatilestoragesurvivessystemcrashes.

Examples of nonvolatile storage include secondary storage devices such as magnetic disk and flash storage, used

for online storage, and tertiary storage devices such as optical media, and magnetic tapes, used for archival

storage.

Stable Storage

Information residing in stable storage is never lost (never should be taken with a grain of salt, since

theoretically never cannot be guaranteed).

State Diagram of a Transaction

Write short notes on states of a transaction.

A transaction in a database can be in one of the following states:

 Active

 Partially Committed

 Failed

 Aborted

 Committed

(Or)

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 5

Figure: State Diagram of a Transaction

Active State

 The active state is the first state of every transaction.

 In this state, the transaction is being executed.

 For example: Insertion or deletion or updating a record is done here. But all the records are still not saved to the

database.

Partially Committed

 In the partially committed state, a transaction executes its final operation, but the data is still not saved to the

database.

 Inthetotalmarkcalculationexample,afinaldisplayofthetotalmarksstepisexecutedin this state.

Committed

 Atransactionissaidtobeinacommittedstateifitexecutesallitsoperationssuccessfully.

 Inthisstate, all theeffectsarenowpermanentlysavedonthedatabasesystem.

Failed State

 If any of the checks made by the database recovery system fails, then the transaction is said to be in the failed state.

 Intheexampleoftotalmarkcalculation, ifthedatabaseisnotabletofireaquery tofetch the marks, then the

transaction will fail to execute.

Aborted

 Ifanyofthechecksfailandthetransactionhasreached afailed state thenthedatabase recoverysystemwill

makesurethatthedatabaseisin itspreviousconsistentstate.

 Ifnotthenitwillabortorrollbackthetransactiontobringthedatabaseintoaconsistent state.

 Ifthe transactionfailsinthemiddleof thetransactionthenbeforeexecutingthetransaction, all the executed

transactionsare rolled back to its consistent state.

 Afteraborting the transaction, thedatabase recovery module will select oneofthetwo operations:

 Re-start the Transaction

 Kill the Transaction

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 6

ACID Properties

Explain with an example the properties that must be satisfied by a transaction.

(April/May 2018)

The transaction has the four properties. These are used to maintain consistency ina database, before and

after the transaction.

Properties of Transaction

1. Atomicity

2. Consistency

3. Isolation

4. Durability

Atomicity

 Itstatesthatalloperationsofthetransactiontakeplace atonce ifnot, thetransactionis aborted.

 There is no midway, i.e., the transaction cannot occur partially. Each transaction is treated as one unit and either run

to completion or is not executed at all.

 Atomicity involves the following two operations:

 Abort: If a transaction abortsthen all thechangesmadearenotvisible.

 Commit: If a transaction commitsthen all the changesmadearevisible.

Example:

 Let's assume that following transaction T consisting of T1 and T2. A consists of Rs 600 and B consists of Rs 300.

Transfer Rs 100 from account A to account B.

T1 T2

Read(A)

A:= A-100

Write(A)

Read(B)

Y:= Y+100

Write(B)

Aftercompletionofthetransaction, Aconsistsof Rs500and Bconsistsof Rs400.

If thetransaction Tfailsafterthecompletionoftransaction T1 butbeforecompletionof transactionT2, thenthe

amountwillbededucted fromAbutnotaddedto B.

This shows the inconsistent database state.

In order to ensure correctness of database state, the transaction must be executed in entirety.

Consistency

 The integrity constraints are maintained so that the database is consistent before and after the transaction.

 The execution of a transaction will leave a database in either its prior stable state or a new stable state.

 Theconsistentpropertyofdatabase statesthateverytransactionseesaconsistent database instance.

 The transaction is used to transform thedatabase fromone consistent state to another consistent state.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 7

 Forexample:Thetotalamountmustbemaintainedbeforeorafterthetransaction.

1. Total before T occurs = 600 + 300 = 900

2. Total after T occurs = 500 + 400 = 900

 Therefore,thedatabaseisconsistent.InthecasewhenT1iscompletedbutT2fails,then inconsistency will

occur.

Isolation

 It shows that the data which is used at the time of execution of a transaction cannot be used by the second transaction

until the first one is completed.

 In isolation, if the transaction T1 is being executed and using the data item X, then that data itemcan'tbeaccessedby

anyothertransaction T2untilthetransaction T1ends.

 TheconcurrencycontrolsubsystemoftheDBMSenforcedtheisolationproperty.

Durability

 Thedurabilitypropertyisusedtoindicatetheperformanceofthedatabase'sconsistent state. It states that the

transaction made thepermanent changes.

 They cannot be lost by the erroneous operation ofa faulty transaction or by the system failure.

 When a transaction is completed, then the database reaches astate known as the consistent state.Thatconsistentstate

cannotbelost,evenintheeventofasystem'sfailure.

 Therecoverysubsystemofthe DBMShastheresponsibilityofDurabilityproperty.

Schedules

Explain in detail about schedules with an example.

Aseriesofoperationfromonetransactiontoanothertransactionisknownasschedule.

Itisusedtopreservetheorderoftheoperation in eachoftheindividualtransaction.

If two transactions are executed at the same time, the result of one transaction may affect the output ofother.

Example

Initial Product Quantity is 10

Transaction 1: Update Product Quantity to 50

Transaction 2: Read Product Quantity

 If Transaction 2 is executed before Transaction 1, outdated information about the product quantity will be read.

Hence, schedules are required.

Equivalence Schedules

 Parallel execution in a database is inevitable.

 But, Parallel execution is permitted whenthere is an equivalence relation amongstthe simultaneously

executingtransactions.

 This equivalence is of 3 Types.

Result Equivalence

 If two schedules display the same result after execution, it is called result equivalent schedule.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 8

 They may offer the same result for some value and different results for another set of values.

 For example, one transaction updates the product quantity, while other updates customer details.

View Equivalence

 View Equivalence occurswhen the transaction in both the scheduleperformsa similar action.

 Forexample,onetransactioninsertsproductdetailsintheproducttable,whileanother transaction inserts

product details in the archive table.

 The transaction is the same, but the tables are different.

Conflict Equivalence

 In this case, two transactions update/view the same set of data.

 Thereisaconflictamongsttransactionastheorderofexecutionwillaffecttheoutput.

Two schedules would be conflicting if they have the following properties −

 Both belong to separate transactions.

 Both access the same data item.

 At least one of them is "write" operation.

Two schedules having multiple transactions with conflicting operations are said to be conflict

equivalent if and only if −

 Both the schedules contain the same set of Transactions.

 Theorderofconflictingpairsofoperationismaintainedinboththeschedules.

Types of Schedule

Serial Schedule

The serial schedule is a type of schedule whereonetransaction is executed completely before starting another

transaction.

In the serial schedule, when the first transaction completes its cycle, then the next transaction is executed.

Forexample:SupposetherearetwotransactionsT1andT2whichhavesomeoperations.

Ifithasnointerleavingofoperations,thentherearethefollowingtwopossibleoutcomes:

 Execute all the operations of T1 which was followed by all the operations of T2.

 Execute all the operations of T1 which was followed by all the operations of T2.

 Inthegiven(a)figure,ScheduleAshowstheserialschedulewhereT1followedbyT2.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 9

Here,

Inthegiven(b)figure, ScheduleBshowstheserialschedulewhereT2followedbyT1.

Schedule A and Schedule B are serial schedule.

Non-serial Schedule

 If interleaving of operations is allowed, thentherewill be non-serialschedule.

 It contains many possible orders in which the system can execute the individual operations of the transactions.

 Inthegivenfigure(c)and(d),ScheduleCandScheduleDarethenon-serialschedules.

 It has interleaving of operations.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 10

Here,

 Schedule C and Schedule D are Non-serial schedule.

Serializable Schedule

 The serializability of schedules is used to find non-serial schedules that allow the transaction to execute

concurrentlywithoutinterfering withoneanother.

 It identifies which schedules are correct when executions of the transaction have interleaving of their

operations.

 A non-serial schedule will be serializable if its result is equal to the result of its transactions executed serially.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 11

Serializability

Explain Serializability in detail. (Or) Discuss View Serializability and Conflict Serializability.

(Nov/Dec 2015, April/May 2018)

Serializability isaconcurrency scheme wheretheconcurrenttransactionisequivalentto one that

executes the transactions serially.

A schedule is a list of transactions.

Theobjectiveofaconcurrency control protocolis toscheduletransactionsinsucha wayas to avoid any

interference between them.

Schedule is a sequence of the operations by a set of concurrent transactions that preserves theorderofthe

operations in eachofthe individualtransactions.

Serial schedule is a schedule where the operations of each transaction are executed consecutively

withoutanyinterleavedoperationsfromothertransactions.

In aserial schedule, the transactions areperformed in serial order, ie., if T1 and T2 are transactions, serial order

would be T1 followed by T2 or T2 followed by T1.

Non serial schedule is a schedule where the operations from a set of concurrent transactions are

interleaved.

In non-serial schedule, if the schedule is not proper, then the problems can arise like multiple update,

uncommitted dependency and incorrect analysis.

The objective of serializability is to find non serial schedules that allow transactions to execute

concurrently without interfering with one another, and there by produce a database state that could be

producedbya serialexecution.

Testing of Serializability

 Serialization Graph is used to test the Serializability of a schedule.

 Assumeaschedule S. For S, we constructagraphknown as precedencegraph.

 This graph has a pair G = (V, E), where V consists a set of vertices, and E consists a set of edges. The set of

vertices is used to contain all the transactions participating in the schedule.

 Thesetofedges is used to containalledges Ti ->Tjforwhichone of thethreeconditions holds:

1. Create a node Ti → Tj if Ti executes write (Q) before Tj executes read (Q).

2. Create a node Ti → Tj if Ti executes read (Q) before Tj executes write (Q).

3. CreateanodeTi→TjifTiexecutes write(Q) beforeTjexecutes write(Q).

Precedence Graph for Schedule S:

 If a precedence graph contains a single edge Ti → Tj, then all the instructions of Ti are executed beforethe

first instruction of Tj is executed.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 12

 If a precedence graph for schedule S contains a cycle, then S is non-serializable. If the precedence graph has

no cycle, then S is known as serializable.

For Example:

Explanation:

Read(A): In T1, no subsequent writes to A, so no new edges

Read(B): InT2,nosubsequentwritestoB,sononewedges

Read(C): InT3,nosubsequentwritestoC,sononewedges

 Write(B): Bissubsequently readbyT3,soaddedgeT2→T3

 Write(C): Cissubsequently readbyT1,soaddedgeT3→T1

 Write(A): A is subsequentlyreadbyT2,so addedgeT1→ T2

Write(A): InT2,nosubsequentreadstoA,sononewedges

Write(C): InT1,nosubsequentreadstoC,sononewedges

Write(B): InT3,nosubsequentreadstoB,sononewedges

Precedence Graph for Schedule S1:

 The precedence graph for schedule S1 contains a cycle that's why Schedule S1 is non- serializable.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 13

Explanation:

Read(A): InT4,nosubsequentwritestoA,sononewedges

Read(C): InT4,nosubsequentwritestoC,sononewedges

 Write(A): A is subsequently read by T5, so add edge T4 → T5

Read(B): In T5,no subsequent writes to B, so no new edges

 Write(C): Cissubsequently readbyT6,soaddedgeT4→T6

 Write(B): A is subsequentlyreadbyT6,soaddedgeT5→T6

Write(C): InT6,nosubsequentreadstoC,sononewedges

Write(A): InT5,nosubsequentreadstoA,sononewedges

Write(B): In T6, no subsequent reads to B, so no new edges

Precedence graph for schedule S2:

 The precedence graph for schedule S2 contains no cycle that's why ScheduleS2 is serializable.

Types of Serializability

1. Conflict Serializability

 Conflict serializability defines two instructions of two different transactions accessing the same data item to

perform a read/write operation.

 Itdealswithdetectingtheinstructionsthatareconflictinginanywayandspecifyingthe order in which the

instructions should execute in case there is any conflict.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 14

 A conflict serializability arises when one of the instruction is a write operation. The following rules

are important in Conflict Serializability,

 If two transactionsareboth read operation, then they arenot in conflict.

 If one transaction wants to perform a read operation and other transaction wants to performawrite

operation, thenthey are in conflict and cannotbeswapped.

 If both the transactions are for write operation, then they are in conflict, but can be allowed to take place in any order,

because the transactions do not read the value updated by each other.

2. View Serializability

 View serializability is another type of serializability.

 It can be derived by creating another schedule out of an existing schedule and involves the same set of

transactions.

Example:

Let us assume two transactions T1 and T2 that are being serialized to create two different schedules S1 and S2,

where T1 and T2 want to accessthesamedataitem.

Now there can be three scenarios,

 IfinS1,T1readstheinitialvalueofdataitem,theninS2,T1shouldreadtheinitial value of that same data

item.

 If in S2, T1writes a value in the data item which is read by T2, and then in S2, T1 should write the value

in the data item before T2 reads it.

If in S1, T1performs the final write operation on that data item, then in S2, T1 should perform the final write

operation on that data item.

If a concurrent schedule is view equivalent to a serial schedule of same transaction then it is said to be View

serializable.

Conflict Serializable Schedule

 A schedule is called conflict serializability if after swapping of non-conflicting operations, it can transform into a

serial schedule.

 Theschedulewillbeaconflictserializableifitisconflictequivalenttoaserialschedule.

Conflicting Operations

The two operations become conflicting if all conditions satisfy:

1. Both belong to separate transactions.

2. They have the same data item.

3. They contain at least one write operation.

Example:

 Swapping is possible only if S1 and S2 are logically equal.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 15

 Here, S1 = S2. That means it is non-conflict.

 Here, S1 ≠ S2. That means it is conflict.

Conflict Equivalent

 In the conflict equivalent, one can be transformed to another by swapping non-conflicting operations.

 In the given example, S2 is conflict equivalent to S1 (S1 can be converted to S2 by swapping non-conflicting

operations).

Two schedules are said to be conflict equivalent if and only if:

1. They contain the same set of the transaction.

2. If each pair of conflict operations are ordered in the same way.

Example:

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 16

 Schedule S2 is a serial schedule because, in this, all operations of T1 are performed before starting any operation

of T2.

 Schedule S1 can be transformed into a serial schedule by swapping non-conflicting operations of S1.

 After swapping of non-conflict operations, the schedule S1 becomes:

T1 T2

Read(A)

Write(A)

Read(B)

Write(B)

Read(A)

Write(A)

Read(B)

Write(B)

 Since, S1 is conflict serializable.

View Serializability

 Aschedulewillviewserializable if it is viewequivalenttoaserialschedule.

 If a schedule is conflict serializable, then it will be view serializable.

 Theviewserializablewhichdoesnotconflictserializablecontainsblindwrites.

View Equivalent

 Two schedules S1 and S2 are said to be view equivalent if they satisfy the following conditions:

1. Initial Read

 An initial read of both schedules must be the same.

 Suppose two schedule S1 and S2.

 In schedule S1, if a transaction T1 is reading thedataitem A, then in S2, transaction T1 should also readA.

 Above two schedules are view equivalent because Initial read operation in S1 is done by T1 and in S2 it is also

done by T1.

2. Updated Read

 In schedule S1, if Ti is reading Awhich is updated by Tj then in S2 also, Ti should read A which is updated by

Tj.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 17

 Abovetwoschedulesarenotviewequalbecause,inS1,T3isreadingAupdatedbyT2and in S2, T3 is reading A

updated by T1.

3. Final Write

 A final write must be the same between both the schedules. In schedule S1, if a transaction T1 updates A at last then

in S2, finalwritesoperationsshouldalsobedoneby T1.

 AbovetwoschedulesisviewequalbecauseFinalwriteoperationinS1isdonebyT3andin S2, the final write

operation is also done by T3.

Example:

Schedule S

 With3transactions,thetotalnumberofpossibleschedule 1. = 3! = 6

2. S1=<T1T2T3>

3. S2=<T1T3T2>

4. S3=<T2T3T1>

5. S4=<T2T1T3>

6. S5=<T3T1T2>

7. S6=<T3T2T1>

Taking first schedule S1:

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 18

Schedule S1

Step 1: Final Updation on Data Items

 In both schedules S and S1, there is no read except the initial read that's why we don't need to check thatcondition.

Step 2: Initial Read

 The initial read operation in S is doneby T1 and in S1, it is also done by T1.

Step 3: Final Write

 ThefinalwriteoperationinSisdonebyT3andinS1,itisalsodonebyT3.So,SandS1are view Equivalent.

 The first schedule S1 satisfies all three conditions, so we don't need to check another schedule.

 Hence, view equivalent serial schedule is:

T1 → T2 → T3

Recoverability of Schedule

 Sometimes a transaction may not execute completely due to a software issue, system crash or hardware failure.

 In that case, the failed transaction has to be rollback.

 Butsomeothertransactionmayalsohaveusedvalueproducedbythefailedtransaction.

 So we also have to rollback those transactions.

 The above table 1 shows a schedule which has two transactions.

 T1 reads and writes the valueof Aand that value is readand written by T2.

 T2 commitsbut later on, T1 fails. Due to the failure, we have to rollback T1.

 T2 should also be rollback because it reads the value written by T1, but T2 can't be rollback because it already

committed.

 So this type of schedule is known as irrecoverable schedule.

Irrecoverable Schedule

 The schedule will be irrecoverable if Tj reads the updated value of Ti and Tj committed before Ti commit.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 19

 The above table 2 shows a schedule with two transactions.

 TransactionT1readsandwritesA,andthatvalueisreadandwrittenbytransactionT2.

 But later on, T1 fails. Due to this, we have to rollback T1.

 T2 should be rollback because T2 has read thevalue written by T1.

 AsithasnotcommittedbeforeT1commitsso wecanrollback transaction T2aswell.

 So it is recoverable with cascade rollback.

Recoverable with Cascading Rollback

 TheschedulewillberecoverablewithcascadingrollbackifTjreadstheupdatedvalueof Ti. Commit of Tj is

delayed till commit of Ti.

 The above Table 3 shows a schedule with two transactions.

 TransactionT1readsandwriteAandcommits,andthatvalueisreadandwrittenbyT2.

 So this is a cascade less recoverable schedule.

Concurrency Control

What is Concurrency? Explain it in terms of locking mechanism and two phase commit

protocols.(Nov/Dec 2014) (Or) What is Concurrency Control? Howis it implemented in DBMS?

Illustrate with a suitable example. (Nov/Dec 2015) (Or) State and explain the lock based

concurrency control with suitable example. (Nov/Dec 2017)

 Concurrency control manages the transactions simultaneously without letting them interfere with each

another.

 The main objective of concurrency is to allow multiple users to perform different operations at

the same time.

(Or)

Amechanismwhich ensuresthatsimultaneousexecution of morethanonetransaction doesnotleadtoany

databaseinconsistenciesiscalledconcurrency controlmechanism.

 Usingmorethanonetransactionconcurrentlyimprovestheperformanceofsystem.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 20

 If we are not able to perform the operations concurrently, then there can be serious problems such as loss of

data integrity and consistency.

 Concurrency control increases the throughput because of handling multiple transactions simultaneously.

 It reduces waiting time of transaction.

Purpose of Concurrency Control

The fundamental goal of database concurrency control is to ensure that concurrent execution of

transactionsdoesnotresult in a lossofdatabaseconsistency.

The concept of serializability can be used to achieve this goal, since all serializable schedules preserve

consistency of the database.

Toenforce Isolation(throughmutualexclusion) amongconflictingtransactions.

Topreservedatabaseconsistencythroughconsistencypreservingexecutionoftransactions.

To resolve read-write and write-write conflicts.

Example:

In concurrent execution environment if T1 conflicts with T2 overa data item A, then the existing concurrency

control decides if T1 or T2 should get the A and if the other transaction is rolled-back or waits.

Different types of protocols/schemes used to control concurrent execution of transactions are:

 Lock based Protocols

 Timestamp based Protocols

 Graph based Protocols

Need for Concurrency

Explain why Concurrency Control is needed?

The purposes of concurrency control are,

 To ensureisolation

 To resolve read-write or write-write conflicts

 To preserve consistency of database

The Lost Update Problem

This occurs when two transactions that access the same database items have their operationsinterleavedina

waythatmakesthevalueofsomedatabaseitemincorrect.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 21

Figure: (a) The Lost Update Problem

The Temporary Update (or Dirty Read) Problem

This occurs when one transaction updates a database item and then the transaction fails for some reason.

The updated item is accessed by another transaction before it is changed back to its original value.

Figure: (b) The Temporary Update Problem

The Incorrect Summary Problem

Ifonetransaction is calculating an aggregate summary function on anumber of records while other transactions

are updating some of these records, the aggregate function may calculate some values before they are updated

andothersaftertheyareupdated.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 22

Figure: (c) The Incorrect Summary Problem

Locking Protocols

Explain in detail about various locking protocols.

Locking

Locking is aprocedureusedtocontrolconcurrentaccesstodatawhenonetransactionis accessing the database, a

lock may deny access to other transactions to prevent incorrect results.

A transaction must obtain a read or write lock on a data item before it can perform a read or write operation.

Thereadlockisalsocalledasharedlock.Thewritelockisalsoknownasanexclusivelock. The lock depending on its

types gives or denies access to other operations on the same data item.

The basic rules for locking are,

• Ifatransactionhasareadlockonadataitem, it can readtheitembutnotupdate it.

• Ifatransitionhasareadlockonadataitem,othertransactionscanobtainareadlockon the data item, but no write

locks.

• Ifatransactionhasawritelockonadataitem,itcanbothreadandupdatethedataitem.

• If a transaction has a write lock on a data item, then other transactions cannot obtain either a read lock or a write lock

on the data item.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 23

The locking worksas,

• All transactions that needs to access a data item must first acquire a read lock or write lock on the data item

depending on whether it is a ready only operation ornot.

• If the data item for which the lock is requested is not already locked, the transaction is granted the requested

lock,

• If the item is currently lock, the DBMS determines what kind of lock is the current one. The DBMS also finds out

what lock is requested.

• Ifareadlockisrequestedonanitemthatisalreadyunderareadlock,thentherequested will begranted.

• Ifareadlockorawritelockisrequestedonanitemthatisalreadyunderawritelock,then the request is denied and

the transaction mustwaituntilthelock is released.

• A transaction continues to hold the lock until it explicitly releases it either during execution or when itterminates.

• The effects of a write operation will be visible to other transactions only after the write lock is released.

Locking Mechanisms

Explain various locking mechanisms in detail.

1. Lock-Based Protocols

 A lock is a mechanism to control concurrent access to a data item.

 It assures that one process should not retrieve or update a record which another process is updating.

 For example, in traffic, there are signals which indicate stop and go.

 When onesignal is allowed to pass at a time, thenother signalsare locked.

 Similarly, in databasetransactiononlyonetransaction is performed at atimeandother transactions arelocked.

 Ifthelockingisnotdoneproperly,thenitwilldisplaytheinconsistentandcorruptdata.

 It manages the order between the conflicting pairs among transactions at the time of execution.

There are two lock modes,

 Binary Lock

 Shared Lock / Exclusive Lock

Binary Lock

 Alockonadataitemcan be in twostates; it is either lockedorunlocked.

Shared (S) Lock Mode

 Shared Locks are represented by S.

 Thedataitemscanonlyreadwithoutperformingmodification to itfromthedatabase.

 S – lock is requested using lock – s instruction.

Exclusive (X) Lock Mode

 Exclusive Locks are represented by X.

 The data items can be read as well as written.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 24

 X – lock is requested using lock – X instruction.

Lock Compatibility Matrix

 Lock Compatibility Matrix controls whether multiple transactions can acquire locks on the same resource at the

same time.

 Shared Exclusive

Shared True False

Exclusive False False

(Or)

 If a resource is already locked by another transaction, then a new lock request can be grantedonly ifthemode

oftherequestedlockiscompatiblewiththemodeoftheexisting lock.

 Anynumberoftransactionscanholdsharedlocksonanitem,butifanytransactionholds an exclusive lock on

item, no other transaction may hold anylock ontheitem.

Example of a transaction performing locking:

T2: lock-S(A);

read(A);

unlock(A);

lock-S(B);

read(B);

unlock(B);

display(A+B)

 Locking asaboveisnotsufficienttoguaranteeserializability —ifA and B getupdatedin- betweenthe readof A

and B, the displayed sumwould be wrong.

A locking protocol is a set of rules followed by all transactions while requesting and releasinglocks.

Lockingprotocolsrestrictthesetofpossibleschedules.

Pitfalls of Lock-Based Protocols

Consider the partialschedule

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 25

 Neither T3 nor T4 can make progress — executing lock-S(B) causes T4 to wait for T3 to releaseitslockonB,

whileexecuting lock-X(A) causesT3 towaitfor T4 toreleaseitslockon A.

Such a situation is called a deadlock.

 To handle a deadlock one of T3 or T4 must be rolled back

and its locks released.

The potential for deadlock exists in most locking protocols. Deadlocks are a necessary evil.

Starvation isalsopossibleifconcurrencycontrolmanagerisbadlydesigned.Forexample:

 A transaction may be waiting for an X-lock on an item, while a sequence of other transactions request

and aregranted an S-lock on the sameitem.

 The same transaction is repeatedly rolled back due to deadlocks.

Concurrency controlmanager can bedesigned to prevent starvation.

2. Timestamp Based Protocol

Timestamp Based Protocol helps DBMS to identify the transactions.

It is a unique identifier. Each transaction is issued a timestamp when it enters into the system.

Timestamp protocol determines the serializability order.

It is most commonly used concurrency protocol.

It uses either system time or logical counter as a timestamp.

It starts working as soon as a transaction is created.

Each transaction is issued a timestamp when it enters the system.

IfanoldtransactionTi hastime-stampTS(Ti),anewtransactionTj isassignedtime-stamp TS(Tj) such that

TS(Ti) <TS(Tj).

The protocol manages concurrent execution such that the time-stamps determine the serializability order.

In order to assure suchbehavior, theprotocolmaintainsfor each data Q two timestamp values:

 W-timestamp (Q)isthelargesttime-stampofanytransactionthatexecuted write(Q) successfully.

 R-timestamp (Q) is the largest time-stampofany transaction thatexecuted read(Q) successfully.

The timestamp ordering protocol ensures that any conflicting read and write operations are executed in

timestamporder.

Suppose a transaction Ti issues a read(Q)

 IfTS(Ti) W-timestamp (Q), then Ti needstoreadavalueofQ that wasalready overwritten.

 Hence, the read operation is rejected, and Ti is rolled back.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 26

 If TS(Ti) W-timestamp (Q), then the read operation is executed, and R- timestamp(Q) is set

to max(R-timestamp(Q), TS(Ti)).

Suppose that transaction Ti issues write(Q).

 IfTS(Ti) <R-timestamp(Q),thenthevalueofQ that Ti isproducingwasneeded previously, andthe

systemassumedthatthatvaluewouldneverbeproduced.

 Hence, the write operation is rejected, and Ti is rolled back.

 IfTS(Ti)<W-timestamp(Q),thenTi isattempting to writeanobsoletevalueof Q.

 Hence, this write operation is rejected, and Ti is rolled back.

 Otherwise,the write operation isexecuted, and W-timestamp(Q)is setto TS(Ti).

Example use of the Protocol

• Apartialscheduleforseveraldataitemsfortransactionswithtimestamps1,2,3,4,5.

3. Timestamp Ordering Protocol

 The timestamp ordering Protocol ensures serializability among transactions in their conflicting read and

write operations.

 This is the responsibility of the protocol system that the conflicting pair of tasks should be executed according to

the timestamp values of the transactions.

 The timestamp of transaction Ti is denoted as TS(Ti).

 Read time-stamp ofdata-item X is denotedby R-timestamp(X).

 Write time-stamp of data-item X is denoted by W-timestamp(X). Timestamp

ordering protocolworks as follows −

 If a transaction Ti issues a read(X) operation −

o If TS(Ti) < W-timestamp(X)

 Operation rejected.

o If TS(Ti) >= W-timestamp(X)

 Operation executed.

o All data-item timestamps updated.

 If a transaction Ti issues a write(X) operation −

o If TS(Ti) <R-timestamp(X)

 Operation rejected.

o If TS(Ti) < W-timestamp(X)

 Operation rejected and Tirolled back.

o Otherwise, operationexecuted.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 27

Following are the Timestamp Ordering Algorithms,

1. Basic Timestamp Ordering

 It compares the timestamp of T with Read_TS(X) and Write_TS(X) to ensure that the transaction

execution is not violated.

 If the transaction execution order is violated, transaction T is aborted and resubmitted to the system as a new

transaction with a new timestamp.

2. Strict Timestamp Ordering

 It ensures that the schedules are both strict for easy recoverability and conflict serializability.

3. Thomas's Write Rule

Modifiedversionofthetimestamp-orderingprotocol in whichobsolete write operations may be ignored

under certain circumstances.

 It does not enforce conflict serializability.

 ThisrulestatesifTS(Ti)<W-timestamp(X),thentheoperationisrejectedandTiisrolled back.

 Itrejects somewrite operations, by modifying the checksforthe write_item(X) operationas follows,

 If Read_TS(X) > TS(T) (read timestamp is greater than timestamp transaction), then abort and rollback

transaction T and reject the operation.

 If Write_TS(X) > TS(T) (write timestamp is greater than timestamp transaction), then do not execute the

write operation but continue processing. Because some transaction with a timestamp is greater than

TS(T) and after T in the timestamp has already written the value of X.

 If neither the condition transaction 1 nor the condition in transaction 2 occurs, then execute the

Write_item(X) operation of transaction T and set Write_TS(X) to TS(T).

Otherwisethisprotocol is the sameas the timestamp ordering protocol.

Thomas' Write Rule allows greater potential concurrency.

 AllowsTime-stamporderingrulesallowstomakethescheduleviewserializable.

Instead of making Ti rolled back, the 'write' operation itself is ignored.

Correctness of Timestamp-Ordering Protocol

 The timestamp-ordering protocol guarantees serializability since all the arcs in the precedence graph are of

the form:

• Thus, there will be no cycles in the precedence graph

 Timestampprotocolensuresfreedomfromdeadlockasnotransactioneverwaits.

 Buttheschedulemaynotbecascade-free,andmaynotevenberecoverable.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 28

Recoverability and Cascade Freedom

Problem with timestamp-ordering protocol:

 Suppose Ti aborts, but Tj has read a data itemwritten by Ti.

 Then Tjmust abort; if Tjhad been allowed to commit earlier, the schedule is not recoverable.

 Further, anytransactionthathasreadadataitemwrittenby Tj mustabort.

 This can lead to cascading rollback --- that is, a chain of rollbacks.

Solution 1:

 A transaction is structured such that its writes are all performed at the end of its processing.

 All writes of a transaction form an atomic action; no transaction may execute while a transaction is being

written.

 A transaction that aborts is restarted with a new timestamp.

Solution 2: Limitedformoflocking:waitfordatatobecommittedbeforereadingit.

Solution 3: Use commit dependencies to ensure recoverability.

4. Graph based Protocols

Graph-based protocols are an alternative to two-phase locking

 Imposeapartialordering ontheset D ={d1, d2 ,..., dh} ofalldata items.

 Ifdidj thenanytransactionaccessingbothdi anddj mustaccessdibeforeaccessing

dj.

 Implies that the set D maynow be viewed as a directed acyclic graph, called a

database graph.

The tree-protocol is a simple kind of graph protocol.

Tree Protocol

1. Only exclusive locks are allowed.

2. ThefirstlockbyTi maybeonanydataitem.Subsequently, adataQ canbelockedby Ti

only if the parent of Q is currently locked by Ti.

3. Data items may be unlocked at any time.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 29

4. AdataitemthathasbeenlockedandunlockedbyTi cannotsubsequentlyberelocked by Ti

Thetreeprotocolensuresconflictserializabilityaswell asfreedomfromdeadlock.

Unlocking may occur earlier in the tree-locking protocol than in the two-phase locking protocol.

 shorter waiting times, and increase in concurrency

 protocol is deadlock-free, no rollbacks are required

Drawbacks

 Protocol does not guarantee recoverability or cascade freedom

 Needtointroducecommitdependenciestoensurerecoverability

 Transactionsmay have to lock data items thatthey do not access.

 increased locking overhead, and additionalwaiting time

 potential decrease inconcurrency

 Schedules not possible under two-phase locking are possible under tree protocol, and viceversa.

Multiple Granularity

Write short notes on Multiple Granularity.

Allow dataitemstobeofvarioussizesanddefineahierarchyofdatagranularities,where the small granularities

are nested within larger ones

Canberepresentedgraphicallyasatree(butdon'tconfusewithtree-lockingprotocol)

When a transaction locks a node in the tree explicitly, it implicitly locks the entire node's descendents in the

same mode.

Granularityof locking (level in tree where locking is done):

 Fine Granularity (lower intree): highconcurrency, highlockingoverhead.

 Coarse Granularity (higher intree): lowlockingoverhead, lowconcurrency.

Example of Granularity Hierarchy

The levels, starting from the coarsest (top) level are,

database

area

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 30

file

record

Intention Lock Modes

In addition to S and X lock modes, there are three additional lock modes with multiple granularity:

 Intention-Exclusive (IX): indicates explicit locking at a lower level with exclusive or shared locks

 Shared and Intention-Exclusive (SIX): the subtree rooted by thatnode is locked explicitly in

shared mode and explicit locking is being done at a lower level with exclusive-mode locks.

Intention locks allow a higher level node to be locked in S or X mode without having to check all descendent

nodes.

Compatibility Matrix with Intention Lock Modes

 The compatibility matrix for all lock modes is:

Multiple Granularity Locking Scheme

Transaction Ti can lock a node Q, using the following rules:

 The lock compatibility matrix must be observed.

 Therootofthetreemust be lockedfirst, andmaybelocked inanymode.

 Anode Q can be locked by Ti in Sor ISmodeonly if the parent of Q is currently locked by Ti in

either IX or IS mode.

 A node Q can be locked by Ti in X, SIX, or IX mode only if the parent of Q is currently locked

by Ti in either IX or SIX mode.

 Ti can lock anodeonly if it hasnot previously unlocked any node(that is, Tiis two- phase).

 TicanunlockanodeQonlyifnoneofthechildrenofQ arecurrentlylockedbyTi.

Observe that locks are acquired in root-to-leaf order, whereas they are released in leaf-to- root order.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 31

Two Phase Locking

Explain the two phase commit and three phase commit protocols. (April/May 2015) (Or) Explain

about Locking Protocols. (May/June 2016) (Or) Briefly explain about two phase commit.

(May/June 2016) (Or) Illustrate two phase locking protocol with an example. (Nov/Dec 2016)

(Or) What is Concurrency? Explain the two phase locking with an example. (April/May 2018)

 Two phase commit is important whenever a given transaction can interact with several independent ―resource

managers‖,eachmanagingitsownsetofrecoverableresourcesand maintaining its own recovery log.

The two phase commit protocol guarantees that if a portion of a transaction operation cannot be committed; all

changes made at the other sites participating in the transaction will be undone to maintain a consistent database

state.

For example, transaction running on an IBM mainframe that updates both an IMS database and DB2 database.

If thetransactioncompletessuccessfully, thenallowupdates to both IMSdataand DB2 data,mustbecommitted

equally. Ifitfailsthenallofitsupdatesmustberolledback.

Transaction has completed its database processing successfully, the system broad instruction it issues

COMMIT, not ROLLBACK on receiving that commit request, the coordinator goes through the following

two-phase process:

Phase 1: Preparation

Thecoordinator sendsa PREPARE TO COMMITmessage to all subordinates.

The Subordinates receive the message. Write the transaction log, using the write ahead protocol and send an

acknowledgement (YES/PREPARED TO COMMIT or NO/NOT PREPARED) message to coordinator.

Thecoordinatormakessurethatallnodesarereadytocommit,oritabortstheaction.

If all nodes are PREPARED TO COMMIT, the transaction goes to phase-2 if one or more nodes reply NO or

NOT PREPARED, the coordinator broadcasts an ABORT Message to all subordinates

Phase 2: The Final Commit

The coordinator broadcast a COMMIT message to all subordinates and waits for the replies

Each subordinate receives the COMMIT message, then updates the database using the read or write operation in

subordinator to coordinator.

The subordinates reply with COMMITTED or NOT COMMITTED message tothe coordinator

If one or more subordinates did not commit, the coordinator sends an ABORT message thereby forcing them

to UNDO all changes.

Theobjectiveofthetwophasecommitistoensurethatallnodescommittheirpartofthe transaction isaborted.

Ifoneofthenodesfails to commit, theinformationnecessary to recoverthedatabase is in thetransaction log, and

thedatabasecanberecoveredwithdo-undo-redoprotocol.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 32

The Two-Phase Locking Protocol

What is Two-Phase Locking (2PL)? Explain two phase locking protocol in detail.

 Two-Phase Locking (2PL) is aconcurrencycontrolmethod whichdividestheexecution phase of a transaction

into three parts.

 It ensures conflict serializable schedules.

 If read and write operations introduce the first unlock operation in the transaction, then it is said to be Two-Phase

Locking Protocol.

 This protocol can be divided into two phases,

 InGrowing Phase, atransactionobtainslocks, butmaynotreleaseanylock.

 InShrinking Phase,atransactionmayreleaselocks,butmaynotobtainanylock.

 Two-Phase Locking does not ensure freedom fromdeadlocks.

Types of Two – Phase Locking Protocol

 Following are the types oftwo – phase locking protocol:

 Strict Two – Phase Locking Protocol

 Rigorous Two – Phase Locking Protocol

 Conservative Two – Phase Locking Protocol

Strict Two-Phase Locking Protocol

 Strict Two-Phase Locking Protocol avoids cascaded rollbacks.

 This protocol not only requires two-phase locking but also all exclusive-locks should be held until the

transaction commits or aborts.

 It is not deadlock free.

 Itensuresthat ifdataisbeing modified by one transaction,thenothertransactioncannot read it until first

transaction commits.

 Mostofthedatabasesystemsimplementrigoroustwo–phaselockingprotocol.

Rigorous Two-Phase Locking

 Rigorous Two – Phase Locking Protocol avoids cascading rollbacks.

 This protocolrequires thatall the share and exclusive locks to be held until the transaction commits.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 33

Conservative Two-Phase Locking Protocol

 Conservative Two – Phase Locking Protocol is also called as Static Two – Phase Locking Protocol.

 Thisprotocolisalmostfreefromdeadlocksasallrequireditemsarelistedinadvanced.

 It requires lockingofalldataitems to accessbeforethetransaction starts.

 This is a protocol which ensures conflict-serializable schedules.

Lock Conversions

 It is a mechanism in two phase locking mechanism which allows conversion of shared lock to exclusive lock or

vice versa.

 Two-phase locking with lock conversions:

First Phase:

 canacquirea lock-S on item

 can acquire a lock-X on item

 can convert a lock-S to a lock-X (upgrade)

Second Phase:

 can release a lock-S

 canreleasealock-X

 can convert a lock-X to a lock-S (downgrade)

 Thisprotocolassures serializability.But stillreliesonthe programmertoinsert thevarious locking instructions.

Automatic Acquisition of Locks

 AtransactionTiissuesthestandardread/writeinstruction,withoutexplicitlockingcalls.

 The operation read(D) is processed as:

If Ti has a lock onD

then

read(D)

else begin

if necessary wait until no other

transactionhasalock-X onD grant

Ti a lock-S on D; read(D)

end

 write(D) is processed as: if Ti

has a lock-X on D then

write(D)

else begin

ifnecessarywaituntilnoothertrans.hasanylockonD, if Ti has a

lock-S onD

then

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 34

upgrade lock on D to lock-X else

grant Ti a lock-X on D

write(D)

end;

 All locks are released after commit or abort

Implementation of Locking

 Alock manager canbeimplementedasaseparateprocesstowhichtransactionssendlock and unlockrequests

 The lockmanager replies to alock request by sendinga lock grant messages (or amessage asking the transaction to

roll back, in case of a deadlock)

 The requesting transaction waits until its request is answered

 The lock manager maintains a data-structure called a lock table to record granted locks and pending requests

 The lock table is usually implemented as an in-memory hash table indexed on the name of the data item being

locked.

Lock Table

 Black rectanglesindicategrantedlocks, whiteonesindicatewaiting requests.

 Lock table also records the type of lock granted or requested.

 Newrequestisaddedtotheendofthequeueofrequestsforthedataitem,andgrantedifitis compatible with all earlier

locks.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 35

 Unlock requests result in the request being deleted, and later requests are checked to see if they can now be granted.

 Iftransactionaborts, allwaitingorgrantedrequestsofthetransactionaredeleted.

 Lockmanagermaykeepalistoflocksheldby eachtransaction, toimplementthis efficiently.

Deadlock

Write short notes on deadlock. (Nov/Dec 2014) (Or) What is Deadlock? How does it occur? How

transactions be written to avoid deadlock, guarantee correct execution? (Nov/Dec 2105) (Or)

Outline deadlock handling mechanisms. (Nov/Dec 2016) (Or) When does deadlock occurs?

Explain two-phase commit protocol with example. (Nov/Dec 2017) (Or) Explain the methods

used to handle deadlock. (Nov/Dec 2018)

What is Deadlock?

 A deadlock is a condition that occurs when two or more different database tasksare waiting for each other

and noneofthetask is willing to giveuptheresourcesthatother task needs.

 It is an unwanted situation that may result when two or more transactions are each waiting for locks held by the

other to be released.

 In deadlock situation, no task ever getsfinished and is in waiting state forever.

 Deadlocks are not good for the system.

In the above diagram,

 Process P1 holds Resource R2 and waits for resource R1, while Process P2 holds resource R1 and waitsfor

Resource R2. So, theaboveprocess is in deadlock state.

 There is theonly way to break adeadlock, is to abortoneor moretransactions.

 Once, a transaction is abortedand rolled back, all the locksheldby that transaction are released and can

continue their execution.

 So, the DBMSshould automatically restart theaborted transactions.

Deadlock Conditions

Following are the deadlock conditions,

1. Mutual Exclusion

2. Hold and Wait

3. No Preemption

4. Circular Wait

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 36

Adeadlock mayoccur, if all the above conditions hold true.

 In Mutual exclusion states that at leastoneresourcecannot be usedbymorethan oneprocessata

time.Theresourcescannotbesharedbetweenprocesses.

 Hold and Wait states that a process is holding a resource, requesting for additional resourceswhich

arebeingheldbyotherprocesses inthe system.

 No Preemption states thataresourcecannotbeforciblytakenfromaprocess. Onlya process can

release a resourcethat is being held by it.

 Circular Wait states that one process is waiting for a resource which is being held by second process

and the second process is waiting for the third process and so on and thelastprocessiswaitingforthefirst

process.Itmakesacircularchainofwaiting.

There are three general techniques for handling deadlock:

 Timeouts

 Deadlock Prevention

 Deadlock Detection

 Recovery

Timeouts

Atransactionthatrequestsalockwillwaitforonlyasystemdefinedperiod of time.

If the lock hasnotbeengranted within thisperiod, the lock request timesout.

In this case, the DBMS assumes the transaction may be deadlocked, even though it may not be, and it aborts and

automatically restarts the transaction.

Deadlock Prevention

DeadlockPreventionensuresthatthesystemneverentersadeadlockstate. Following are the

requirements to free the deadlock:

No Mutual Exclusion:

 NoMutualExclusionmeansremovingalltheresourcesthataresharable.

No Hold and Wait:

 Removing hold and wait condition can be done if a process acquires all the resources that are needed

before starting out.

Allow Preemption:

 Allowingpreemption is asgood as removing mutualexclusion.

 The only need is to restore the state of the resource for the preempted process rather than letting it in at the

same time as the preemptor.

Removing Circular Wait:

 The circular wait can be removed only if the resources are maintained in a hierarchy andprocesscanhold

theresourcesinincreasing theorderofprecedence.

There are deadlock prevention schemes that use timestamp ordering mechanism of transactions in order to

predetermine a deadlock situation.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 37

Wait-Die Scheme

 Inthis scheme, if a transaction requests to lock aresource (dataitem), which is already held with a conflicting lock by

another transaction, then one of the two possibilities may occur −

 If TS(Ti) < TS(Tj) − that is Ti, which is requesting a conflicting lock, is older than Tj − then Ti is allowed to

wait until the data-item is available.

 IfTS(Ti)>TS(tj)−thatisTiisyoungerthanTj−thenTidies.Tiisrestartedlaterwith a random delay but

with the same timestamp.

Thisschemeallowstheolder transaction to wait butkillstheyounger one.

Wound-Wait Scheme

 Inthis scheme, if a transaction requests to locka resource (dataitem), which is already held with conflicting lock by

some another transaction, one of the two possibilities may occur −

 If TS(Ti) < TS(Tj), then Ti forces Tj to be rolled back − that is Ti wounds Tj. Tj is restarted later with

a random delay butwith the same timestamp.

 If TS(Ti) >TS(Tj), then Ti is forced to waituntil theresource is available.

This scheme, allows the younger transaction to wait; but when an older transaction requests an itemheldby

ayoungerone, theoldertransactionforcestheyoungeroneto abort and release the item.

Inboththecases,thetransactionthatentersthesystemat alaterstageisaborted.

Both in wait-die and in wound-wait schemes, a rolled back transactions is restarted with its original timestamp.

Older transactions thus have precedence over newer ones, and starvation is henceavoided.

Timeout-Based Schemes:

 Atransactionwaitsforalockonlyforaspecifiedamountoftime.Afterthat,thewait times out and the

transaction is rolled back.

 Thus deadlocks are not possible.

 Simple to implement; but starvation is possible. Also difficult to determine good value of the timeout

interval.

Deadlock Avoidance

 DeadlockAvoidancehelpsinavoidingtherollingbackconflictingtransactions.

 It isnot goodorpracticalapproach toabort atransactionwhenadeadlockoccurs.

 Instead, deadlock avoidance mechanisms can be used to detect any deadlock situation in advance.

Deadlock occurs when each transaction T in a set of two or more transactions is waiting for some item that is locked

by some other transaction T in the set.

(Or)

System is deadlocked if there isa setof transactions such thatevery transaction inthe set is waiting for another

transaction in the set.

There is only one way to break deadlock: abort one or more of the transactions. This usually involvesundoing all the

changesmade by theaborted transactions (S).

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 38

 Methodslike"wait-forgraph" areavailablebuttheyaresuitableforonly thosesystems wheretransactionsare

lightweighthaving fewerinstancesofresource.

 Inabulkysystem, deadlockpreventiontechniques mayworkwell.

Wait-for Graph

 This is asimplemethod available to track if any deadlock situation mayarise.

 For each transaction entering into the system, anode is created.

 When a transaction Tirequestsfor a lockon an item, say X, which is held by someother transaction Tj, a

directed edge is created from Ti to Tj.

 If Tj releasesitem X, theedgebetweenthem is droppedand Ti locksthedataitem.

 The system maintains this wait-for graph for every transaction waiting for some data items held by others.

 The system keeps checking if there's any cycle in the graph.

Here, we can use any of the two following approaches −

 First, do not allow any request for an item, which is already locked by another transaction. This is not always

feasible and may cause starvation, where a transaction indefinitely waits for a data item and can never acquire it.

 The second option is to roll back one of the transactions.

 Itisnotalwaysfeasibletorollback theyoungertransaction, asitmaybeimportantthan the older one.

 Withthehelpofsomerelativealgorithm,atransactionischosen,whichistobeaborted.

 Thistransaction is known as the victim and theprocess is known as victim selection. Deadlock

Recovery

When deadlock is detected :

o Some transaction will have to rolled back (made a victim) to break deadlock. Select that transaction as

victim that will incur minimum cost.

o Rollback -- determine how far to roll back transaction

 Total rollback: Abort the transaction and then restart it.

 More effective to roll back transaction only as far as necessary to break deadlock.

o Starvation happens if same transaction is always chosen as victim. Include the number of rollbacks

in the cost factor to avoid starvation.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 39

Transaction Recovery

Explain in detail about transaction recovery.

Atransactionisthe basiclogicalunitofexecutioninaninformationsystem.

A transaction is a sequence of operations that must be executed as a whole, taking a consistent(&correct)

databasestate intoanother consistent (&correct) database state.

Datarecovery is the process of restoring data that has been lost, accidentally deleted, corrupted or made

inaccessible.

(Or)

Data recovery typically refers to the restoration of data to a desktop, laptop, server or external storage

system from a backup.

The techniques used to recover the lost data due to system crash, transaction errors, viruses, catastrophic

failure, incorrect commands execution etc. are called as database recovery techniques.

What is Recovery?

 Recoveryistheprocessofrestoringadatabasetothecorrectstateintheeventofafailure.

 Itensuresthatthedatabaseisreliableandremainsinconsistentstateincaseofafailure.

Failure Classification

We generalize a failure into various categories, as follows

There are some common causes of failures such as,

1. System Crash

2. Transaction Failure

3. Network Failure

4. Disk Failure

5. Media Failure

 Each transaction has ACIDproperty. If we fail to maintain the ACIDproperties, it is the failure of the database

system.

1. System Crash

 System crash occurs when there is a hardware or software failure or external factors like a power failure.

 The data in the secondary memory is not affected when system crashes because the database has lots of

integrity. Checkpoint prevents the loss of data from secondary memory.

2. Transaction Failure

 Atransactionhastoabortwhenitfailstoexecuteorwhenitreachesapointfromwhereit can‘t go anyfurther.

 Thisiscalledtransactionfailurewhereonlyafewtransactionsorprocessesarehurt.

 Reasons for a transaction failure could be −

 Logical errors − Whereatransaction cannotcompletebecause it hassomecodeerror or any internal error

condition.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 40

 System errors − Where the database system itself terminates an active transaction because theDBMS isnot able

to execute it, or it has to stop becauseofsomesystemcondition. For example, in case of deadlock or resource

unavailability, the system aborts an active transaction.

 This failure occurs when there are system errors like deadlock or unavailability of system resources to execute

the transaction.

3. Network Failure

 A network failure occurs when a client – server configuration or distributed database systemare connected

bycommunication networks.

4. Disk Failure

 Disk Failureoccurswhenthereareissueswithharddiskslikeformationofbadsectors, disk head crash,

unavailability of disk etc.

5. Media Failure

 Media failure is the most dangerous failure because, it takes more time to recover than any other kind offailures.

 A disk controller or disk head crash is a typical exampleof media failure.

 Naturaldisasterslikefloods, earthquakes, powerfailures, etc. damagethedata.

Storage Structure / Storage of Data

 A DBMS stores the data on external storage because the amount of data is very huge and must persist across

program executions.

 Data storage is the memory structure in the system.

 Thestoragestructure/storageofdatacanbedivided intothreecategories−

Volatile Memory

 Non – VolatileMemory

Stable Memory

Volatile Memory

 Volatile memory can store only a small amount of data. For eg. Main memory, cache memory etc.

 Volatilememory is theprimary memorydevice in the systemand placed along with the CPU.

 In volatile memory, if the system crashes, then the data will be lost.

 RAMisaprimary storagedevicewhichstoresadiskbuffer,activelogsandotherrelated data of adatabase.

 Primary memory is always faster thansecondary memory.

 When we fire a query, the database fetches a data from the primary memory and then moves to the secondary

memory to fetch the record.

 If the primary memory crashes, then the whole data in the primary memory is lost and cannot be recovered.

 Toavoid dataloss,createacopyofprimarymemoryinthedatabasewithallthe logsand buffers, create

checkpointsatseveralplacessothedataiscopiedtothedatabase.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 41

Non – VolatileMemory

 Non – volatile memory is the secondary memory.

 These memories are huge in size, but slow in processing. For eg. Flash memory, hard disk, magnetic tapesetc.

 If the secondary memory crashes, whole data in the primary memory is lost and cannot be recovered.

To avoid data loss in the secondary memory, there are three methods used to back it up:

1. Remotebackupcreatesadatabasecopyandstoresitintheremotenetwork.

 Thedatabase is updated with thecurrent database and sync with data and other details.

 The remote backup is also called as an offline backup because it can be updated manually.

 If the current database fails, then the system automatically switches to the remote databaseandstarts

functioning.Theuserwillnotknowthattherewasafailure.

2. The database is copied to secondary memory devices like Flash memory, hard disk, magnetic tapes, etc.

and kept in a secured place.

 If the system crashes or any failure occurs, the data would be copied from these tapes to bring the

database up.

3. The hugeamountof data is an overhead to backup the whole database.

 To overcome this problem the log files are backed up at regular intervals. Thelogfileincludes

alltheinformationaboutthetransactionbeingmade.

 These files are backed up at regular intervals and the database is backed up once in a week.

Stable Memory

 Stable memory is the third form of the memory structure and same as non-volatile memory.

 In stable memory, copies of the same non – volatile memories are stored in different places, because if the system

crashesanddatalossoccurs,thedatacanberecoveredfromother copies.

Log-Based Recovery

 Logs are the sequence of records that maintain the records of actions performed by a transaction.

 InLog–BasedRecovery, logofeachtransaction ismaintainedinsomestable storage.If any failureoccurs, it

can berecoveredfromthere to recover thedatabase.

 The log contains the information about the transaction being executed, values that have been modified and

transaction state.

 Allthese information will be stored in the order ofexecution.

Log-based recovery works as follows −

 The log file is kept on a stable storage media.

 Whenatransactionentersthesystemandstartsexecution, it writesalogabout it.

<Tn, Start>

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 42

 When the transaction modifies an item X, it write logs as follows −

<Tn, X, V1, V2>

It reads Tn has changed the value of X, from V1 to V2.

 When the transaction finishes, it logs −

<Tn, commit>

The database can be modified using two approaches. (Or) There are two methods of creating the log files

and updating the database,

1. Deferred Database Modification

2. Immediate Database Modification

Deferred Database Modification

Allthelogsforthetransactionarecreatedandstoredintostablestoragesystem.

In the above example, three log records are created and stored it in some storage system, the database will be

updated with those steps.

Immediate Database Modification

After creating each log record, the database is modified for each step of log entry immediately.

Intheaboveexample, thedatabase is modified at each stepoflogentrythatmeansafter first log entry, transaction

will hit the database to fetch the record, then the second log will be entered followed by updating the employee's

address, then the third logfollowed by committing the databasechanges.

Shadow Paging Technique

 Data isn‘t updated ‗in place‘

The database is considered to be made up of a number of n fixed-size disk blocks or pages, for recovery purposes.

A page table with n entries is constructed where the ith page table entry points to the ith database page ondisk.

Currentpagetablepoints to mostrecent currentdatabasepageson disk

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 43

When a transaction begins executing,

the current page table is copied into a shadow page table

shadow page table is then saved

shadowpage table is never modified during transaction execution

 writesoperations—newcopyof databasepageiscreatedandcurrentpagetable entry modified to point

to new disk page/block

• To recover from a failure

 thestateofthedatabasebeforetransactionexecutionisavailablethroughthe shadow page table

 free modifiedpages

 discard currrent pagetable

 thatstateisrecoveredbyreinstatingtheshadowpagetabletobecomethecurrent page table oncemore

• Commiting a transaction

 discard previous shadow page

 free old page tables that it references

• Garbage Collection

Recovery with Concurrent Transaction

 Whenmorethanonetransaction is executed inparallel, thelogsareinterleaved.

 At that time of recovery, it would become difficult for the recovery system to return all logs to a previous point and

then start recovering.

 To overcome this situation 'Checkpoint' is used.

Checkpoint

 Checkpoint acts like a benchmark.

 Checkpoints are also called as Syncpoints or Savepoints.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 44

 It is a mechanism where all the previous logs are removed from the system and stored permanently in a

storage system.

 Itdeclaresapointbeforewhichthedatabasemanagementsystemwasinconsistentstate and all the transactions

were committed.

 It is apointofsynchronizationbetweenthedatabaseandthetransactionlogfile.

 It involves operations like writing log records in main memory to secondary storage, writing the modified

blocks in the database buffers to secondary storage and writing a checkpoint record to the log file.

 Thecheckpointrecordcontainstheidentifiersofalltransactionsthatareactiveatthetime of thecheckpoint.

Recovery

 Whenconcurrenttransactionscrashandrecover,thecheckpointisaddedtothetransaction andrecovery system

recoversthedatabasefromfailure in followingmanner,

 Whenasystemwithconcurrenttransactionscrashesandrecovers,itbehavesinthe following manner −

 Therecoverysystemreadsthelogsbackwardsfromtheendtothelastcheckpoint.

 It maintains two lists, an undo-list and a redo-list.

 If therecoverysystemseesalogwith<Tn, Start>and<Tn, Commit>orjust<Tn, Commit>, it puts the

transaction in the redo-list.

 If the recovery system sees a log with <Tn, Start> but no commit or abort log found, it puts the transaction

in undo-list.

 All the transactions in the undo log areundone and their logsareremoved.

 All the transactions in the redo log and their previous logs are removed and then redone before saving their

logs.

Save Points

Write short notes on save points.

 A savepoint is a way of implementing subtransactions (also known as nested transactions) within a relational

databasemanagement system byindicatingapoint withinatransaction thatcanbe"rolledback to"without

affectinganyworkdoneinthetransactionbeforethe savepoint wascreated.

 Multiple savepoints can exist within a single transaction.

 Savepoints are useful for implementing complex error recovery in database applications.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 45

 If an error occurs in the midst of a multiple-statement transaction, the application may be able to recover from the

error (by rolling back to a savepoint) without needing to abort the entire transaction.

 Asavepoint can be declaredbyissuinga SAVEPOINT name statement.

 All changes made after a savepoint has been declared can be undone by issuing a ROLLBACK TO

SAVEPOINT name command.

 Issuing RELEASE SAVEPOINT name willcausethenamedsavepointtobediscarded, but will not

otherwise affect anything.

 IssuingthecommandsROLLBACKorCOMMITwillalso discard any savepointscreated since the start of the

main transaction.

COMMIT Command

 COMMIT command saves all the work done.

 Itendsthecurrenttransactionandmakespermanentchangesduringthetransaction.

Syntax:

commit;

SAVEPOINT Command

 SAVEPOINT command is used for saving all the current point in the processing of a transaction.

 It marks and saves thecurrent point in theprocessing ofa transaction.

Syntax:

SAVEPOINT <savepoint_name>

Example:

SAVEPOINT no_update;

 It is used to temporarily save a transaction, so that you can rollback to that point whenever necessary.

ROLLBACK Command

 ROLLBACKcommandrestoresdatabase to original since the last COMMIT.

 It is used to restores the database to last committed state.

Syntax:

ROLLBACK TO SAVEPOINT <savepoint_name>;

Example:

ROLLBACK TO SAVEPOINT no_update;

Isolation Levels

Discuss isolation levels in detail.

• Isolation level is nothing but locking the rowwhileperforming sometask, so thatother transactioncannot

accessorwillwaitforthecurrenttransactiontofinishits job.

 Serializability is a useful concept because it allows programmers to ignore issues related to concurrency when they

code transactions.

 Ifeverytransactionhasthepropertythat it maintainsdatabaseconsistency if executed alone,thenserializability

ensuresthatconcurrentexecutionsmaintainconsistency.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 46

 The SQL standard also allows a transaction to specify that it may be executed in such a way that it becomes

nonserializable with respect to other transactions.

Let's write a transaction without Isolation level.

BEGIN TRANSACTION MyTransaction

BEGIN TRY

UPDATE Account SET Debit=100 WHERE Name='John Cena'

UPDATE ContactInformation SET Mobile='1234567890' WHERE Name='The Rock'

COMMIT TRANSACTION MyTransaction

PRINT 'TRANSACTION SUCCESS'

END TRY

BEGIN CATCH

ROLLBACK TRANSACTION MyTransaction

PRINT 'TRANSACTIONFAILED'

END CATCH

 SQL Server provides 5 Isolation levels to implement with SQL Transaction to maintain data concurrency in the

database. The isolation levels specified by the SQL standard are as follows:

Read uncommitted

 Itallowsuncommitteddata to beread.It isthelowest isolationlevelallowedbySQL.

 All the isolation levels above additionally disallow dirty writes, that is, they disallow writestoadataitem

thathasalreadybeenwrittenbyanothertransactionthathasnotyet committed oraborted.

Example

SETTRANSACTIONISOLATIONLEVEL

READ UNCOMMITTED

BEGIN TRANSACTION MyTransaction

BEGIN TRY

UPDATE Account SET Debit=100 WHERE Name='John Cena'

UPDATE ContactInformationSET Mobile='1234567890'WHERE Name='TheRock'

COMMIT TRANSACTION MyTransaction

PRINT 'TRANSACTION SUCCESS'

END TRY

BEGIN CATCH

ROLLBACK TRANSACTION MyTransaction

PRINT 'TRANSACTION FAILED'

END CATCH

Read committed

 Itallowsonlycommitteddata to beread, butdoesnotrequirerepeatablereads.

 For instance, between two reads of a data item by the transaction, another transaction may have updated the data

item and committed.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Example

SETTRANSACTIONISOLATIONLEVEL

Page | 47

READ COMMITTED

BEGIN TRANSACTION MyTransaction

BEGIN TRY

UPDATE Account SET Debit=100 WHERE Name='John Cena'

UPDATE ContactInformationSET Mobile='1234567890'WHERE Name='TheRock'

COMMIT TRANSACTION MyTransaction

PRINT 'TRANSACTION SUCCESS'

END TRY

BEGIN CATCH

ROLLBACK TRANSACTION MyTransaction

PRINT 'TRANSACTION FAILED'

END CATCH

Repeatable read

 Itallowsonlycommitteddatatobereadandfurtherrequiresthat,betweentworeadsofa data itemby a transaction,

no other transaction is allowed to update it.

 However,thetransactionmaynotbeserializablewithrespecttoothertransactions.

 For instance, when it is searching for data satisfying some conditions, a transaction may find some of the data

inserted by a committed transaction, but may not find other data inserted by the same transaction.

Example

SETTRANSACTIONISOLATIONLEVEL

REPEATABLE READ

Serializable

 It usually ensures serializable execution.

 However, as we shall explain shortly, some database systems implement this isolation level in amanner thatmay, in

certain cases, allow nonserializable executions.

Example

SET TRANSACTION ISOLATION LEVEL

SERIALIZABLE

Snapshot

 Snapshot Isolation (SI) is an optimistic isolation level.

 Allows for processes to read older versions of committed data if the current version is locked.

 Difference between snapshot and read committed has to do with how old the older versions have tobe.

 It‘s possible to have two transactions executing simultaneously that give us a result that is not possible in any

serial execution.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Example

SETTRANSACTIONISOLATIONLEVEL

Page | 48

SNAPSHOT

SQL Facilities for Concurrency and Recovery

ItispossibletoachieveconcurrencycontrolandrecoveryusingSQLstatements. Following are the

different typesof isolationsavailable in SQLServer.

 READ COMMITTED

 READ UNCOMMITTED

 REPEATABLE READ

 SERIALIZABLE

 SNAPSHOT

Let us discuss about each isolation level in details. Before this, execute following script to create tableand insert somedata

that we aregoing to use in examplesfor each isolation

IF OBJECT_ID('Emp') is not null begin

DROP TABLE Emp

end

create table Emp(ID int,Name Varchar(50),Salary Int) insert into

Emp(ID,Name,Salary) values (1,'David',1000) insert into

Emp(ID,Name,Salary) values (2,'Steve',2000) insertinto

Emp(ID,Name,Salary)values(3,'Chris',3000)

Note: Beforeexecutingeachexampleinthisarticle,resettheEmptablevaluesbyexecutingthe above script.

Read Committed

Inselect query it will take onlycommited values oftable.

If any transaction is opened and incompleted on table in others sessions then select query will wait till no

transactions are pending on same table.

Read Committed is the default transaction isolation level.

Read committed example 1:

Session 1

begin tran

update emp set Salary=999 where ID=1 waitfor delay

'00:00:15'

commit

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 49

Session 2

settransactionisolationlevelreadcommitted select

Salary from Empwhere ID=1

Run both sessions side by side.

Output

999

In second session, it returns the result only after execution of complete transaction in first session because of the

lock on Emp table.

We have used wait command to delay 15 seconds after updating the Emp table in transaction.

Read committed example 2

Session 1

begin tran

select * from Emp waitfor

delay '00:00:15' commit

Session 2

settransactionisolationlevelreadcommitted select *

fromEmp

Run both sessions side by side.

Output

1000

Insession 2, therewon'tbeanydelay in executionbecause in session 1 Emp table is used under transaction but it

is not used update or delete command hence Emp table is not locked.

Read committed example 3

Session 1

begin tran

select * from emp waitfor

delay '00:00:15'

update emp set Salary=999 where ID=1 commit

Session 2

settransactionisolationlevelreadcommitted select

Salary from Empwhere ID=1

Run both sessions side by side.

Output

1000

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 50

In session 2, there won't be any delay in execution because when session 2 is executed Emp table in session 1 is not

locked (usedonlyselectcommand, locking on Emp table occurs after wait delaycommand).

Read Uncommitted

If any table is updated (insert or update or delete) under a transaction and same transaction is not completed that is not

committed or roll backed then uncommitted values will display (Dirty Read) in select query of "Read

Uncommitted"isolationtransactionsessions.

There won't be any delay in select query execution because this transaction level does not wait for committed

values on table.

Read uncommitted example 1

Session 1

begin tran

update emp set Salary=999 where ID=1 waitfor delay

'00:00:15'

rollback

Session 2

settransactionisolationlevelreaduncommitted select Salary

from Emp where ID=1

Run both sessions at a time one by one.

Output

999

Select query in Session2 executes after update Emp table in transaction and before transaction rolled back.

Hence 999 is returned instead of 1000.

Ifyou want to maintain Isolation level "Read Committed" butyouwantdirtyread values for specifictablesthen

use with (nolock) inselectquery forsametablesasshownbelow.

settransactionisolationlevelreadcommitted select *

from Emp with(nolock)

Repeatable Read

select query data of table that is used under transaction of isolation level "Repeatable Read" cannotbemodified from

any other sessions till transcation iscompleted.

Repeatable Read Example 1

Session 1

set transaction isolation level repeatable read begin tran

select * from emp where ID in(1,2) waitfor

delay'00:00:15'

select * from Emp where ID in (1,2)

rollback

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 51

Session 2

update emp set Salary=999 where ID=1

Run both sessions side by side.

Output

Update command in session 2 will wait till session 1 transaction is completed because emp table row with ID=1

has locked in session 1 transaction.

Repeatable Read Example 2

Session 1

set transaction isolation level repeatable read begin tran

select * from emp waitfor

delay '00:00:15' select * from

Emp rollback

Session 2

insert into Emp(ID,Name,Salary) values(

11,'Stewart',11000)

Run both sessions side by side.

Output

Result in Session 1.

Session 2 will execute without any delay because it has insert query for new entry. This isolation levelallows

insertingnewdatabutdoesnotallowmodifyingdatathatisusedin select query executed in transaction.

You can notice tworesultsdisplayed in Session 1 havedifferentnumberofrowcount(1 row extra in second

result set).

Repeatable Read Example 3

Session 1

set transaction isolation level repeatable read begin tran

select * from emp where ID in(1,2)

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 52

waitfor delay'00:00:15'

select * from Emp where ID in (1,2)

rollback

Session 2

update emp set Salary=999 whereID=3 Runboth

sessionsatatimeonebyone.

Output

Session 2 will execute without any delay because row with ID=3 is not locked, that is only 2 records whose IDs are

1, 2 are locked in Session 1.

Serializable

Serializable Isolation is similar to Repeatable ReadIsolationbut the difference is it prevents Phantom Read.

This works based on range lock. If table has index then it locks records based on index range used in WHERE

clause (like where ID between 1 and 3).

If table doesn't have index then it locks complete table.

Serializable Example 1

Assume table does not have index column.

Session 1

set transaction isolation level serializable begin tran

select * from emp waitfor

delay '00:00:15' select * from

Emp rollback

Session 2

insert into Emp(ID,Name,Salary) values (11,'Stewart',11000)

Run both sessions side by side.

Output

Result in Session 1.

Complete Emp table will belocked during the transaction in Session 1.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 53

Unlike "Repeatable Read", insert query in Session 2 will wait till session 1 execution is completed.

Hence Phantom read is prevented and both queries in session 1 will display same number of rows.

Tocomparesamescenariowith"RepeatableRead"readRepeatable Read Example 2. Serializable

Example 2

Assume table has primarykey on column "ID".

In our example script, primary key is not added. Add primary key on column Emp.ID before executing

belowexamples.

Session 1

set transaction isolation level serializable begin tran

select * from emp where ID between 1 and 3 waitfor

delay'00:00:15'

select * from Emp where ID between 1 and 3 rollback

Session 2

insert into Emp(ID,Name,Salary) values (11,'Stewart',11000)

Run both sessions side by side.

Output

Since Session 1 is filtering IDs between 1 and 3, only those records whose IDs range between 1and3willbe

lockedandtheserecordscannotbemodifiedandnonewrecords with ID range between 1 to 3 will be inserted.

In this example, new record with ID=11 will be inserted in Session 2 without any delay. Snapshot

Snapshot isolation is similar to Serializable isolation.

The difference is Snapshot does not hold lock on table during the transaction so table can be modified in other

sessions.

Snapshot isolation maintains versioning in Tempdb for old data in case of any data modification occurs in

other sessions then existing transaction displays the old data from Tempdb.

Snapshot Example 1

Session 1

settransactionisolationlevelsnapshot begin tran

select * from Emp waitfor

delay '00:00:15' select * from

Emp rollback

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 54

Session 2

insert into Emp(ID,Name,Salary) values (11,'Stewart',11000) update Emp

set Salary=4444 where ID=4

select * from Emp

Run both sessions side by side.

Output

ResultinSession1.

ResultinSession2.

Session 2 queries will be executed in parallel as transaction in session 1 won't lock the table Emp.

Page | 55

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |1

Unit – II

Database Design

Entity-Relationship Model

Explain in detail about Entity Relationship Model.

The entity-relationship (E-R) data model uses a collection of basic objects, called entities and

relationships among these objects.

 An entity is a ―thing‖ or ―object‖ in the real world that is distinguishable from other objects.

For example, each person is an entity and bank accounts can be considered as entities.

The E-R models employ the basic concepts such as,

 Entity Sets

 Relationship Sets

 Attributes

Entity Set

The set of all entities of the same type are termed as an entity set.

Entities are described in a database by a set of attributes.

The extra attribute ID is used to identify an instructor uniquely.

Types of Entity Set

Strong Entity Set

 An entity set that has a primary key is called strong entity set.

Weak Entity Set

 An entity set that does not have a primary key is called weak entity set.

Identifying Or Owner Entity set

 Weak entity set must be associated with another entity set called identifying or

owner entity set.

 The weak entity set is said to be existence dependent on identifying entity set.

Relationship Set

A relationship is an association among several entities.

The set of all relationships of the same type are termed as a relationship set.

Attributes

An attribute of an entity set is a function that maps from the entity set into a domain.

For each attributes, there is a set of permitted value set of that attribute.

Dependency Preservation – Boyce / Codd Normal Form – Multi-valued Dependencies and Fourth

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |2

Types of Attributes

Simple and Composite

Single Value and Multi-valued

Derived

Descriptive

Simple & Composite Attributes

Simple Attribute

 Attributes that cannot be divided into subparts are called simple

attributes.

 Ex: S.no is a simple attributes.

Composite Attribute

 Attribute that can be divided into subparts is called as composite attributes.

Single Valued & Multi-valued Attribute

Single Valued Attribute

 The attribute that have single value for a particular entity is called single valued

attribute.

 Ex: student_id – refers to only one student.

Multi-valued Attributes

 The attribute that has a set of values for a specific entity is called multi-valued

attributes.

 Ex: phone_number

Derived Attribute

The value of this type of attribute can be derived from the values of other related

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |3

attributes or entities.

Example:

Descriptive Attribute

The attribute present in the relationship is called as descriptive attribute.

Figure: ER Diagram with Descriptive Attribute

NULL Value:

 The attribute takes a NULL value, when an entity does not have a value for it.

Figure: ER diagram with Composite, Multi-valued and Derived Attributes

In the above ER diagram,

 C_name & address - Composite Attribute

 Street - Component Attribute

 Phone-number - Multi-valued Attribute

 Age - Derived Attribute

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |4

Constraints

Explain in detail about constraints.

An E-R enterprise schema may define certain constraints to which the contents of a

database must conform.

That limits the possible combinations of entities that may participate in the corresponding

relationship set.

 Mapping Cardinalities (Cardinality Constraints)

 Participation Constraints

Mapping Cardinalities (May/June 2013)

Mapping cardinalities, or cardinality ratios, express the number of entities to which

another entity can be associated via a relationship set.

Mapping cardinalities are most useful in describing binary relationship sets, although they

can contribute to the description of relationship sets that involve more than two entity sets.

A mapping cardinality is a data constraint that specifies how many entities an entity can be

related to in a relationship set.

Consider a binary relationship set R between entity sets A and B. There are four possible

mapping cardinalities in this case:

Types of mapping cardinalities are,

 One to One

 One to Many

 Many to One

 Many to Many

One-to-One

An entity in A is associated (related) with at most one entity in B, and an entity in B is

associated with at most one entity in A.

One-to-Many

An entity in A is associated with any number (zero or more) of entities in B.

And an entity in B, can be associated with at most one entity in A.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |5

Many-to-One

An entity in A is associated with at most one entity in B.

And an entity in B, can be associated with any number (zero or more) of entities in A.

Many-to-Many

An entity in A is associated with any number (zero or more) of entities in B, and an entity in

B is associated with any number (zero or more) of entities in A.

Participation Constraints

It specifies whether the existence of an entity depends on its being related to another entity

via the relationship type.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |6

Total Participation

The participation of an entity set E in a relationship set R is said to be total, if every entity in

E participates in at least one relationship in R.

Double line indicates that from loan to borrower, each loan must have at least one associated

customer.

Partial Participation

If only some entities in E participate in relationship in R, then the participation of entity E

in relationship R is said to be partial.

Weak Entity Set

Entity types that do not have key attributes of their own are called weak entity types.

A weak entity type always has a total participation constraint (existence dependency) with

respect to its identifying relationship, because a weak entity cannot be identified without an

owner entity type.

A weak entity set is indicated in E-R diagrams by a doubly outlined rectangular box and

the corresponding identifying relationship by a doubly outlined diamond.

Strong Entity Set

Entity types that have key attributes of their own are called strong entity types.

A strong entity set is indicated in E-R diagrams by rectangular box and its relationship by a

diamond.

Diagrams

E-R diagram is used to express the overall logical structure (schema) of a database

graphically by an entity-relationship (E-R) diagram.

E-R diagrams are simple and clear.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |7

Figure: Sample ER Diagram

ER Diagram Representation Symbols

Write short notes on ER diagram representation symbols.

(Or)

Symbols Used in E-R Notation

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |8

Alternative ER Notations

Basic Structure

An E-R diagram consists of the following major components:

Rectangles divided into two parts represent entity sets.

The first part, which in this textbook is shaded blue, contains the name of the entity set.

The second part contains the names of all the attributes of the entity set.

Rectangle - to represent an entity set

Ellipses - to represent an attribute

Diamonds - to represent relationship sets

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |9

Lines - to link attributes to entity sets and entity sets to relationship sets

Double ellipses - to represent multi-valued attributes

Dashed ellipses - to represent derived attributes

Doublerectangle - to represent weak entity sets

Double line - to represent total participation of an entity in a relationship set.

Double diamonds - represent identifying relationship sets linked to weak entity sets

Undivided rectangles - represent the attributes of a relationship set. Attributes

that are part of the primary key are underlined.

Figure 1: E-R Diagram corresponding to Instructors and Students.

Consider the E-R diagram in Figure 1, which consists of two entity sets, instructor and

student related through a binary relationship set advisor.

The attributes associated with instructor are ID, name, and salary.

The attributes associated with student are ID, name, and tot cred. In Figure 1, attributes of an

entity set that are members of the primary key are underlined.

If a relationship set has some attributes associated with it, then we enclose the attributes in

a rectangle and link the rectangle with a dashed line to the diamond representing that

relationship set.

Figure 2: An ER Diagram for Banking Enterprise

Entity sets are represented by a rectangular box with the entity set name in the header and

the attributes listed below it.

Relationship sets are represented by a diamond connecting a pair of related entity sets.

The name of the relationship is placed inside the diamond.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |10

The above E-R diagram indicates that there are two entity sets, instructor and department,

with attributes as outlined earlier.

The diagram also shows a relationship member between instructor and department.

In addition to entities and relationships, the E-R model represents certain constraints to

which the contents of a database must conform.

One important constraint is mapping cardinalities, which express the number of entities to

which another entity can be associated via a relationship set.

Enhanced-ER Model

Discuss enhanced ER model in detail.

Enhanced entity-relationship models, also known as extended entity-relationship models,

are advanced database diagrams very similar to regular ER diagrams.

Enhanced ERDs are high-level models that represent the requirements and complexities of

complex databases.

It is a diagrammatic technique for displaying the Sub Class and Super Class; Specialization

and Generalization; Union or Category; Aggregation etc.

Features of EER Model

 EER creates a design more accurate todatabase schemas.

 It reflects the data properties and constraints more precisely.

 It includes all modeling concepts of the ER model.

 Diagrammatic technique helps for displaying the EER schema.

 It includes the concept of specialization and generalization.

 It is used to represent a collection of objects that is union of objects of different of different

entity types.

A. Sub Class and Super Class

 Sub class and Super class relationshipleads the concept of Inheritance.

 The relationship between sub class and super class is denoted with symbol.

1. Super Class

 Super class is an entity type that has a relationship with one or more subtypes.

 An entity cannot exist in database merely by being member of any super class.

 For example: Shape super class is having sub groups as Square, Circle, Triangle.

2. Sub Class

 Sub class is a group of entities with unique attributes.

 Sub class inherits properties and attributes from its super class.

 For example: Square, Circle, Triangle are the sub class of Shape super class.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |11

B. Specialization and Generalization

1. Generalization

 Generalization is the process of generalizing the entities which contain the properties of all

the generalized entities.

 It is a bottom approach, in which two lower level entities combine to form a higher level

entity.

 Generalization is the reverse process of Specialization.

 It defines a general entity type from a set of specialized entity type.

 It minimizes the difference between the entities by identifying the common features.

For example:

 In the above example, Tiger, Lion, Elephant can all be generalized as Animals.

2. Specialization

 Specialization is a process that defines a group entity which is divided into sub groups

based on their characteristic.

 It is a top down approach, in which one higher entity can be broken down into two lower

level entities.

 It maximizes the difference between the members of an entity by identifying the unique

characteristic or attributes of each member.

 It defines one or more sub class for the super class and also forms the superclass/subclass

relationship.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |12

For example

In the above example, Employee can be specialized as Developer or Tester, based on what

role they play in an Organization.

C. Category or Union

 Category represents a single super class or sub class relationship with more than one super

class.

 It can be a total or partial participation.

 For example Car booking, Car owner can be a person, a bank (holds a possession on a Car)

or a company.

 Category (sub class) → Owner is a subset of the union of the three super classes →

Company, Bank and Person.

 A Category member must exist in at least one of its super classes.

D. Aggregation

 Aggregation is a process that represents a relationship between a whole object and its

component parts.

 It abstracts a relationship between objects and viewing the relationship as an object.

 It is a process when two entities are treated as a single entity.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |13

 In the above example, the relation between College and Course is acting as an Entity in

Relation with Student.

Disjointness / Overlap Constraint

 Specifies that the subclass of the specialization must be disjoint, which means that an entity

can be a member of, at most, one subclass of the specialization.

 The d in the specialization circle stands for disjoint.

 If the subclasses are not constrained to be disjoint, they overlap.

 Overlap means that an entity can be a member of more than one subclass of the

specialization.

 Overlap constraint is shown by placing an o in the specialization circle.

Completeness Constraint

 The completeness constraint may be either total or partial.

 A total specialization constraint specifies that every entity in the superclass must be a

member of at least one subclass of the specialization.

 Total specialization is shown by using a double line to connect the super class to the circle.

 A single line is used to display a partial specialization, meaning that an entity does not

have to belong to any of the subclasses.

Disjointness vs. Completeness

 Disjoint constraints and completeness constraints are independent. The following possible

constraints on specializations are possible:

a) Disjoint, total

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |14

b) Disjoint, partial

c) Overlapping, total

d) Overlapping, partial

ER-to-Relational Mapping

Describe ER to Relational mapping in detail.

 ER diagrams can be mapped to relational schema, that is, it is possible to create relational

schema using ER diagram.

 We cannot import all the ER constraints into relational model, but an approximate schema

can be generated.

 There are several processes and algorithms available to convert ER Diagrams into

Relational Schema. Some of them are automated and some of them are manual.

ER-to-Relational Mapping Algorithm

 Let us use the COMPANY database example to illustrate the mapping procedure.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |15

Figure 1: ER conceptual schema diagram for the COMPANY database

Figure 2: Result of mapping the COMPANY ER schema into a relational database schema

 The COMPANY ER schema is shown again in Figure 1, and the corresponding COMPANY

relational database schema is shown in Figure 2 to illustrate the mapping steps.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |16

Step 1: Mapping of Regular Entity Types

 For each regular (strong) entity type E in the ER schema, create a relation R that includes all

the simple attributes of E.

 Include only the simple component attributes of a composite attribute. Choose one of the

key attributes of E as the primary keyfor R.

 If the chosen key of E is a composite, then the set of simple attributes that form it will

together form the primary key of R.

 If multiple keys were identified for E during the conceptual design, the information

describing the attributes that form each additional key is kept in order to specify secondary

(unique) keys of relation R.

Step 2: Mapping of Weak Entity Types

 For each weak entity type W in the ER schema with owner entity type E, create a relation R

and include all simple attributes (or simple components of composite attributes) of W as

attributes of R.

 In addition, include as foreign key attributes of R, the primary key attribute(s) of the

relation(s) that correspond to the owner entity type(s); this takes care of mapping the

identifying relationship type of W.

 The primary key of R is the combination of the primary key(s) of the owner(s) and the

partial key of the weak entity type W, ifany.

 If there is a weak entity type E2 whose owner is also a weak entity type E1, then E1 should

be mapped before E2 to determine its primary key first.

Step 3: Mapping of Binary 1:1 Relationship Types

 For each binary 1:1 relationship type R in the ER schema, identify the relations S and T that

correspond to the entity types participating in R.

 There are three possible approaches:

 The foreign key approach

 The merged relationship approach

 The cross-reference or relationship relation approach

Foreign Key Approach:

 Choose one of the relations—S, say—and include as a foreign key in S the primary key of T.

 It is better to choose an entity type with total participation in R in the role of S.

 Include all the simple attributes (or simple components of composite attributes) of the 1:1

relationship type R as attributes of S.

Merged Relation Approach:

 An alternative mapping of a 1:1 relationship type is to merge the two entity types and the

relationship into a single relation.

 This is possible when both participations are total, as this would indicate that the two tables

will have the exact same number of tuples at all times.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |17

Cross-reference or relationship relation approach:

 The third option is to set up a third relation R for the purpose of cross-referencing the

primary keys of the two relations S and T representing the entity types.

 As we will see, this approach is required for binary M:N relationships.

 The relation R is called a relationship relation (or sometimes a lookup table), because each

tuple in R represents a relationship instance that relates one tuple from S with one tuple

from T.

 The relation R will include the primary key attributes of S and T as foreign keys to S and T.

 The primary key of R will be one of the two foreign keys, and the other foreign key will be

a unique key of R.

Step 4: Mapping of Binary 1:N Relationship Types

 For each regular binary 1:N relationship type R, identify the relation S that represents the

participating entity type at the N-side of the relationshiptype.

 Include as foreign key in S the primary key of the relation T that represents the other entity

type participating in R; we do this because each entity instance on the N-side is related to at

most one entity instance on the 1-side of the relationshiptype.

 Include any simple attributes (or simple components of composite attributes) of the 1:N

relationship type as attributes of S.

Step 5: Mapping of Binary M:N Relationship Types

 For each binary M:N relationship type R, create a new relation S to represent R.

 Include as foreign key attributes in S the primary keys of the relations that represent the

participating entity types; their combination will form the primary key of S.Also include any

simple attributes of the M:N relationship type (or simple components of composite

attributes) as attributes of S.

 Notice that we cannot represent an M:N relationship type by a single foreign key attribute

in one of the participating relations (as we did for 1:1 or 1:N relationship types) because of

the M:N cardinality ratio; we must create a separate relationship relation S.

Step 6: Mapping of Multi-valued Attributes

 For each multi-valued attribute A, create a new relation R.

 This relation R will include an attribute corresponding to A, plus the primary key attribute

K—as a foreign key in R—of the relation that represents the entity type or relationship type

that has A as a multi-valued attribute.

 The primary key of R is the combination of A and K. If the multi-valued attribute is

composite, we include its simple components.

Step 7: Mapping of N-ary Relationship Types

 For each n-ary relationship type R, where n > 2, create a new relation S to represent R.

 Include as foreign key attributes in S the primary keys of the relations that represent the

participating entity types.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |18

 Also include any simple attributes of the n-ary relationship type (or Step 7: Mapping of N-

ary Relationship Types)

Step 8: Options for Mapping Specialization or Generalization

 Convert each specialization with m subclasses {S1, S2, ..., Sm} and (generalized) superclass

C, where the attributes of C are {k, a1, ...an} and k is the (primary) key, into relation schemas

using one of the following options:

 Option 8A: Multiple relations—superclass and subclasses

 Create a relation L for C with attributes Attrs(L) = {k, a1, ..., an} and PK(L) = k. Create

a relation Li for each subclass Si, 1 ≤i ≤m, with the attributes Attrs(Li) = {k} ∪

{attributes of Si} and PK(Li) = k.

 This option works for any specialization (total or partial, disjoint or overlapping).

 Option 8B: Multiple relations—subclass relations only

 Create a relation Li for each subclass Si, 1 ≤i ≤m, with the attributes Attrs(Li) =

{attributes of Si} ∪ {k, a1, ..., an} and PK(Li) = k.

 This option only works for a specialization whose subclasses are total (every entity in

the superclass must belong to (at least) one of the subclasses).

 Additionally, it is only recommended if the specialization has the disjointedness

constraint. If the specialization is overlapping, the same entity may be duplicated in

several relations.

 Option 8C: Single relation with one type attribute.

 Create a single relation L with attributes Attrs(L) = {k, a1, ..., an} ∪ {attributes of S1}

∪ ... ∪ {attributes of Sm} ∪ {t} and PK(L) = k.

 The attribute t is called a type (or) discriminating) attribute whose value indicates

the subclass to which each tuple belongs, if any.

 This option works only for a specialization whose subclasses are disjoint, and has the

potential for generating many NULL values if many specific attributes exist in the

subclasses.

 Option 8D: Single relation with multiple type attributes.

 Create a single relation schema L with attributes Attrs(L) = {k, a1, ..., an} ∪ {attributes

of S1} ∪ ... ∪ {attributes of Sm} ∪ {t1, t2, ..., tm} and PK(L) = k.

 Each ti, 1 ≤ i ≤ m, is a Boolean type attribute indicating whether a tuple belongs

to subclass Si.

 This option is used for a specialization whose subclasses are overlapping (but will also

work for a disjoint specialization).

Step 9: Mapping of Shared Subclasses (Multiple Inheritance)

 A shared subclass is a subclass of several superclasses, indicating multiple inheritance.

 These classes must all have the same key attribute; otherwise, the shared subclass would be

modeled as a category (union type) as we discussed in Section 8.4.

 We can apply any of the options discussed in step 8 to a shared subclass, subject to the

restrictions discussed in step 8 of the mapping algorithm.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |19

Step 10: Mapping of Union Types (Categories)

 For mapping a category whose defining superclasses have different keys, it is customary to

specify a new key attribute, called a surrogate key, when creating a relation to correspond

to the category.

 The keys of the defining classes are different, so we cannot use any one of them exclusively

to identify all entities in the category.

Correspondence between ER and Relational Models

Functional Dependencies

What is Functional Dependency? (Or) Explain the concept of functional dependency in detail.

 Functional Dependency is a relationship that exists between multiple attributes of a

relation.

 This concept is given by E. F. Codd.

 Functional dependency represents a formalism on the infrastructure of relation.

 It is a type of constraint existing between various attributes of a relation.

 It is used to define various normal forms.

 These dependencies are restrictions imposed on the data in database.

 If P is a relation with A and B attributes, a functional dependency between these two

attributes is represented as {A → B}.

 It specifies that,

A It is a determinant set.

B It is a dependent attribute.

{A → B}
A functionally determines B.

B is a functionally dependent on A.

 Each value of A is associated precisely with one B value. A functional dependency is trivial

if B is a subset of A.

 'A' Functionality determines 'B' {A → B} (Left hand side attributes determine the values of

Right hand side attributes).

(Or)

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |20

 Functional dependency (FD) is a set of constraints between two attributes in a relation.

Functional dependency says that if two tuples have same values for attributes A1, A2,...,

An, then those two tuples must have to have same values for attributes B1, B2, ..., Bn.

 Functional dependency is represented by an arrow sign (→) that is, X→Y, where X

functionally determines Y. The left-hand side attributes determine the values of attributes

on the right-hand side.

Design goals

 Avoid redundant data.

 Ensure that relationships among attributes are represented.

 Facilitate the checking of updates for violation of database integrity constraints.

For example: <Employee> Table

EmpId EmpName

 In the above <Employee> table, EmpName (employee name) is functionally dependent on

EmpId (employee id) because the EmpId is unique for individual names.

 The EmpId identifies the employee specifically, but EmpName cannot distinguish the

EmpId because more than one employee could have the same name.

 The functional dependency between attributes eliminates the repetition of information.

 It is related to a candidate key, which uniquely identifies a tuple and determines the value

of all other attributes in the relation.

Types of Dependency

 Full Functional Dependencies

 In a relation R, X and Y are attributes. X functionally determines Y (X → Y). subset of

X should not functionally determine Y

Student_no → Marks ← course_no

In the above example marks is fully functionally dependent on student_no and

course_no together and not on subset of student_no, course_no.

 Partial Dependencies

 Attribute Y is partially dependent on attribute X only if it is dependent on a subset of

attribute X.

For example course_name, Instructor_name are partially dependent on composite

attributes (student_no, course_no} beacuase course_no only defines course_name,

Instructor_name.

 The main characteristics of functional dependencies

 Have a one-to-one relationship between attributes on the left-and right-hand side of

a dependency is nontrivial.

 A dependency is trivial if and only if, the right-hand side is a subset of the left side.

Properties of Functional Dependencies (Or) Inference rules for Functional Dependencies

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |21

Armstrong's Axioms

 Armstrong's Axioms is a set of rules.

 It provides a simple technique for reasoning about functional dependencies.

 It was developed by William W. Armstrong in 1974.

 It is used to infer all the functional dependencies on a relational database.

 If F is a set of functional dependencies then the closure of F, denoted as F+, is the set of all

functional dependencies logically implied by F.

 Armstrong's Axioms are a set of rules, that when applied repeatedly, generates a closure of

functional dependencies.

Various Axioms Rules

A. Primary Rules

Rule 1
Reflexivity Rule

If A is a set of attributes and B is a subset of A, then A holds B. { A → B }

Rule 2

Augmentation Rule

If A hold B and C is a set of attributes, then AC holds BC. {AC → BC}

It means that attribute in dependencies does not change the basic dependencies.

Rule 3

Transitivity Rule

If A holds B and B holds C, then A holds C.

If {A → B} and {B → C}, then {A → C}

A holds B {A → B} means that A functionally determines B.

B. Secondary Rules

Rule 1

Union

If A holds B and A holds C, then A holds BC.

If{A → B} and {A → C}, then {A → BC}

Rule 2

Decomposition

If A holds BC and A holds B, then A holds C.

If{A → BC} and {A → B}, then {A → C}

Rule 3

Pseudo Transitivity

If A holds B and BC holds D, then AC holds D.

If{A → B} and {BC → D}, then {AC → D}

Sometimes Functional Dependency Sets are not able to reduce if the set has following

properties,

 The Right-hand side set of functional dependency holds only one attribute.

 The Left-hand side set of functional dependency cannot be reduced, it changes the entire

content of the set.

 Reducing any functional dependency may change the content of the set.

 A set of functional dependencies with the above three properties are also called

as Canonical or Minimal.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |22

Trivial Functional Dependency

Trivial

If A holds B {A → B}, where B is a subset of A, then it is called

a Trivial Functional Dependency. Trivial always holds

Functional Dependency.

Non-Trivial
If A holds B {A → B}, where B is not a subset A, then it is called

as a Non-Trivial Functional Dependency.

Completely

Non-Trivial

If A holds B {A → B}, where A intersect Y = Φ, it is called as

a Completely Non-Trivial Functional Dependency.

Advantages of Functional Dependency

 Functional Dependency avoids data redundancy where same data should not be repeated

at multiple locations in same database.

 It maintains the quality of data in database.

 It allows clearly defined meanings and constraints of databases.

 It helps in identifying bad designs.

 It expresses the facts about the database design.

Example 1:

Consider relation E = (P, Q, R, S, T, U) having set of Functional Dependencies (FD).

P → Q P → R

QR → S Q → T

QR → U PR → U

Calculate some members of Axioms are as follows,

1. P → T

2. PR → S

3. QR → SU

4. PR → SU

Solution:

1. P → T

In the above FD set, P → Q and Q → T

So, Using Transitive Rule: If {A → B} and {B → C}, then {A → C}

∴ If P → Q and Q → T, then P → T.

P → T

2. PR → S

In the above FD set, P → Q

As, QR → S

So, Using Pseudo Transitivity Rule: If {A → B} and {BC → D}, then {AC → D}

∴ If P → Q and QR → S, then PR → S.

PR → S

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |23

3. QR → SU

In above FD set, QR → S and QR → U

So, Using Union Rule: If {A → B} and {A → C}, then {A → BC}

∴ If QR → S and QR → U, then QR → SU.

QR → SU

4. PR → SU

So, Using Pseudo Transitivity Rule: If {A → B} and {BC → D}, then {AC → D}

∴ If PR → S and PR → U, then PR → SU.

PR → SU

Example 2:

Let us consider the example of schema R = (A, B, C, G, H, I) and the set F of functional

dependencies {A→ B, A→ C, CG → H, CG → I , B → H}.

We list several members of F+ here:

 A → H. Since A → B and B → H hold, we apply the transitivity rule. Observe that it was

much easier to use Armstrong’s axioms to show that A → H holds than it was to argue

directly from the definitions, as we did earlier in this section.

 CG → HI. Since CG → H and CG → I, the union rule implies that CG →HI.

 AG → I. Since A→C and CG → I, the pseudotransitivity rule implies that AG → I holds.

 Another way of finding that AG →I holds is as follows: We use the augmentation rule on

A→C to infer AG → CG. Applying the transitivity rule to this dependency and CG →I, we

infer AG →I.

Non-loss Decomposition

Explain in detail about non-loss decomposition and functional dependencies.

What is Decomposition?

 Decomposition is the process of breaking down in parts or elements.

 It replaces a relation with a collection of smaller relations.

 It breaks the table into multiple tables in a database.

 It should always be lossless, because it confirms that the information in the original relation

can be accurately reconstructed based on the decomposed relations.

 If there is no proper decomposition of the relation, then it may lead to problems like loss of

information.

Properties of Decomposition

The following are the properties of decomposition,

1. Lossless Decomposition

2. Dependency Preservation

3. Lack of Data Redundancy

1. Lossless Decomposition

Decomposition must be lossless. It means that the information should not get lost from the

relation that is decomposed.

It gives a guarantee that the join will result in the same relation as it was decomposed.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |24

Example:

 Let's take 'E' is the Relational Schema, With instance 'e'; is decomposed into: E1, E2, E3,

En; With instance: e1, e2, e3, en, If e1 ⋈ e2 ⋈ e3 ⋈ en, then it is called as 'Lossless

Join Decomposition'.

In the above example, it means that, if natural joins of all the decomposition give the

original relation, then it is said to be lossless join decomposition.

Example: <Employee_Department> Table

Eid Ename Age City Salary Deptid DeptName

E001 ABC 29 Pune 20000 D001 Finance

E002 PQR 30 Pune 30000 D002 Production

E003 LMN 25 Mumbai 5000 D003 Sales

E004 XYZ 24 Mumbai 4000 D004 Marketing

E005 STU 32 Bangalore 25000 D005 Human Resource

Decompose the above relation into two relations to check whether decomposition is

lossless or lossy.

Now, we have decomposed the relation that is Employee and Department.

Relation 1: <Employee> Table

Eid Ename Age City Salary

E001 ABC 29 Pune 20000

E002 PQR 30 Pune 30000

E003 LMN 25 Mumbai 5000

E004 XYZ 24 Mumbai 4000

E005 STU 32 Bangalore 25000

Employee Schema contains (Eid, Ename, Age, City, Salary).

Relation 2: <Department> Table

Deptid Eid DeptName

D001 E001 Finance

D002 E002 Production

D003 E003 Sales

D004 E004 Marketing

D005 E005 Human Resource

Department Schema contains (Deptid, Eid, DeptName).

So, the above decomposition is a Lossless Join Decomposition, because the two relations

contains one common field that is 'Eid' and therefore join is possible.

Now apply natural join on the decomposed relations.

Employee ⋈ Department

Eid Ename Age City Salary Deptid DeptName

E001 ABC 29 Pune 20000 D001 Finance

E002 PQR 30 Pune 30000 D002 Production

E003 LMN 25 Mumbai 5000 D003 Sales

E004 XYZ 24 Mumbai 4000 D004 Marketing

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |25

E005 STU 32 Bangalore 25000 D005 Human Resource

Hence, the decomposition is Lossless Join Decomposition.

If the <Employee> table contains (Eid, Ename, Age, City, Salary) and <Department> table

contains (Deptid and DeptName), then it is not possible to join the two tables or relations,

because there is no common column between them. And it becomes Lossy Join

Decomposition.

2. Dependency Preservation

Dependency is an important constraint on the database.

Every dependency must be satisfied by at least one decomposed table.

 If {A → B} holds, then two sets are functional dependent. And, it becomes more useful for

checking the dependency easily if both sets in a same relation.

This decomposition property can only be done by maintaining the functional dependency.

In this property, it allows to check the updates without computing the natural join of the

database structure.

3. Lack of Data Redundancy

Lack of Data Redundancy is also known as a Repetition of Information.

The proper decomposition should not suffer from any data redundancy.

The careless decomposition may cause a problem with the data.

The lack of data redundancy property may be achieved by Normalization process.

Normalization

Explain in detail about normalization. (Or) What are Normal Forms? Explain the types of

normal forms with an example. (Nov/Dec 2014) (Or) State the need for normalization of a

database and explain the various forms with suitable examples. (April/May 2015) (Or) Explain

first normal form, second normal form, third normal form and BCNF with an example.

(Nov/Dec 2016) (Or) What is database Normalization? Explain first normal form, second normal

form, third normal form with an example. (April/May 2018) (Or) Give an example of a relation

that is in 3NF but not in BCNF. How will you convert that relation into BCNF. (Nov/Dec 2018)

Normalization is a process of organizing the data in the database.

It is a systematic approach used to minimize the redundancy from a relation or set of

relations.

It is used to avoid / eliminate data redundancy, insertion anomaly, update anomaly &

deletion anomaly.

It was developed by E. F. Codd.

(Or)

 ―Normalization is a process of designing a consistent database by minimizing redundancy

and ensuring data integrity through decomposition which is lossless.‖

The goal is to generate a set of relation schemas that allows us to store information without

unnecessary redundancy, yet also allows us to retrieve information easily.

The approach is to design schemas that are in an appropriate normal form.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |26

To determine whether a relation schema is in one of the desirable normal forms, we need

additional information about the real-world enterprise that we are modeling with the

database.

The most common approach is to use functional dependencies.

It is a multi-step process that puts data into tabular form, removing duplicated data from

the relation tables.

It is also called as Canonical Synthesis.

Normalization is used for mainly two purposes,

 Eliminating reduntant (useless) data.

 Ensuring data dependencies make sense i.e data is logically stored.

Features of Normalization

Normalization avoids the data redundancy.

It is a formal process of developing data structures.

It promotes the data integrity.

It ensures data dependencies make sense that means data is logically stored.

It eliminates the undesirable characteristics like Insertion, Updation and Deletion

Anomalies.

Anomalies in DBMS

 There are three types of anomalies that occur when the database is not normalized. These

are – Insertion, update and deletion anomaly.

emp_id emp_name emp_address emp_dept

101 Rick Delhi D001

101 Rick Delhi D002

123 Maggie Agra D890

166 Glenn Chennai D900

166 Glenn Chennai D004

Update Anomaly:

In the above table we have two rows for employee Rick as he belongs to two departments

of the company.

If we want to update the address of Rick then we have to update the same in two rows or

the data will become inconsistent.

If somehow, the correct address gets updated in one department but not in other then as

per the database, Rick would be having two different addresses, which is not correct and

would lead to inconsistent data.

Insert Anomaly:

 Suppose a new employee joins the company, who is under training and currently not

assigned to any department then we would not be able to insert the data into the table if

emp_dept field doesn’t allow nulls.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |27

Delete Anomaly:

Suppose, if at a point of time the company closes the department D890 then deleting the

rows that are having emp_dept as D890 would also delete the information of employee

Maggie since she isassigned only to this department.

First, Second, Third Normal Forms

Types of Normalization

To overcome these anomalies we need to normalize the data.

Normal Form Description

1NF A relation is in 1NF if it contains an atomic value.

2NF A relation will be in 2NF if it is in 1NF and all non-key attributes are fully

functional dependent on the primary key.

3NF A relation will be in 3NF if it is in 2NF and no transition dependency

exists.

4NF A relation will be in 4NF if it is in Boyce Codd normal form and has no

multi-valued dependency.

5NF A relation is in 5NF if it is in 4NF and not contains any join dependency

and joining should be lossless.

(Or)

Following are the types of Normalization:

First Normal Form

Second Normal Form

Third Normal Form

Fourth Normal Form

Fifth Normal Form

 BCNF (Boyce – Codd Normal Form)

DKNF (Domain Key Normal Form)

1. First Normal Form (1NF)

First Normal Form (1NF) is a simple form of Normalization.

It simplifies each attribute in a relation.

In 1NF, there should not be any repeating group of data.

Each set of column must have a unique value.

It contains atomic values because the table cannot hold multiple values.

Rules of First Normal Form

For a table to be in the First Normal Form, it should follow the following 4 rules:

 It should only have single (atomic) valued attributes/columns.

 Values stored in a columnshould be of the same domain

 All the columns in a table should have unique names.

 And the order in which data is stored, does notmatter.

Example: Employee Table

ECode Employee_Name Department_Name

https://www.javatpoint.com/dbms-first-normal-form
https://www.javatpoint.com/dbms-second-normal-form
https://www.javatpoint.com/dbms-third-normal-form
https://www.javatpoint.com/dbms-forth-normal-form
https://www.javatpoint.com/dbms-fifth-normal-form

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |28

1 ABC Sales, Production

2 PQR Human Resource

3 XYZ Quality Assurance, Marketing

Employee Table using 1NF

ECode Employee_Name Department_Name

1 ABC Sales

1 ABC Production

2 PQR Human Resource

3 XYZ Quality Assurance

3 XYZ Marketing

2. Second Normal Form (2NF)

In 2NF, the table is required in 1NF.

The main rule of 2NF is, 'No non-prime attribute is dependent on the proper subset of any

candidate key of the table.'

An attribute which is not part of candidate key is known as non-prime attribute.

Example: Employee Table using 1NF

ECode Employee_Name Employee_Age

1 ABC 38

1 ABC 38

2 PQR 38

3 XYZ 40

3 XYZ 40

Candidate Key: ECode, Employee_Name

Non prime Attribute: Employee_Age

The above table is in 1NF. Each attribute has atomic values.

However, it is not in 2NF because non prime attribute Employee_Age is dependent on

ECode alone, which is a proper subset of candidate key.

This violates the rule for 2NF as the rule says 'No non-prime attribute is dependent on the

proper subset of any candidate key of the table'.

2NF (Second Normal Form):

Employee1 Table

ECode Employee_Age

1 38

2 38

3 40

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |29

Employee 2 Table

ECode Employee_Name

1 ABC

1 ABC

2 PQR

3 XYZ

3 XYZ

Now, the above tables comply with the Second Normal Form (2NF).

3. Third Normal Form (3NF)

Third Normal Form (3NF) is used to minimize the transitive redundancy.

In 3NF, the table is required in 2NF.

While using the 2NF table, there should not be any transitive partial dependency.

3NF reduces the duplication of data and also achieves the data integrity.

(Or)

A table is said to be in the Third Normal Form when,

 It is in the Second Normal form.

 And, it doesn't have Transitive Dependency.

Example : <Employee> Table

EId Ename DOB City State Zip

001 ABC 10/05/1990 Pune Maharashtra 411038

002 XYZ 11/05/1988 Mumbai Maharashtra 400007

In the above <Employee> table, EId is a primary key but City, State depends upon Zip

code.

The dependency between Zip and other fields is called Transitive Dependency.

Therefore we apply 3NF. So, we need to move the city and state to the new

<Employee_Table2> table, with Zip as a Primary key.

<Employee_Table1> Table

EId Ename DOB Zip

001 ABC 10/05/1990 411038

002 XYZ 11/05/1988 400007

<Employee_Table2> Table

City State Zip

Pune Maharashtra 411038

Mumbai Maharashtra 400007

The advantage of removing transitive dependency is, it reduces the amount of data

dependencies and achieves the data integrity.

In the above example, using with the 3NF, there is no redundancy of data while inserting

the new records.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |30

The City, State and Zip code will be stored in the separate table. And therefore the

updation becomes more easier because of no data redundancy.

4. BCNF (Boyce – Code Normal Form)

 BCNF which stands for Boyce – Code Normal From is developed by Raymond F. Boyce

and E. F. Codd in 1974.

BCNF is a higher version of 3NF.

It deals with the certain type of anomaly which is not handled by 3NF.

 A table complies with BCNF if it is in 3NF and any attribute is fully functionally dependent

that is A → B. (Attribute 'A' is determinant).

If every determinant is a candidate key, then it is said to be BCNF.

Candidate key has the ability to become a primary key. It is a column in a table.

(Or)

Boyce and Codd Normal Form is a higher version of the Third Normal form.

This form deals with certain type of anomaly that is not handled by 3NF.

A 3NF table which does not have multiple overlapping candidate keys is said to be in

BCNF.

For a table to be in BCNF, following conditions must be satisfied:

 R must be in 3rd Normal Form

 and, for each functional dependency (X → Y), X should be a super Key.

Example : <EmployeeMain> Table

Empid Ename DeptName DepType

E001 ABC Production D001

E002 XYZ Sales D002

The functional dependencies are:

Empid → EmpName

DeptName → DeptType

Candidate Key:

Empid

DeptName

The above table is not in BCNF as neither Empid nor DeptName alone are keys.

We can break the table in three tables to make it comply with BCNF.

<Employee> Table

Empid EmpName

E001 ABC

E002 XYZ

<Department> Table

DeptName DeptType

Production D001

Sales D002

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |31

<Emp_Dept> Table

Empid DeptName

E001 Production

E002 Sales

Now, the functional dependencies are:

Empid → EmpName

DeptName → DeptType

Candidate Key:

<Employee> Table : Empid

<Department> Table : DeptType

<Emp_Dept> Table : Empid, DeptType

So, now both the functional dependencies left side part is a key, so it is in the BCNF.

5. Fourth Normal Form (4NF)

Fourth Normal Form (4NF) does not have non-trivial multi-valued dependencies other

than a candidate key.

4NF builds on the first three normal forms (1NF, 2NF and 3NF) and the BCNF.

It does not contain more than one multi-valued dependency.

This normal form is rarely used outside of academic circles.

Rules for 4th Normal Form

For a table to satisfy the Fourth Normal Form, it should satisfy the following two conditions:

It should be in the Boyce-Codd Normal Form.

And, the table should not have any Multi-valued Dependency.

For Example:

A table contains a list of three things that is 'Student', 'Teacher', 'Book'. Teacher is in charge

of Student and recommended book for each student.

These three elements (Student, Teacher and Book) are independent of oneanother.

Changing the student's recommended book, for instance, has no effect on the student itself.

This is an example of multi-valued dependency, where an item depends on more than one

value. In this example, the student depends on both teacher and book.

Therefore, 4NF states that a table should not have more than one dependency.

6. Fifth Normal Form (5NF)

5NF is also knows as Project-Join Normal Form (PJ/NF).

It is designed for reducing the redundancy in relational databases.

5NF requires semantically related multiple relationships, which are rare.

In 5NF, if an attribute is multivalued attribute, then it must be taken out as a separate

entity.

While performing 5NF, the table must be in 4NF.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |32

7. DKNF (Domain Key Normal Form)

DKNF stands for Domain Key Normal Form requires the database that contains no

constraints other than domain constraints and key constraints.

In DKNF, it is easy to build adatabase.

It avoids general constraints in the database which are not clear domain or key constraints.

The 3NF, 4NF, 5NF and BCNF are special cases of the DKNF.

It is achieved when every constraint on the relation is a logical consequence of the

definition.

Dependency Preservation

Explain in detail about dependency preservation.

F' is a set of functional dependencies on schema R, but in general, However, it may be that .

If this is so, then every functional dependency in F is implied by F', and if F' is satisfied,

then F must also be satisfied.

A decomposition having the property that is a dependency-preserving decomposition.

Dependency Preservation

 A Decomposition D = { R1, R2, R3….Rn } of R is dependency preserving with respect to a

set F of Functional dependency if

(F1 ∪ F2 ∪ … ∪ Fm)+ = F+.

Consider a relation R

R ---> F{...with some functional dependency(FD) }

R is decomposed or divided into R1 with FD { f1 } and R2 with { f2 }, then there can be three cases:

f1 U f2 = F ----- > Decomposition is dependency preserving.

f1 U f2 is a subset of F ------ > Not Dependency preserving.

f1 U f2 is a super set of F ------ > This case is not possible.

Problem:

Let a relation R (A, B, C, D) and functional dependency {AB –> C, C –> D, D –> A}.

Relation R is decomposed into R1(A, B, C) and R2(C, D). Check whether decomposition is

dependency preserving or not.

Solution:

R1(A, B, C) and R2(C, D)

Let us find closure of F1 and F2

To find closure of F1, consider all combination of

ABC. i.e., find closure of A, B, C, AB, BC and AC

Note ABC is not considered as it is always ABC

closure(A) = { A } // Trivial

closure(B) = { B } // Trivial

closure(C) = {C, A, D} but D can't be in closure as D is not present R1.

= {C, A}

C--> A // Removing C from right side as it is trivial attribute

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |33

closure(AB) = {A, B, C, D}

= {A, B, C}

AB --> C // Removing AB from right side as these are trivial attributes

closure(BC) = {B, C, D, A}

= {A, B, C}

BC --> A // Removing BC from right side as these are trivial attributes

closure(AC) = {A, C, D}

AC --> D // Removing AC from right side as these are trivial attributes

F1 {C--> A, AB --> C, BC --> A}.

Similarly F2 { C--> D }

In the original Relation Dependency { AB --> C , C --> D , D --> A}.

AB --> C is present in F1.

C --> D is present in F2.

D --> A is not preserved.

F1 U F2 is a subset of F. So given decomposition is not dependency preserving.

Dependency-Preserving Decomposition

The dependency preservation decomposition is another property of decomposed

relational database schema D in which each functional dependency X -> Y specified in F

either appeared directly in one of the relation schemas Ri in the decomposed D or could be

inferred from the dependencies that appear in some Ri.

Decomposition D = { R1 , R2, R3,,.., ,Rm} of R is said to be dependency-preserving with

respect to F if the union of the projections of F on each Ri , in D is equivalent to F.

 In other words, R ⊂ join of R1, R1 over X.

The dependencies are preserved because each dependency in F represents a constraint on

the database.

If decomposition is not dependency-preserving, some dependency is lost in the

decomposition.

Example:

Let a relation R(A,B,C,D) and set a FDs F = { A -> B , A -> C , C -> D} are given.

A relation R is decomposed into -

R1 = (A, B, C) with FDs F1 = {A -> B, A -> C}, and

R2 = (C, D) with FDs F2 = {C -> D}.

F' = F1 ∪ F2 = {A -> B, A -> C, C -> D}

so, F' = F.

And so, F'+ = F+.

Thus, the decomposition is dependency preserving decomposition.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |34

Multi-valued Dependencies and Fourth Normal Form

What is Multi-valued Dependency?

A table is said to have multi-valued dependency, if the following conditions are true,

1. For a dependency A → B, if for a single value of A, multiple value of B exists, then the table

may have multi-valued dependency.

2. Also, a table should have at-least 3 columns for it to have a multi-valueddependency.

3. And, for a relation R(A,B,C), if there is a multi-valued dependency between, A and B, then

B and C should be independent of each other.

If all these conditions are true for any relation(table), it is said to have multi-valued dependency.

To deal with the problem of BCNF, R. Fagin introduced the idea of multi -valued

dependency (MVD) and the fourth normal form (4NF).

A multi-valued dependency (MVD) is a functional dependency where the dependency may

be to a set and not just a single value.

 It is defined as X →→ Y in relation R (X, Y, Z), if each X value is associated with a set

of Y values in a way that does not depend on the Z values.

 Here X and Y are both subsets of R. The notation X→→ Y is used to indicate that a set of

attributes of Y shows a multi-valued dependency (MVD) on a set of attributes of X.

Join Dependencies and Fifth Normal Form

The anomalies of MVDs and are eliminated by join dependency (JD) and 5NF.

A join dependency (JD) can be said to exist if the join of R1 and R2 over C is equal to

relation R.

Where, R1 and R2 are the decompositions R1(A, B, C), and R2 (C,D) of a given relations R (A,

B, C, D). Alternatively, R1 and R2 is a lossless decomposition of R.

 In other words, *(A, B, C, D), (C, D) will be a join dependency of R if the join of the join’s

attributes is equal to relation R. Here, *(R1, R2, R3,) indicates that relations R1, R2, R3 and

so on are a join dependency (JD) of R.

Therefore, a necessary condition for a relation R to satisfy a JD *(R 1, R2,...., Rn) is that R.

Denormalization

What is Denormalization?

Denormalization is the process of increasing the redundancy in the database.

It is the opposite process of normalization.

It is mostly done for improving the performance.

It is a strategy that database managers use to increase the performance of a database

structure.

Denormalization adds redundant data normalized database for reducing the problems

with database queries which combine data from the various tables into a single table.

The process of adding redundant data to get rid of complex join, in order to optimize

database performance. This is done to speed up database access by moving from higher to

lower form of normalization.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |35

Data is included in one table from another in order to eliminate the second table which

reduces the number of JOINS in a query and thus achieves performance.

Difference between Lossless Join Decomposition and Dependency Preservation

Decomposition

Lossless Join Decomposition

 The lossless join property is a feature of decomposition supported by normalization. It is

the ability to ensure that any instance of the original relation can be identified from

corresponding instances in the smaller relations.

R : relation, F : set of functional dependencies on R,

X,Y : decomposition of R

 A decomposition {R1, R2,…, Rn} of a relation R is called a lossless decomposition for R if

the natural join of R1, R2,…, Rn produces exactly the relation R.

 A decomposition is lossless if we can recover:

R(A, B, C) -> Decompose -> R1(A, B) R2(A, C) -> Recover -> R’(A, B, C)

Thus,R’ = R

 Decomposition is lossles if :

X ∩ Y -> X, that is: all attributes common to both X and Y functionally determine ALL the

attributes in X.

X ∩ Y -> Y, that is: all attributes common to both X and Y functionally determine AL L the

attributes in Y

If X ∩ Y forms a superkey of either X or Y, the decomposition of R is a lossless

decomposition.

Dependency Preserving Decomposition

 A decomposition D = {R1, R2, ..., Rn} of R is dependency-preserving with respect to F if the

union of the projections of F on each Ri in D is equivalent to F;

if (F1∪ F2 ∪ …∪ Fn)+ = F +

 Example-

R= (A, B, C)

F = {A ->B, B->C}

Key = {A}

Ris not in BCNF

Decomposition R1 = (A, B), R2 = (B, C)

R1 and R2 are in BCNF, Lossless-join decomposition, Dependency preserving

 Each Functional Dependency specified in F either appears directly in one of the relations in

the decomposition.

 It is not necessary that all dependencies from the relation R appear in some relation Ri.

 It is sufficient that the union of the dependencies on all the relations Ri be equivalent to the

dependencies on R.

 is lost in the decomposition.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |36

Differences Between E-R Model and Relational Model

1. Difference between E-R Model and Relational Model in DBMS The basic difference

between E-R Model and Relational Model is that E-R model specifically deals with entities

and their relations. On the other hand, the Relational Model deals with Tables and relation

between the data of those tables.

2. An E-R Model describes the data with entity set, relationship set and attributes. However,

the Relational model describes the data with the tuples, attributes and domain of the

attribute.

3. One can easily understand the relationship among the data in E-R Model as compared to

Relational Model.

4. E-R Model has Mapping Cardinality as a constraint whereas Relational Model does not

have such constraint.

Example ER Diagrams

E-R Diagram for Restaurant Menu Ordering System

Draw E-R diagram for restaurant menu ordering System which will facilitate the food items

ordering and services within a restaurant. The entire restaurant scenario is detailed as

follows. The customer is able to view the food items menu, call the waiter pl ace orders and

obtain the final bill through the computer kept in their table. The waiters through their

wireless tablet pc are able to initialize a table for customers control the table functions to

assist customers, orders send orders to food preparation staff (chef) and finalize the

customer bill. The food preparation staff with their touch display interfaces to the system,

are able to view orders sent to the kitchen by waiters. During preparation they are able to let

the waiter know the status of each item, and can send notification when items are completed.

The system should have full accountability and logging facilities, and should support

supervisor actions to account for exceptional circumstances, such as a meal being refunded or

walked out on? (April/May 2015)

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |37

E-R Diagram for Banking Enterprise

Write short notes on ER diagram for banking enterprise. (Nov/Dec 2014) (Nov/Dec 2017)

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |38

E-R Diagram for Hotel Management System

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |39

E-R Diagram for Pharmacy Store Information

E-R Diagram for Hospital Management System

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |40

E-R Diagram for Library Management System

E-R Diagram for Airline Reservation System

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |41

E-R Diagram for Car Insurance Company (Nov/Dec 2016) (Nov/Dec 2018)

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |42

(Or)

E-R Diagram for Marks Database

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |43

E-R Diagram for University Database (April/May 2018)

E-R Diagram for the University Enterprise

(Or)

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |44

E-R Diagram for Online Bookstore

Draw an E-R diagram, which models an online bookstore.

a. List the entity sets and their primary keys.

b. Suppose the bookstore adds Blu-ray discs and downloadable video to its collection. The

same item may be present in one or both formats, with differing prices. Extend the E-R diagram

to model this addition, ignoring the effect on shopping baskets.

c. Now extend the E-R diagram, using generalization, to model the case where a shopping

basket may contain any combination of books, Blu-ray discs, or downloadable video.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |45

(Or)

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page |46

Diagram for Car Rental Company (Nov/Dec 2015)

Page |47

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 1

Unit – I Relational

Databases

Introduction

Databases and database technology have a major impact on the growing use of computers.

Databases play a critical role in almost all areas where computers are used, including business, electronic

commerce,engineering,medicine,genetics,law,educationandlibrary science.

Database

What is Database?

Adatabaseisacollectionofdataelements(facts)storedinacomputerinasystematicway.

(Or)

The collection of data, usually referred to as the database, contains information relevant to an enterprise.

The computer program used to manage and query a database is known as a database management system

(DBMS).

A Database System (DBS) is a DBMS together with the data and applications.

DBMS: Asoftwarepackage/systemthatcanbe used to store, manageandretrievedata form databases.

Database Management System (DBMS)

What is DBMS?

Adatabase-management system (DBMS) isacollectionof interrelateddataandasetof programs to

access those data.

The primary goal of a DBMS is to provide a way to store and retrieve database information that is both

convenient and efficient.

Database systems are designed to manage large bodies of information.

Management of data involves both defining structures for storage of information and providing

mechanisms for themanipulation of information.

Features of Database:

It is a persistent (stored) collection of related data.

The data is input (stored) only once.

The data is organized (in some fashion).

The data is accessible and can be queried (effectively and efficiently).

Purpose of Database System – Views of Data – Data Models – Database System Architecture –

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 2

Functionsof DBMS

ADBMSmakesitpossibleforuserstocreate,editandupdatedataindatabasefiles.

More specifically, a DBMS provides the following functions:

 Concurrency: concurrent access (meaning 'at the same time') to the same database by multiple users

 Security: security rules to determine access rights of users

 Backup and Recovery: processes to back-up the data regularly and recover data if a problem

occurs

 Integrity: databasestructureandrulesimprove the integrity of thedata

 Data Descriptions: adata dictionaryprovidesa description of thedata

Database-System Applications

Discuss various database system applications.

Databases are widely used. Some of the database applications are:

Enterprise Information

 Sales

 For customer, product, and purchase information.

 Accounting

 For payments, receipts, account balances, assets and other accounting

information.

 Human Resources

 Forinformationaboutemployees, salaries, payrolltaxes, andbenefits, andfor generation of

paychecks.

 Manufacturing

 For management of the supply chain and for tracking production of items in factories,inventories

ofitemsinwarehousesandstores,andordersforitems.

Banking and Finance

 Banking

 For customer information, accounts, loans, and banking transactions.

 Credit Card Transactions

 Forpurchases on creditcardsandgeneration of monthlystatements.

 Finance

 For storing information about holdings, sales, and purchases of financial instruments such as

stocks and bonds; also for storing real-time market data to enable online trading by customers and

automatedtrading by thefirm.

Universities

For student information, course registrations, and grades.

Airlines

For reservations and schedule information. Airlines were among the first to use databases in a

geographically distributed manner.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 3

Telecommunication

For keeping records of calls made, generating monthly bills, maintaining balances on prepaid calling

cards, and storing information about the communication networks.

Purpose of Database System

Explain in detail about the purpose of database systems.

Databasesystems arose in response to early methods of computerizedmanagementof commercial data.

A database management system (DBMS) is a collection of programs that enables users to create and

maintain a database.

The DBMS is a general-purpose software system that facilitates the processes of defining,

constructing, manipulating, andsharingdatabasesamongvarioususersandapplications.

 Defining a Database

 It involves specifying the data types, structures, and constraints of the data to be stored in the

database.

 The database definition or descriptive information is also stored by the DBMS in the form of a

databasecatalogordictionary; itiscalled asameta-data.

 Constructing the Database

 Itistheprocessofstoringthedataonsomestoragemediumthatiscontrolled by the DBMS.

 Manipulating a Database

 Itincludesfunctionssuch as queryingthedatabasetoretrievespecificdata, updating the database

to reflect changes in the miniworld, and generating reports from thedata.

 Sharing a database

 Itallowsmultipleusersandprogramstoaccessthedatabasesimultaneously.

An application program accesses the database by sending queries or requests for data to the DBMS.

Aquery typicallycausessomedatatoberetrieved;atransaction maycausesomedatato be read and some

data to be written into the database.

SomeotherimportantfunctionsprovidedbytheDBMSincludeprotecting thedatabaseand

maintaining it over a long period of time.

Protection includes,

 System protection againsthardwareorsoftwaremalfunction(orcrashes)

 Security protection against unauthorized or malicious access

A typical large database may have a life cycle of many years, so the DBMS must be able to maintain the

databasesystem byallowingthesystemtoevolveasrequirementschange over time.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 4

Figure: A Simplified Database System Environment

An Example

Let us consider university database, which keeps information about all instructors, students, departments

and course offerings.

Onewaytokeeptheinformationonacomputeristostoreitinoperatingsystemfiles.

To allow users to manipulate the information, the system has a number of application programs that

manipulate the files, including programs to:

 Add new students, instructors, and courses

 Register students for courses and generate class rosters

 Assign grades to students, compute grade point averages (GPA), and generate transcripts

System programmers wrote these application programs to meet the needs of the university.

File Processing System

Explain in detail about file processing system.

It is supported by a conventional operating system.

Thesystemstorespermanentrecords in variousfiles, and it needsdifferentapplication programs to extract

recordsfrom, andaddrecordsto, theappropriate files.

 Before database management systems (DBMS‘s) were introduced, organizations usually stored information in

such systems.

Disadvantages of File System over DBMS
File Processing System has a number of major disadvantages:

 Data Redundancy andInconsistency

 Difficulty in AccessingData

 Data Isolation

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 5

 Integrity Problems

 Atomicity Problems

 Concurrent-Access Anomalies

 Security Problems

Data Redundancy and Inconsistency

Same information maybe duplicated in several places.

All copies may not be updated properly.

Files that represent the same data may become inconsistent.

Difficulty in Accessing Data

File processing environments do not allow needed data to be retrieved in a convenient and efficient manner.

Mayhavetowriteanewapplicationprogramtosatisfyanunusualrequest.

E.g. find all customers with the same postal code.

Could generate this data manually, but a long job.

Data Isolation

Becausedataarescatteredinvariousfiles,andfilesmaybeindifferentformats, writing new application

programs to retrieve the appropriate data is difficult.

Integrity Problems

The data values stored in the database must satisfy certain types of consistency constraints.

The constraints are enforced byadding appropriate code in programs.

Whennewconstraintsareadded it is difficultto changeprograms to enforcethem.

Atomicity Problem

Ifanyfailureoccursthedataistoberestoredtotheconsistentstatethatexistedpriorto failure.

It must be atomic happen entirely or not at all.

It is difficult to ensure atomicity in aconventional file processing system.

Concurrent Access Anomalies

For the overall performance of the system and faster response, many systems allow multiple users to

update the data simultaneously.

Insuch an environment, interaction of concurrentupdates is possibleandmayresultin inconsistent data.

Security Problems

Not every user of database system is allowed to access data.

Ie., Everyuser of thesystemshould be able toaccess onlythedatatheyarepermittedto see.

Enforcing security constraint is difficult in file processing system.

File Systems vs Database Systems

DBMSareexpensive to create in terms of software, hardware, andtimeinvested.

Thesolution is calledmaintainingdata in flatfiles. Sowhat is badaboutflatfiles?

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 6

 Uncontrolled Redundancy

 Inconsistent Data

 Inflexibility

 Limited Data Sharing

 Poor Enforcement ofStandards

 Low Programmer Productivity

 Excessive Program Maintenance

 Excessive Data Maintenance

File System

Data is stored in Different Files in forms of Records

The programs are written time to time as per the requirement to manipulate the data within files.

 A program to debit and credit an account

 A program to find the balance of an account

 A program to generate monthly statements

Advantages of DBMS

Improved security

Improved data integrity

Data consistency

Improved data accessibility and responsiveness

Increased concurrency

Improved backup and recovery services

Disadvantages of DBMS

 Cost of DBMS‘s

Complexity and Size

Higher impact of a failure

Performance

Characteristics of the Database Approach

Write down the characteristics of database approach.

The main characteristics of the database approach versus the file-processing approach are the following:

 Self-describing nature of a database system

 Insulation between programs and data, and data abstraction

 Support of multiple views of the data

 Sharing of data and multiuser transaction processing

Self-Describing Nature of a Database System

A fundamental characteristic of the database approach is that the database system contains not only the database

itselfbutalsoacompletedefinition or description of thedatabase structure and constraints.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 7

This definition is stored in the DBMS catalog, which contains information such as the structure of eachfile, the

type and storage formatof eachdata item, and various constraints on the data.

The information stored in the catalog is called meta-data, and it describes the structure of the primarydatabase.

Insulation between Programs and Data and Data Abstraction

In traditional file processing, the structure of data files is embedded in the application programs, so any

changes to the structure of a file may require changing all programs that access thatfile.

By contrast, DBMSaccessprograms do notrequiresuchchanges in mostcases.

The structure of data files is stored in the DBMS catalog separately from the access programs.

Support of Multiple Views of the Data

Adatabasetypicallyhasmanyusers,eachofwhommayrequireadifferentperspectiveor

view of the database.

Aviewmaybeasubsetofthedatabaseor itmaycontain virtual data thatisderivedfrom the database files

but is not explicitly stored.

A multiuser DBMS whose users have a variety of distinct applications must provide facilities for defining

multiple views.

Sharing of Data and Multiuser Transaction Processing

A multiuser DBMS, as its name implies, must allow multiple users to access the database at the sametime.

This is essential if data for multiple applications is to be integrated andmaintained in a single database.

The DBMS must include concurrency control software to ensure that several users trying to update the same

data do so in a controlled manner so that the result of the updates is correct.

Atransactionisanexecuting program orprocess thatincludesoneormoredatabaseaccesses, such as reading or

updating of database records.

Database Terminologies

List out some of the terminologies used in database.

Some of the terminologies used in databases are, Database

 It is a collection (or list) of information.

 A database is comprised of one or more lists (called tables) of data organized by columns, rows andcells.

Tables

 The view displays the database as a combination of rows (records) and columns (fields).

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 8

 The cells contain the bits and pieces of data for each record in each field.

 The first row of a table is reserved for the field names.

Key

 A key is a logical value to access record in a table.

 A key that uniquely identifies a recordiscalled as primarykey.

Field Names

 Identify the different categories in a database.

 The top row is reserved for field names.

 Examples of field names are First name, last name, address, city, state, zip, phone number.

Fields

 It defines the categories ina database.

 Fields are displayed in columns.

 For Example, in a database, the zip field contains all the zip codes from each ofthe records.

 These are the bits and pieces of data.

Domain

 Domain refers to the possible values each field can contain.

 For example(maritalstatusfieldsmaycontaineithermarriedor unmarriedvalues.)

View

 It is a virtual table made up of a subset of theactual tables.

Records

 Thesearerelated information that is separated by columns or fields.

 A name and address are considered one record in the database.

 A second Name and address are a different record.

Constraints

 Constraintsarethelogicrulesthatareusedtoensuredataconsistencyoravoidcertain unacceptable operations

on the data.

Cells

 Theintersection of columns androws that contain the data for each record

Index

 It is the part of the physical structure.

Data

 Alltherecordsofinformation inadatabaseincludingthefieldnames.

 Data + Field Names = Records

 All Records = a Database

Information

 Information is data that is processed to have a meaning.

NULL Value

 A field is said to be contain a null value when it contains nothing at all.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 9

Data Integrity

 It describes the accuracy, validity and consistency of data.

Database Normalization

 It is a technique that helps to reduce the occurrence of data anomalies and poor data integrity.

Objects

 Enablesyoutofind,view,displayandprintdatadifferently,basedonyourneeds.

 The most commonly used objects are tables, queries, forms and reports.

 Tables show all records in a spreadsheet format.

 Queries allow you to ask questions of the one or more tables and show only the information you

ask for.

 Forms display one record at a time.

 Reports give and organizewhy of presentinginformation.

Views of Data

Briefly explain about views of data. (May/June 2016)

A database system is a collection of interrelated data and a set of programs that allow users to access and modify

these data.

Amajorpurpose ofadatabase systemistoprovide userswithan abstract viewofthe data.

Thatis, thesystemhidescertaindetails of how thedataarestoredandmaintained.

Data Abstraction

Data abstraction generally refers to the suppression of details of data organization and storage, and the

highlightingoftheessentialfeaturesforanimprovedunderstandingof data.

For the system to be usable, it must retrieve data efficiently.

Theneedfor efficiency has led designerstouse complex data structures torepresentdata in the database.

 Since many database-system users are not computer trained, developers hide the complexity from users

through several levels of abstraction, to simplify user‘s interactions with the system:

Physical Level

 Thelowestlevel of abstractiondescribes how thedataareactuallystored.

 Thephysicalleveldescribescomplexlow-level datastructures in detail.

Logical Level

 The next-higher level of abstraction describes what data are stored in the database, and what

relationships exist among those data.

 The logical level thus describes the entire database in terms of a small number of relatively simple

structures.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 10

 Although implementation of the simple structures at the logical level may involve complex physical-

level structures, theuser of thelogicalleveldoesnotneedtobe awareofthiscomplexity.Thisisreferred

toasphysical data independence.

 Database administrators, who must decide what information to keep in the database, use the logical level of

abstraction.

type instructor =record

ID : char (5);

name :char (20);

dept name : char (20);

salary : numeric (8,2);

end;

 Thiscodedefines anewrecordtypecalled instructor withfourfields.

 Each field has a name and a type associated with it.

View Level

 Thehighestlevel of abstractiondescribesonlypart of theentiredatabase.

 Even though the logical level uses simpler structures, complexity remains because of the variety of

information stored in a large database.

 Many users of the database system do not need all this information; instead, they need to access only a

part of the database.

 Theviewlevelofabstractionexists tosimplifytheirinteractionwiththesystem.

 The system mayprovide manyviewsforthe same database.

Figure: The Three Levels of Data Abstraction

Auniversityorganizationmayhaveseveralsuchrecordtypes, including

 department, with fields dept name, building, and budget

 course, with fields course id, title, dept name, and credits

 student, with fields ID, name, dept name, and tot cred

At the physical level, an instructor, department, or student record can be described as a block of consecutive

storage locations. The compiler hides this level of detail from programmers. Similarly, the database system hides

many ofthe lowest-level storage details from database programmers.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 11

At the logical level, each suchrecord is described bya typedefinition, as in the previous code segment, and the

interrelationship of these record types is defined as well. Programmers using a programminglanguagework

atthis level of abstraction.

Finally, at the view level, computer users see a set of application programs that hide details of the data types. At the

viewlevel, severalviewsofthedatabasearedefined, anda database user sees some or all of these views.

Inadditiontohidingdetails of the logical level of thedatabase, theviews alsoprovidea securitymechanismto

preventusersfromaccessingcertainpartsofthedatabase.

Instances and Schemas

Write short notes on instance and schema.

Databases change over time as information is inserted and deleted.

The collection of information stored in the database at a particular moment is called an

instance of the database.

The overall design of the database is called the database schema.

The concept of database schemas and instances can be understood by analogy to a program written in a

programming language.

A database schema corresponds to the variable declarations (along with associated type definitions) in a

program.

Each variable has a particular value at a given instant.

The values of the variables in a program at a point in time correspond to an instance of a database schema.

Database systems have several schemas, partitioned according to the levels of abstraction.

The physical schema describes the database design at the physical level, while the logical schema

describes the database design at the logical level.

A database may also have several schemas at the view level, sometimes called subschemas, that describe

different views of the database.

Data Models

Write short notes on data model and its types. (Nov/Dec 2014)

A collection of conceptual tools for describing data, data relationships, data semantics and consistency

constraints.

Adatamodelprovidesawaytodescribethe designof adatabaseatthe physical, logical, and viewlevels.

(Or)

A data model is a collection of concepts that can be used to describe the structure of a database.

It also includes a set of basic operations for specifying retrievals and updates on the database.

Thebasicoperationsprovidedbythedatamodel, includeconcepts in thedatamodelto specifythe dynamic

aspect or behavior ofadatabaseapplication.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 12

Categories of Data Models

Data models can be categorized according to the types of concepts they use to describe the database structure.

High-level or conceptual data models provide concepts that are close to theway many users

perceive Data.

Low-level or physical data models provide concepts that describe the details of howdata is stored on the

computer storage media.

Representational (or implementation) data models, which provide concepts that maybe easily

understood by end users.

Representational data models hide many details of data storage on disk but can be implemented on a

computer system directly.

(Or)

The data models can be classified into four different categories:

Relational Model

The relational model uses a collection of tables to represent both data and the relationships among those data.

Each table has multiple columns, and each column has a unique name. Tables are also known as relations.

The relational model is an exampleof arecord-based model.

Record-based models are so named because the database is structured in fixed-format records of severaltypes.

Each table contains records of a particular type.

Each record type defines a fixed number of fields, or attributes.

The columns of the table correspond to the attributes of the record type.

The relational data model is the most widely used data model, and a vast majorityof current database

systems are based on the relational model.

Entity-Relationship Model

Theentity-relationship(E-R) datamodelusesacollection of basicobjects, called entities, and relationships

among theseobjects.

 An entityisa ―thing‖ or ―object‖ inthe real world thatis distinguishable from other objects.

Theentity-relationship modeliswidelyusedindatabase design.

Object-Based Data Model

Object-oriented programming (especially in Java, C++, or C#) has become thedominant software-development

methodology.

This led to the development of an object-oriented data model that can be seen as extending theE-Rmodelwith

notionsofencapsulation,methods(functions),andobjectidentity.

The object-relational data model combines features of the object-oriented data model and relational datamodel.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 13

Semistructured Data Model

Thesemistructured datamodelpermitsthespecification of data whereindividual data items of the same type

may have different sets of attributes.

This is in contrast to the data models mentioned earlier, where every data item of a particular type must

have the same set of attributes.

The Extensible Markup Language (XML) is widely used to represent semistructured data.

Database Languages

Explain in detail about database languages.

A database system provides a data-definition language to specify the database schema and adata-

manipulation language toexpressdatabasequeriesandupdates.

Data-Manipulation Language

A data-manipulation language (DML) is a language that enables users to access or manipulate

data as organizedbythe appropriate data model.

The types of access are:

 Retrievalofinformationstoredinthedatabase

 Insertionof newinformation intothe database

 Deletion of information from the database

 Modification of informationstored in the database

There are basically two types:

 Procedural DMLs require a user to specify what data are needed and how to get those data.

 Declarative DMLs (also referred to as nonprocedural DMLs) require a userto specify

what data are needed without specifying how to get those data.

Declarative DMLsareusuallyeasiertolearnandusethanareprocedural DMLs.

A query isa statement requestingtheretrieval ofinformation.

TheportionofaDMLthatinvolvesinformationretrievaliscalledaquery language.

There are a number of database query languages in use, either commercially or experimentally.

We study the most widely used querylanguage, SQL.

Data-Definition Language

We specify a database schema by a set of definitions expressed by a special language called a data-definition

language (DDL).

The DDLisalsoused tospecifyadditional properties of thedata.

We specify the storage structure and access methods used by the database system by a set ofstatementsinaspecial

typeofDDLcalledadata storage and definition language.

These statements define the implementation details of the database schemas, which are usually hidden from the

users.

Thedatavaluesstoredinthedatabasemustsatisfycertain consistency constraints.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 14

Forexample, supposetheuniversityrequiresthattheaccountbalance of adepartment must never benegative.

The DDL provides facilities to specify such constraints.

Ingeneral, aconstraint can be an arbitrarypredicatepertaining to thedatabase.

Domain Constraints

A domain of possible values must be associated with every attribute (for example, integer types, character types,

date/time types).

Declaring an attribute to be of a particular domain acts as a constraint on the values that it can take.

Domain constraints are the most elementaryform of integrity constraint.

Theyaretestedeasilybythesystemwheneveranewdataitemisenteredintothedatabase.

Referential Integrity

There are cases where we wish to ensure that a value that appears in one relation for a given set of attributes

also appears in a certain set of attributes in another relation (referential integrity).

Forexample, thedepartmentlistedfor eachcourse mustbe onethatactuallyexists.

Moreprecisely,thedept name valueinacourse recordmustappearinthe dept name attribute of some record of

the department relation.

Database modifications can cause violations of referential integrity.

Whenareferential-integrityconstraintis violated, thenormalprocedure is torejectthe action thatcaused the

violation.

Assertions

An assertion isanycondition thatthedatabasemustalwayssatisfy.

Domainconstraintsandreferential-integrityconstraintsarespecialformsofassertions.

However,therearemanyconstraintsthatwecannotexpressbyusingonlythesespecial forms.

 For example, ―Every department must have at least five courses offered every semester‖ must be expressed as

an assertion.

When an assertion is created, the system tests it for validity.

If theassertion is valid, thenanyfuturemodificationtothedatabase is allowed only if it does not cause that

assertion to be violated.

Authorization

We may want to differentiate among the users as far as the type of access they are permitted on various

data values in the database.

These differentiations are expressed in terms of authorization.

 Read Authorization - It allowsreading, but notmodification ofdata.

 Insert Authorization - It allowsinsertionofnewdata, butnotmodificationof existing data

 Update Authorization- It allowsmodification, butnotdeletionofdata.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 15

 Delete Authorization - It allows deletion of data.

Database Designers

Database designers are responsible for identifying the data to be stored in the database and for choosing

appropriate structures to represent and store this data.

These tasks are mostly undertaken before the database is actually implementedand populated with data.

It is the responsibility of database designers to communicate with all prospective database users in order to

understandtheirrequirementsandtocreate adesignthatmeetsthese requirements.

Database Design for a University Organization

Let us examine how a database for a university could be designed.

The university is organized into departments. Each department is identified by a unique name (dept name), is

located in a particular building, and has a budget.

Each department has a list of courses it offers. Each course has associated with it a course id, title, dept name, and

credits, and mayalso have associated prerequisites.

Instructors are identified by their unique ID. Each instructor has name, associated department (dept

name), andsalary.

Students are identified by their unique ID. Each student has a name, an associated major department (dept

name), and tot cred (totalcredithoursthestudentearnedthusfar).

The university maintains a list of classrooms, specifying the name of the building, room number, and room

capacity.

The university maintains a list of all classes (sections) taught. Each section is identified by a course id, sec id, year,

and semester, and has associated with it a semester, year, building, room number, and time slot id (the

time slot when the class meets).

The department has a list of teaching assignments specifying, for each instructor, the sections the instructor is

teaching.

The university has a list of all student course registrations, specifying, for each student, the courses and the

associatedsectionsthatthestudenthastaken(registeredfor).

Record Based Data Models

Relational Data Model

The relational model uses a collection of tables to represent both data and the relationships among those

data.

Each table has multiple columns, and each column has a unique name.

The data is arranged in a relation which is visually represented in a two dimensional table.

The data is inserted into the table in the form of tuples (which are nothing butrows).

Atuple is formedby one or morethanoneattributes, whichareused as basic building blocks in the formation

of various expressions that are used to derive meaningful information.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 16

The relational model is implemented in databasewhere,

 A relation is represented by atable.

 A tuple is represented by a row.

 An attribute is represented by a column of the table.

 Attributenameisthenameofthecolumnsuchas‗identifier‘,‗name‘,‗city‘etc.,

 Attribute valuecontains the valuefor columnin the row.

It is example for record based model because the database is structured in fixed format records of several

types.

Figure: Relational Model

Network Data Model

In network model the data are represented by collection of records and their relationship is represented bylinks.

Network database consists of collection of records connected to one another through links.

Eachrecord is acollectionoffields or attributes& each of whichcontainonlyonedata value.

A link is an associated between two records.

Example:

Customer record is defined as,

Type customer = record

Customer_name:string;

Customer_street:string;

Customer_city:string;

End
Account records is defined as,

Type account = record

Acc_number : string;

Balance :integer;

End
In network model the two records are represented as,

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 17

Figure: Network Model

Hierarchical Data Model

Hierarchical model consists of a collection of records that are connected to each other through links records

are organized as a collection of trees.

The hierarchical database model looks like an organizational chart or a family tree. It has a single root segment

(Employee) connected to lower level segments (Compensation,Job Assignments and Benefits).

Eachsubordinatesegmentinturn, mayconnect to othersubordinatesegments.

Here, compensation connects to Performance Ratings and Salary History.

Benefits connect to Pension, Life Insurance and Health.

Each subordinate segment is the child of the segment directly above it.

Figure: A Hierarchical data model for Human Resource System

Object-Oriented Data Model / Object Based Data Model

The data is stored in the form of objects, which are structures called classes that display the data within.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 18

The fields are instances of these classes.

Object oriented data model is extending the E-R model with notions of encapsulation, methods and object

identity.

Object oriented data model also supports a rich type system including structured and collection types.

Object relational data model, a data model that combines features of the object-oriented data model and

relational data model.

Semi-structured Data Model

Semi structured data models permit the specification of data where individual data items of the same

type may have different sets of attributes.

This is in contrast with the data models mentioned earlier, where every data item of a particular type must

have the same set of attributes.

The extensible markup language (XML) is widely used to represent semi-structured data.

Database System Architecture

With help of a neat block diagram explain the basic architecture of a database management

system. (Nov/Dec 2015) (Or) Briefly explain about database system architecture.

(May/June 2016) (Or) State and explain the architecture of DBMS. (Nov/Dec 2017)

Thearchitecture of adatabasesystem isgreatlyinfluencedbythe underlyingcomputer system on which the

database system runs.

Database systems can be centralized, or client-server, where one server machine executes work on behalf of

multiple client machines.

Components of DBMS

Explain the components of database in detail.

Database system is partitioned into modules that deal with each of the responsibilities of the overallsystem.

The functional components of the database system are,

 Storage Manager

 Query Processor

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 19

Figure: Database System Structure

Storage Manager

 It is a component of database system that provides the interface between the low- level data stored in

the database and theapplication programs and queries submitted to thesystem.

 It is responsible for the interaction with the file manager.

 Therawdataarestoredonthediskusingthefilesystemprovidedbytheoperatingsystem.

 The storage manager translates the various DML statements into low-level file-system commands.

 The components of storage manager are,

 Authentication & IntegrityManager

 File Manager

 Buffer Manager

 Transaction Manager

Authorization & Integrity Manager

It tests for satisfaction of integrity constraints and checks the authority of users to access data.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 20

File Manager

It manages the allocation of space on disk storage and the data structures used to represent information stored on

disk.

Buffer Manager

It is responsibility for fetching data from disk storage to main memory &deciding what data to cache in

main memory.

Transaction Manager

It ensures that database remains in a consistent state despite system failure andthe concurrent transaction

executions proceed without conflicting.

It consists of the concurrency control managerand therecovery manager.

The Four Properties of Transactions are,

 Atomicity

 This means that either all of the instructions within the transaction will be reflected in the

database, or none of them will be reflected.

 Consistency

 If we execute a particular transaction in isolation or together with other transaction, (i.e.

imagine in a multi-programming environment), the transaction will yield the same

expected result.

 Isolation

 In case multiple transactions are executing concurrently and trying to access a sharable resource at

the same time, the system should create an ordering in their execution so that they should not

create any anomaly in the value stored at the sharableresource.

 Durability

 It states that once a transaction has been completed, the changes it has made should be permanent.

The storage manager implements several data structure such as part of the physical system implementation:,

 Data Files – Stores the database itself.

 Data Dictionary- Stores the metadata about the structure of the database (i.e) Schema of the

database.

 Indices-Itprovides fastaccess to dataitems.The Databaseprovidespointersto those data items that

hold a particular index value.

Query Processor

It helps the database system to simplify and facilitate access to data components of query processor.

The Components of query processor includes:

 DDL Interpreter

 DML Compiler

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 21

 Query Optimization

 Query Evaluation Engine

DDL Interpreter

Interprets DDLstatementsand recordsthedefinitions indatadictionary.

DML Compiler

Translates DML statements into an evaluation plan consisting of low-level

instruction that the query evaluation engine understands.

It also performs query optimization (i.e) it picks the lowest cost evaluation plan from among thealternates.

Query Evaluation Engine

Executes low-level instructions generated by the DML compiler.

 Databasesystems can be centralized as client –server.

Based on this database applications are portioned into

 Two TierArchitecture

 Three tier Architecture

Two-tier Architecture

Application resides at the client machine where it invokes database system

functionality at the server machine through query language statements.

E.g. client programs using ODBC/JDBC to communicate with a database.

Three-tier Architecture

Client machine acts as merely a front end and does not contain any directdatabase calls.

The client end communicates with an application server throughforms interface and theapplicationserver in

turncommunicateswiththedatabasesystemtoaccessdata.

 E.g. web-based applications andapplicationsbuilt using ―middleware‖.

Figure: Two-tier and Three-tier Architectures

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 22

Transaction Management

Write short notes on transaction management.

A transaction is a collection of operations that performs a single logical function in a database

application.

Each transaction is a unit of both atomicity and consistency.

 It is the programmer‘s responsibility to define properly the various transactions, so that each preserves the

consistency of the database.

For example, the transaction to transfer funds from the account of department A to the accountofdepartment B

couldbedefinedtobe composedof twoseparateprograms: one that debits account A, and another that credits

account B.

Theexecutionofthesetwoprogramsoneaftertheotherwillindeedpreserveconsistency.

Clearly,itisessentialthateitherboththecreditanddebitoccur,orthatneitheroccur.

That is, the funds transfer must happen in its entirety or not at all. This all-or-none requirement is called

atomicity.

In addition, it is essential that the execution of the funds transfer preserve the consistency of the database.

Thatis, thevalueofthesumofthebalancesof A and B mustbepreserved.

This correctness requirement is called consistency.

Finally, after the successful execution of a funds transfer, the new values of the balances of accounts A and B must

persist, despitethepossibility of systemfailure. Thispersistence requirement is called durability.

Recovery Manager

It is theresponsibility of thedatabasesystemitselfespecially, therecoverymanagerto ensuring the atomicity

and durability properties.

Failure Recovery

Itdetectssystemfailuresandrestoresthedatabasetothestatethatexistedprior to the occurrence of thefailure.

Concurrency-Control Manager

It is responsible to control the interaction among the concurrent transactions, to ensure the consistency of the

database.

The transaction manager consists of the concurrency-control manager and the recovery manager.

Database Users and Administrators

A primary goal of a database system is to retrieve information from and store new information into the

database.

There are four different types of database-systemusers, differentiated by the way they expect to interact with

the system.

Differenttypesofuserinterfaces havebeendesignedforthedifferenttypesof users.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 23

Naive Users

They are unsophisticated users who interact with the system by invoking one of the application programs

that have been written previously.

Application Programmers

They are computer professionals who write application programs.

Applicationprogrammers can choosefrommanytoolstodevelopuserinterfaces.

Rapid application development (RAD) tools are tools that enable an application

programmertoconstructformsandreportswithminimalprogrammingeffort.

Sophisticated Users

They interact with the system without writing programs.

Instead, they form their requests either using a database query language or by using tools such as data analysis

software.

Specialized Users

They are sophisticated userswho write specialized database applications that do not fit into the traditional data-

processingframework.

Among these applications are computer-aided design systems, knowledgebase and expert systems, systems that

store data with complex data types (for example, graphics data and audio data), and environment-modeling

systems.

Database Administrators

In a database environment, the primary resource is the database itself, and the secondary resource is the DBMS

and related software.

Administering these resources is the responsibility of the database administrator (DBA).

The DBAis responsible for authorizing accessto the database, coordinating and monitoring itsuse, andacquiring

softwareandhardwareresources as needed.

(Or)

 DBMS‘sistohavecentralcontrolofboththedataandtheprogramsthataccessthosedata.

A person who has such central control over the system is called a database administrator (DBA).

The functions of a DBA include:

Schema Definition

 The DBA creates the original database schema by executing a set of data definition statements in the

DDL.

Storage Structure and Access-method Definition

Schema and Physical-organization Modification

 The DBA carries out changes to the schema and physical organization to reflect the changing needs of the

organization, or to alter the physical organization to improve performance.

Granting of Authorization for Data Access

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 24

 Bygrantingdifferenttypesof authorization, thedatabaseadministratorcanregulate which parts of the

database various users can access.

 The authorization information is kept in a special system structure that the database systemconsults

wheneversomeoneattemptstoaccessthedatainthesystem.

Routine Maintenance

 Examples of thedatabaseadministrator‘sroutinemaintenanceactivitiesare:

 Periodicallybackingupthedatabase,eitherontotapesorontoremoteservers,to preventloss of datain

case ofdisasters such as flooding.

 Ensuring that enough free disk space is available for normal operations, and upgrading disk space

as required.

 Monitoring jobs running on the database and ensuring that performance is not degraded by very

expensive tasks submitted by some users.

Introduction to Relational Databases

Explain relational DBMS in detail.

A Relational Database management System (RDBMS) is a database management system based on relational

model introduced by E.F Codd.

Inrelationalmodel, data isrepresentedin termsof tuples(rows).

RDBMS is used to manageRelational database.

Relational database is a collection of organized set of tables from which data can be accessed easily.

Relational Database is most commonly used database.

It consists of number of tables and each table has its own primarykey.

RDBMSs are a common choice for the storage of information in new databases used for financial records,

manufacturing and logistical information, personnel data andother applications since the 1980s.

A data model is a collection of conceptual tools for describing data, data relationships, data semantics and

consistencyconstraints.

Arelationaldatabaseisbasedontherelationalmodelwhichusesacollectionoftablesto represent both data and

the relationships among those data.

It also includes a DML and DDL.

A software system used to maintain relational databases is a relational database management system

(RDBMS).

Virtually all relational database systems use SQL (Structured Query Language) for querying and

maintaining the database.

Relational Model

The relational model is today the primary data model for commercial data processing applications.

This model organizes data into one or moretables(or "relations") ofcolumnsandrows, with a unique key

identifying each row.

https://en.wikipedia.org/wiki/Table_(database)
https://en.wikipedia.org/wiki/Column_(database)
https://en.wikipedia.org/wiki/Row_(database)

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 25

Keys

Rowsare also called records or tuples.Columns are alsocalled attributes.

Generally, each table/relation represents one "entity type" (such as customer or product).

The rows represent instances of that type of entity (such as "Lee" or "chair") and the columnsrepresenting

valuesattributedtothatinstance(suchasaddressorprice).

Write short notes on keys in DBMS.

It is defined as one or more columns in a database table that is used to sort and/or identify rows in atable.

e.g. if youwere sorting peoplebythefield salary thenthesalaryfield is thekey.

It also establishes relationship among tables.

Types of keys in DBMS

 Primary Key – A primary is a column or set of columns in a table that uniquely identifies tuples (rows) in

that table. The primary key cannot be null (blank). The primary key is indexed.

 Super Key – Asuper key is a set of one of morecolumns(attributes) to uniquelyidentify rows in atable.

 Candidate Key –Asuperkeywithnoredundantattributeisknownascandidatekey

 Alternate Key – Out of all candidate keys, only one gets selected as primary key, remaining keys are known as

alternate or secondary keys.

 Composite Key – Akeythatconsistsof morethanoneattributetouniquely identifyrows (alsoknown as

records& tuples) inatableiscalledcompositekey.

 Foreign Key – Foreign keys are the columns of a table that points to the primary key of another table. They

act as a cross-reference between tables.

Relational Database Characteristics

Data in the relational database must be represented in tables, with values in columns within rows.

Data within a column must be accessible by specifying the table name, the column name, and the value

of the primarykeyof the row.

The DBMS must support missing and inapplicable information in a systematic way, distinct from regular

values andindependentof data type.

The DBMS must support an active on-line catalogue.

The DBMS must support at least one language that can be used independently and from within programs,

and supports data definition operations, data manipulation, constraints and transactionmanagement.

Views must be updatable by the system

The DBMS must support insert, update, and delete operations on sets.

https://en.wikipedia.org/wiki/Record_(computer_science)
https://en.wikipedia.org/wiki/Tuple
https://beginnersbook.com/2015/04/primary-key-in-dbms/
https://beginnersbook.com/2015/04/super-key-in-dbms/
https://beginnersbook.com/2015/04/candidate-key-in-dbms/
https://beginnersbook.com/2015/04/alternate-key-in-dbms/
https://beginnersbook.com/2015/04/composite-key-in-dbms/
https://beginnersbook.com/2015/04/foreign-key-in-dbms/

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 26

Figure: Relational DBMS (RDBMS)

The DBMSmust supportphysical and logical dataindependence.

Integrityconstraintsmustbestoredwithinthecatalogue,separatefromtheapplication.

The DBMS must support distribution independence.

Theexistingapplicationshouldrunwhentheexistingdataisredistributedorwhenthe DBMS is redistributed.

If the DBMS provides a low level interface (row at a time), that interface cannot bypass the integrity

constraints.

CODD’S RULE

Explain Codd’s rule in detail.

Dr Edgar F. Codd did some extensive research in Relational Model of database systems and came up with

twelve rules of his own which according to him, a database must obey in order to be a true relational database.

These rules can be applied on a database system that is capable of managing is stored data using only its relational

capabilities. This is a foundation rule, which provides a base to implyother rules on it.

Rule Zero

This rule states that for a system to qualify as an RDBMS, it must be able to manage database entirely

through the relational capabilities.

Rule 1: Information Rule

This rule states that all information (data), which is stored in the database, must be a value of some table cell.

Everything in a database must be stored in table formats. This informationcanbe user data or meta-data.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 27

Rule 2: Guaranteed Access Rule

This rule states that every single data element (value) is guaranteed to be accessible logically with

combination of table-name, primary-key(row value) and attribute-name (column value).

No other means, such as pointers, can be used to access data.

Rule 3: Systematic Treatment of NULL Values

Thisrulestatesthe NULLvaluesinthedatabasemustbegivenasystematictreatment.

As a NULL may have several meanings, i.e. NULL can be interpreted as one the following: data is

missing, data is not known, data is not applicable etc.

Rule 4: Active Online Catalog

This rule states that the structure description of whole database must be stored in an online catalog, i.e. data

dictionary, which can be accessedbytheauthorizedusers.

Users canuse the same query language to access the catalog which they use to access the database itself.

Rule 5: Comprehensive Data Sub-language Rule

This rule states that a database must have a support for a language which has linear syntax which is capable

of data definition, data manipulation and transaction management operations.

Databasecanbeaccessedbymeans of thislanguageonly, eitherdirectlyor bymeansof some application.

If the database can be accessed or manipulated in some way without any help of this language, it is then a

violation.

Rule 6: View Updating Rule

This rule states that all views of database, which can theoretically be updated, must also be updatable by the

system.

Rule 7: High-level Insert, Update and Delete Rule

This rule states the database must employ support high-level insertion, updation and deletion.

Thismustnotbelimitedtoasinglerowthatis,itmustalsosupportunion,intersectionand minus operations to yield

sets of data records.

Rule 8: Physical Data Independence

This rule states that the application should not have any concern about how the data is physically stored.

Also, anychangeinitsphysicalstructuremustnothaveanyimpactonapplication.

Rule 9: Logical Data Independence

 This rule states that the logical data must be independent of its user‘s view(application). Any change in logical

data must not imply any change in the application using it.

For example, if two tables are merged or one is split into two different tables, there should be no impact the change

on user application. This is one of the most difficult rules to apply.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 28

Rule 10: Integrity Independence

This rule states that the database must be independent of the application usingit.

All its integrity constraints can be independently modified without the need of any change in the application.

Thisrulemakesdatabaseindependent of thefront-endapplicationand itsinterface.

Relational Query Languages

Aquery language isalanguageinwhichauserrequestsinformationfromthedatabase.

These languages are usually on a level higher than that of a standard programming language.

Query languages can be categorized as eitherprocedural or nonprocedural.

 Ina procedural language, theuserinstructsthesystem to performasequenceof operations on the

database to compute the desired result.

 In a nonprocedural language, the user describes the desired information without giving a

specific procedure for obtaining that information.

 There are a number of ―pure‖ query languages:

 The relational algebra is procedural, whereas the tuple relational calculus and domain relational

calculus are nonprocedural.

Relational Algebra

Explain the concept of relational algebra in detail. (Or) Explain select, project and Cartesian

product operationsinrelationalalgebrawithanexample. (Nov/Dec 2016, April/May 2018)

The relational algebra is a theoretical procedural query language which takes an instance of relations and does

operations on one or morerelations to describe another relation without altering the originalrelation(s).

The relational algebra defines a set of operations on relations, paralleling the usual algebraic operations

such as addition, subtraction or multiplication, which operate on numbers.

Justasalgebraicoperationsonnumbers,therelationalalgebraconsistsofasetofoperations thattake one or two

relations as inputandproduceanewrelation as theirresult.

Operations of Relational Algebra

Unary Operations

 Select [ρ]

 Project [∏]

 Rename [ϭ]

Binary Operations

 Union [U]

 Set Difference [-]

 Cartesian Product [X]

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 29

Unary Operations

Select Operation (σ)

It selects tuples that satisfy the given predicate from a relation.

Notation − σp(r)

 Whereσ stands for selection predicate andr stands for relation.p is prepositional logic formula which may

use connectors like and, or and not.

 These terms may use relational operators like − =, ≠, ≥, < , >, ≤.

Example
σsubject = "database"(Books)

Output

Selects tuples from books where subject is 'database'.

σsubject = "database" and price = "450"(Books)

Output

Selects tuples from bookswhere subject is 'database' and 'price' is 450.

σsubject = "database" and price = "450" or year > "2010"(Books)

Output

Selects tuples from books where subject is 'database' and 'price' is 450 or those books published after 2010.

Project Operation (∏)

It projects column(s) that satisfy a given predicate.

Notation − ∏A1, A2, An (r)

Where A1, A2, An are attribute names of relation r.

Duplicate rows are automatically eliminated, as relation is a set.

Example
∏subject, author (Books)

Selectsandprojectscolumnsnamedas subjectandauthorfromtherelationBooks.

Union Operation (∪)

 It performs binary union between two given relations and is defined as −

r ∪ s = { t | t ∈ r or t ∈ s}
Notation − r Us

Wherer ands areeitherdatabaserelationsorrelationresultset(temporaryrelation).

 Foraunionoperationtobevalid, thefollowingconditionsmusthold−

 r and s must have the same number of attributes.

 Attribute domains must be compatible.

 Duplicate tuples are automatically eliminated.

∏ author (Books) ∪ ∏ author (Articles)

Output

Projectsthenamesof theauthorswhohaveeitherwrittenabookoranarticle orboth.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 30

Binary Operations

Set Difference (−)

The resultof set difference operation is tuples, which are present in one relation but are not in the secondrelation.

Notation − r − s

It finds all the tuples that are present in r but not in s.

∏ author (Books) − ∏ author (Articles)

Output

Providesthenameofauthorswhohavewrittenbooksbutnot articles.

Cartesian Product (Χ)

It combines information of twodifferentrelations into one.

Notation − r Χ s

 where r and s are relations and their output will be defined as − r Χ s = { q t |q ∈

r and t ∈ s}

σauthor ='tutorialspoint'(Books Χ Articles)

Output

Yieldsarelation, whichshowsallthebooksandarticleswrittenbytutorialspoint.

Rename Operation (ρ)

The results of relational algebra are alsorelations but without any name.

 The rename operation allows us to rename the output relation. 'rename' operation is denoted with small

Greek letter rho ρ.

Notation − ρ x (E)

 Where the result of expression E is saved with name of x. Additional

operations are−

Set Intersection

Assignment

Naturaljoin

Relational Calculus

In contrast to Relational Algebra, Relational Calculus is a non-procedural query language, that is, it tells what to

dobut never explains how to do it.

 Relational calculus exists in two forms −

 Tuple Relational Calculus(TRC)

 Domain Relational Calculus (DRC)

Tuple Relational Calculus (TRC)

Filtering variable ranges over tuples

Notation − {T |Condition}

Returns all tuples T that satisfies a condition.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 31

Example

{ T.name | Author(T) AND T.article = 'database' }

Output

Returnstuples with'name' from Author whohaswrittenarticle on'database'.

 TRC can be quantified. We can use Existential(∃) and Universal Quantifiers(∀).

Example

{ R| ∃ T ∈ Authors(T.article='database' AND R.name=T.name)}

Output

The above querywill yield the sameresult as the previous one.

Domain Relational Calculus (DRC)

InDRC,thefilteringvariableusesthedomainofattributesinsteadofentiretuplevalues (as done in TRC,

mentioned above).

Notation − {a1, a2, a3, ..., an |P (a1, a2, a3, ... ,an)}

Wherea1, a2 areattributesand P standsforformulaebuiltbyinnerattributes.

Example

{< article, page, subject > | ∈ TutorialsPoint ∧ subject = 'database'}

Output

Yields Article, Page, and Subject from the relation TutorialsPoint, where subject is database.

Just like TRC, DRC can also be written using existential and universal quantifiers. DRC also involves

relationaloperators.

The expression power of Tuple Relation Calculus and Domain Relation Calculus is equivalent to

Relational Algebra.

SQL Fundamentals

What is SQL? (Or) Explain detail about the fundamentals of SQL.

 SQL stands for Structured Query Language.

 SQL is a standard language for accessing andmanipulating databases.

 The tasks related to relational data management— creating tables, querying the database for information,

modifyingthedatainthedatabase, deletingthem,granting accesstousers, and so on.

(Or)

SQL stands for Structured Query Language.

It is a programming language which stores, manipulates and retrieves the stored data in RDBMS.

SQL syntax is not case sensitive.

SQL is standardized by both ANSI and ISO.

It is a standard language for accessing and manipulating databases.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 32

Characteristics of SQL

SQL is extremelyflexible.

SQL uses a free form syntax that gives the ability to user to structure the SQL statements in a best suitedway.

It is a high level language.

It receives natural extensions to its functional capabilities.

It can execute queries against the database.

Advantages of SQL

SQL provides a greater degree of abstraction than procedural language.

It is coded without embeddeddata-navigational instructions.

It enables the end users to deal with a number of database management systems where it is available.

It retrieves quicklyandefficientlyhuge amount of recordsfrom adatabase.

No coding required while using standard SQL.

Roles of SQL

SQL retrievesdata from the database. It is an interactive query language.

It can be used along with programming language to access data from database. It is a database

programming language.

It can be used to monitor and control data access by various users. It is a database administration

language.

It can be used as an Internet data access language.

SQL Datatypes

The SQL standard supports a variety of built-in domain types, including:

char(n): A fixed-length character string with user-specified length n. The full form,

character can be used instead.

varchar(n): A variable-length character string with user-specified maximum length n. The full form,

character varying, is equivalent.

int: An integer (a finite subset of the integers that is machine dependent). The full form,

integer, is equivalent.

smallint:Asmallinteger(amachine-dependentsubsetoftheintegerdomaintype).

numeric(p,d):

 A fixed-point number with user-specified precision.

 Thenumberconsists of p digits(plusasign), and d of the p digitsare to therightof the decimalpoint.

 Thus, numeric(3,1) allows 44.5 to be stored exactly, but neither 444.5 or 0.32 can be stored exactly in a

field of this type.

real, double precision: Floating-point and double precision floating-point numbers with machine-

dependent precision.

float(n): Afloating-pointnumber, withprecisionof at least ndigits.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 33

date:acalenderdatecontaininga(four-digit)year,month,anddayofthemonth.

time:

 The time of day, in hours, minutes and seconds.

 A variant, time(p), can be used to specify the number of fractional digits for seconds (the default being

0).

 It is also possible to store time zoneinformation along with the time.

timestamp: A combination of date and time. A variant, timestamp(p), can be usedto specify the

number of fractionaldigitsfor seconds(thedefaultherebeing 6).

Date and time values can be specified like this:

date ‗2001-01-24‘

time ‘09:30:00‘

timestamp ‗2001-04-25 10:29:01.45‘

Datesmustbespecifiedintheformatyearfollowedbymonthfollowedbyday, asshown.

SQL Languages

State and explain the command DDL, DML, DCL with suitable example. (Nov/Dec 2017)

SQL Command Types

 SQLcommands can bedivided into two mainsub-languages.

Data Definition Language (DDL)

 It containsthe commandsused to create and destroy databases and database objects.

Data Manipulation Language (DML)

 After the database structure is defined with DDL, database administrators and users can use the DML

commands.

 It is used to insert, retrieve and modify the data contained within it.

Data Control Language (DCL)

 It is used to control the access privilege to the database.

 DCL providestwo commands such as grant and revoke.

Transaction Control Language (TCL)

 It is used to control and manage transactions to maintain the integrity of data within SQL statements.

 TCL provides command such as commit, rollback, etc.

View Definition: The SQLDDLincludescommands fordefiningviews.

DDL Commands

The Data Definition Language is used to create and destroy databases and database objects.

These commands are primarily used by database administrators during the setup and removal phases of a

database project.

The four basic DDL commands are,

Create Command (Database)

It allowsyoutocreate andmanagemanyindependent databases.

Syntax

Create database <database name>

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Example

Page | 34

Create database employee

Create Command (Table)

It is used to create a table.

Syntax

create table <table name> (columnname1 datatype(size), columnname2 datatype(size)…);

Example

SQL>create table employee (ename varchar(10), eid number(5), address varchar2(10), salary

number(5), designation varchar2(10));

Use Command

It allowsyoutospecifythedatabaseyouwanttoworkwithwithinyourDBMS.

Syntax

Use <database name>

Example

Use Employee

Alter Command

It isusedtoadd anew columnormodifyexistingcolumndefinitions.

Syntax

alter table <tablename> add (new columnname1 datatype(size), new columnname2 datatype(size)…);

alter table <table name> modify (column definition);

Example

SQL>alter table employeemodify(eidnumber(7));

SQL>alter table employee add (age number(2));

Drop Command

It is used to delete a table.

Syntax

drop table <tablename>;

Example

SQL>drop table employee;

Notes: This command will delete the contents as well as structure.

Truncate Command

It is used to delete the records but retain the structure.

Syntax

truncate table <tablename>;

Example

SQL>truncate table employee;

To view the table structure

Syntax

desc <tablename>;

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Example

Page | 35

SQL>desc employee;

DML Commands

It is usedto retrieve, insert andmodifydatabase information.

These commands are used by all database users during the routine operation of the database.

Insert Command

It is used to insert a new record in the database.

Syntax

insert into <tablename> values (a list of data values);

Example

SQL>create table employee (ename varchar2(10), eid number (5),

salary number(5));

SQL>insert into employee values(‗ABC‘,50,1000); Select

Command

The SELECTcommandisthemost commonlyused commandin SQL.

It allows database users to retrieve the specific information they desire from an operational database.

Syntax

Select * from <table name>

Example

Select * from employee

Update Command

It is used to modify (update) the informationcontained within a table, either in bulk or individually.

Syntax

update <tablename> set field=value,…… where <condition>;

Example

SQL>update employee set eid=100 where ename = ‗ABC‘;

Delete Command

Rows can be deleted using delete command

Syntax

delete from <tablename> where <condition>;

Example

SQL>delete from employee where eid=100;

DCL Commands

It is used to control privilege in Database.

To perform any operation in the database, such as for creating tables, sequences or views we need privileges.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 36

Grant Command

It gives user access privileges to database.

Syntax

Grant Select/insert/delete/update/alter/all privileges on tablename to authenticate;

Example

Grant select, update on student to vikram;

Revoke Command

It takes back permissions from user.

Syntax

Revoke Select/insert/delete/update/alter/all privileges on tablename from authenticate;

Example

Revoke select, update on student from vikram;

TCL Commands

Used to manage transactions in database

To manage the changes made by DML statements.

Allows statements to be grouped together into logical transactions.

Commit command

Commitcommandisusedtopermanentlysaveanytransactionintodatabase.

Syntax

Commit;

Rollback Command

It restores the database to last commited state.

It is also use withsavepoint command to jump to a savepoint in a transaction.

Syntax

rollback to savepoint_name;

Example

rollback to Temp;

Savepoint Command

It is used to temporarily save a transaction so that you can rollback to that point whenever necessary.

Syntax

Savepoint savepoint_name;

Example

Savepoint Temp

Some of the Most Important SQL Commands

 SELECT - extracts data from a database

 UPDATE - updates data in a database

 DELETE - deletes data from a database

 INSERT INTO - inserts new data into a database

 CREATE DATABASE - creates a new database

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 37

 ALTER DATABASE - modifies a database

 CREATE TABLE - creates a new table

 ALTER TABLE - modifies a table

 DROP TABLE - deletes a table

 CREATE INDEX - creates an index (search key)

 DROP INDEX - deletes an index

Advanced SQL Features

Write short notes on advanced SQL features.

Thestructure of anSQL expressionconsists of threeclauses:select,fromandwhere

 The select clause corresponds to the projection operation of the relational algebra. It is used to list the

attributes desired in the result of a query.

 The from clause corresponds to the Cartesian product operation of the relational algebra. It lists the

relationstobescannedintheevaluationoftheexpression.

 The where clause corresponds to the selection predicate of the relational algebra. It consists of a

predicateinvolvingattributesoftherelationsthatappearinthefrom clause.

 ASQLhastheform,

select A1,A2,…..An

from r1,r2, ….. rm

where p

Ai-anattribute ri -

relation

p - predicate

 Thequeryisequivalenttotherelationalalgebraexpression. A1,A2,….. An

(p (r1 r2 ……. rm))

If the where clause is omitted, the predicate p is true.

Tuple Variables

Tuple variables aredefinedinthefromclauseviatheuseofthe as clause.

Forexample,findthecustomernamesandtheirloannumbersforallcustomershavinga loan at some branch in

the banking database.

SQL>select B.customer_name,B.loan_no,L.amountfrom borrowerasB,loanas Lwhere

L. loan_no = B. loan_no;

String Operations

SQL includes a string matching operator forcomparisons on character strings. Patterns are described using 2 special

characters.

 Percent (%): The % character, matches any substring.

 Underscore (-): The-character matches any character.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 38

Example:

Findthenamesofcustomerswherethe1st2charactersare‗Ba‘.

SQL>select customer_name from customer where customer_name like ‗Ba%‘; Find the names of

customer where the 2nd character is ‗n‘ or ‗a‘.

SQL>select customer_name from customer where customer_name like ‗_n%‘ or ‗_a%‘; Patternsarecase

sensitive,i.e.,uppercasecharactersdonotmatchlowercasecharacters,andvice versa.

SQL supports a variety of string operations such as

 Concatenation using ‗| |‘ or strcat ()

 Converting the string into upper or lower case upper or lower ()

 Findstringlength(strlen()),extractingsubstring (substr ()),

etc.

Order by Clause

Theorderbyclausecausesthe tuplesintheresultof aquerytoappearinsortedorder.

SQL>select *

from employee

order by salary;

SQL>select *

from employee

order by salary desc, eid asc;

Aggregate Functions

Explain the aggregate functions in SQL with an example. (April/May 2018)

Aggregate functions are functions that take a collection of values as input and return a single value asoutput.

SQLoffers5builtinaggregatefuntions: avg

- average value

min - minimum value

max - maximum value

sum - sum of values

count - number ofvalues.

Examples

1. Find the average account balance at the perryridge branch:

SQL>select avg (balance) from account where

branch-name = ―Perryridge‖;

2. Find the number of tuplesin the customer relation

SQL>select count (*)from customer;

Aggregate functions with group by clause

 Group by clause is used to grouptherowsbased on certain criteria. Group by is used in conjunction with

aggregatefunctionslike sum, avg, min, max, count, etc.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 39

Example: Find the average account balance at each branch.

SQL>select branch_name, avg (balance) from account group by branch_name;

Aggregate functions with having clause

 Findthenameofallbrancheswheretheaverageaccountbalanceismorethan$2,000. SQL>select branch_name,

avg (balance) from account group by branch_namehaving avg (balance) > 2000;

Null Values

 SQL allows the use of null values to indicate absence of information

about the value of an attribute.

 Null signifies an unknown value or that avalue does not exist.

 The predicate is null can be used to check for null values.

Example:

 Find all loan numbers which appear in the loan relation with null values for amount. SQL>select

loan_no from loan where amount is null;

 Theresultofanyarithmeticexpression isnullifanyoftheinputvaluesisnull.

Example:

5 + null returnsnull.

Consider the unknown (null) value used in boolean expressions as,

 OR- (unknown or true) =true,(unknownor false) =unknown(unknownor unknown) = unknown.

 AND - (true andunknown) = unknown,(false and unknown) =false, (unknown and unknown) =

unknown.

 NOT -(notunknown) =unknown. For

example, find total of all loan amounts.

SQL>select sum (amount) from loan;

Above statement ignores all null amounts. The result is null if there is no non- null amount.

 All aggregate operations except count (*) ignore tuples with null values on the aggregated attributes.

Nested Subqueries

 SQL provides a mechanism for the nesting of subqueries.

 Asubquery is aselect-from-whereexpressionthat is nestedwithinanotherquery.

 A common use of subquery is to perform tests for set membership, set comparisons and set cardinality.

Set Membership

 SQL uses in and not in constructs to set membership tests.

In

 The in connective tests for set membership, where the set is a collection of values produced by a selectclause.

Example: Find all customers who have both an account and a loan at the bank.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 40

Not In

SQL>select distinct customer-name from depositor

where customer-name in (select customer-name from borrower);

 The not in connective tests for the absence of set membership.

Example: Findallcustomerswhohavealoanatthebankbutdonothaveanaccountatthebank.

SQL>select distinct customer-name from borrower

where customer-name not in (select customer name from depositor);

Set Comparison

 Nestedqueriesareusedtocomparesets.SQL usesvariouscomparisonoperatorssuchas<,

>, < =, > =, < >, any, all, and, some, etc. to compare sets.

Example:

Find the names of all branches that have assets greater than those of atleast one branch located in

―Chennai‖.

SQL>select distinct T.branchnamefrom branchas T, branch

as S where T. assets>S. assets

and S. branch-city = ―Chennai‖; Same

query using > some clause.

SQL>select branch-namefrombranchwhere assets>some (select assetsfrom branch

where branch-city = ―Chennai‖);

 SQL also allows < some, < = some, > = some, = some, and < > some comparisons, = some is

identical to in, and < > some is identical to not in. The keyword any is synonym to some inSQL.

 SQLalsoallows<all,>all,<=all,>=all,=all,and<>all comparisons<>all isidentical to not in.

Example:

Find the names all branches that have an-assets value greater than that of each branch in

―Chennai‖.

SQL>select branch-name from branch where assets > all (select assets from branch where

branch-city = ―Chennai‖);

Test for Empty Relations

 SQLincludesafeaturefortestingwhetherasubqueryhasanytuples in its result.

 The exists constructreturnsthevaluetrueif theargumentsubquery is non-empty.

Example:

Find all customers who have both an account and a loan at the bank.

SQL>select customer-name from borrower where exists (select * from depositor where

depositor.customer-name = borrower.customer-name);

 Similartoexists wecanusenot exists also.Findallcustomerswhohaveanaccountatall branches located in

―Chennai‖.

SQL>select distinct S. customer-name from depositor as S

where not exists ((select branch-name from branch

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 41

where branch-city = ―Chennai‖)except

(select R. branch_name from depositor as T, account as R

where T. account_no = R. account_no and

S. customer-name = T. customer-name));

Test for absence of duplicate tuples

 The unique constructtestswhetherasubqueryhasanyduplicatetuplesinitsresult.

Example:

Find all customers who have at most one account at the ―Chennai branch‖.

SQL>select T. customer_name from depositor as T

where unique (select R.customer-name

from account, depositor as R

whereT.customer_name=R.customer-name and R.

account-no=account.account_no and

account.branch_name=―Chennai‖);

 not unique constructisusedfortesttheexistenceofduplicatetuplesinthesamemanner.

Complex Queries

 Complex queries are often hard or impossible to write as a single SQL block.

 TherearetwowaysforcomposingmultipleSQLblockstoexpressacomplexquery.

 Derived Relations

 With Clause

Derived Relations

 SQL allows a subquery expression to be used in the from clause.

 If we use such an expression, then we must give the result relation a name, and we can rename the attributes.

For renaming as clause is used.

 Forexample,findtheaverageaccountbalanceofthosebrancheswheretheaverageaccount balance is greater than $

2000.

SQL>select branch-name, avg-balance from (select branch-name,

avg (balance)fromaccount group by branch-name) as

branch-avg (branch-name, avg-balance) where avg-balance

>2000;

 Here subquery result is named branch-avg with the attributes branch-name and avg- balance.

With Clause

 Thewithclauseprovidesawayof definingatemporaryview, whosedefinitionavailable only to the queryin

which the with clause occurs.

 Considerthefollowingquery, whichselects accounts with the maximum balance.

 If there are manyaccounts with the same maximum balance, all of them areselected. with max_balance

(value)as

select max (balance)

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 42

Views

from account

select account_no from account, max_balance where

account.balance = max_balance.value;

Write short notes on views.

 A view is an object that gives the user a logical view of data from an

underlying table or tables (relation or relations).

 It is not desirable for all users to see the entire logical model.

 Security considerations mayrequirethatcertain data be hiddenfrom users.

 Anyrelationthat is notpart of thelogicalmodel, butis madevisible to auser as a virtual relation, is called as

view.

 Views maybe created for the following reasons:

 To provide DataSecurity

 Query Simplicity

 StructuralSimplicity(becauseviewcontainsonlylimitednumberofcolumnsand rows).

(1) Creation of Views

Syntax

create view view_name as < query expression >;

Example:

Create aviewcustomer_detailsfromcustomerrelation withcustomername and customer-id. create view customer_details

as

select customer_name, customer_id from customer;

(2) Assigning Names to Columns

 We can assign names for thevarious columnsin the view.

 This may be entirely different from what has been used in the main relation. For example,

SQL>create view customer_details (cust_name,customer_no)

as select customer_name, customer_id from customer;

(3) Selecting data from a view

SQL>select * from customer_details;

(4) Updation of a view

 Views can also be used for data manipulation i.e., the user can perform insert, update, and the delete operations

on the view.

 The views on which data manipulation can be done are called Updatable views, the views

that do not allow data manipulation are called Readonly views.

 Whenyougiveaviewnameintheupdate,insert,ordeletestatement,themodificationto the data will bepassed

to theunderlying(main) relation.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 43

For the view to be updatable, it should meet following criteria:

 The view must be created on a single table.

 Primarykeycolumn of the table should beincluded inthe view.

 Aggregate functions cannot be used in the select statement.

 The select statement used for creating a view should not include distinct, group by or having clause.

 Select statement used for creatinga viewshould notincludesubqueries.

 It must not use constant, strings or value expression like total/6.

(5) Destroying a View

A view can be dropped by using the drop view command.

Syntax

drop view view_name;

Example

SQL>drop view customer_details;

Joins

Explain in detail about join operation in SQL.

 Ajoinisaqueryusingwhich we canquerydatamore thanonetable.

 Joins are the basic of multi-table query processing in SQL.

 Ajoinisaquerythatextractscorrespondingrowsfromtwoormoretables, viewsor snapshots.

 If the two tables used in the join have the same column name, then the column names should be prefixed

with table name followed by a period.

 SELECT statement of a multi-table query must contain a filter condition that specify the column match. The

where clause is used to specify the selection condition and the join condition. In the where clause the logical

operators can also be used.

Types of Joins

Joins are classified into four types namely:

 Inner Join

 Outer Join

 Natural Join

Inner Join

 Inner joinreturns the matchingrows from the tables that arebeingjoined.

 Consider followingtwo relations:

 Student(sname, place)

 Student_marks(sname, dept, mark)

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 44

Student sname place

 Prajan Chennai

Anand Kolkata

Kumar Delhi

Ravi Mumbai

Student_marks sname dept mark

 Prajan CS 700

Anand IT 650

Vasu CS 680

Ravi IT 600

Example 1

SQL>select Student.sname, Student_marks, mark from Student inner join Student_marks

on Student.sname=Student_marks.sname; The output of

the above query is,

sname mark

Prajan 700

Anand 650

Ravi 600

Example 2

SQL>select * from Student inner join Student_marks on

Student.sname=Student_marks.sname; The result

of the above query is,

sname place sname dept mark

Prajan Chennai Prajan CSE 700

Anand Kolkata Anand IT 650

Ravi Mumbai Ravi IT 600

 For example 2 the result consists of the attributes of the left-hand-side relation followed by the attributes of the

right-hand-side relation.

 Thus, the sname attribute appears twice in result, first is from student table and second is from student_marks

table.

Outer Join

 Whentablesarejoinedusinginnerjoin, rowswhichcontainmatchingvaluesinthejoin predicate are returned.

 Sometimesyoumaywantbothmatchingandnon-matchingrowsreturnedforthetables thatarebeingjoined.

Thiskind ofoperation isknown as an outerjoin.

 An outer join is an extended form of the inner join.

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 45

 In this, the rows in onetable having nomatchingrowsin the other tablewill alsoappearin the result table with

nulls.

Types of Outer Join

The Outer Join can be any one of the following:

 Left Outer

 Right Outer

1. Left Outer join

 The left outer join returns matching rows from the tables being joined and also non- matchingrowsfromthe

lefttableintheresultandplacesnullvaluesintheattributesthat come from the right table.

Example 3

SQL> select Student.sname, Student_marks.mark from Student left outer join

Student_marks on Student.sname = Student_marks.sname; The result of

above query is

sname mark

Prajan 700

Anand 650

Ravi 600

Kumar null

Left outer join operation is computed as follows:

 First compute the result of inner join as before.

 Then, for every tuple ‗t‘ in the left hand side relation, Student that does not match any tuple in the right-hand –side

relation Student_marks in the inner join , add a tuple ‗r‘ to the result of the join:

 Theattributes of tuple‗r‘ thatarederivedfromtheleft-hand-siderelationarefilledwith from tuple ‗t‘, remaining

attributes of ‗r‘ are filled with null values as shown in example 3.

2. Right outer join

 The right outer join operation returns matching rows from the tables being joined, and also non-matchingrowsfrom

therighttableinthetableintheresultandplacesnullvaluesin the attributes that comes from the left table.

Example 4

SQL>select Student.sname,Student.place,Student_marks.mark from Student right outer join

Student_marks on Student.sname = Student_marks.sname;

The result of above query is,

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 46

sname place mark

Prajan Chennai 700

Anand Kolkota 650

Ravi Mumbai 600

Vasu null 680

Embedded SQL

Explain in detail about Embedded SQL.

 Embedded SQLis a method of combining thecomputingpower of aprogramming language and the

database manipulation capabilities of SQL.

 Alanguageinwhich SQLqueriesareembeddedis referred to asa host language, andthe SQL structures

permitted in the host languageconstitute embedded SQL.

 Programswritten in thehostlanguage can usetheembedded SQLsyntax to accessand update data stored in a

database.

 An embedded SQL program must be processed by a special preprocessor (SQL Preprocessor) prior

tocompilation.

 The preprocessor replaces embedded SQL requests with host-language declarations and procedure calls that

allow runtimeexecution of the databaseaccesses.

 Theoutputfromthepreprocessor is thencompiled by thehost languagecompiler.

 This allows programmers to embed SQL statements in programs written in any number of languages such as

C/C++, Java, COBOL and FORTRAN.

 ToidentifyembeddedSQL requeststothe preprocessor, we use theEXECSQL statement;it has the form:

EXEC SQL <embedded SQL statement >;

 Theexactsyntax forembedded SQL requestsdepends on the language in which SQLis embedded.

Embedded SQL in C Program Examples

Example 1

/* Variable Declaration in Language C */

 VariablesinsideDECLARE aresharedandcanappear (whileprefixedbyacolon)inSQL statements

 SQLCODE is used to communicate errors/exceptions between the database and the program

int loop;

EXEC SQL BEGIN DECLARE SECTION;

varchar dname[16], fname[16], …; char

ssn[10], bdate[11], …;

int dno, dnumber, SQLCODE, …; EXEC

SQLENDDECLARESECTION;

CS8492 – Database Management Systems (Regulation 2017)

II Year / IV Semester - CSE

Page | 47

Example 2

/* Conditional and Looping Statements in Language C */

loop = 1; while

(loop) {

prompt(―EnterSSN:―,ssn);

EXEC SQL

select FNAME, LNAME, ADDRESS, SALARYinto:fname,:lname,:address,

:salaryfromEMPLOYEEwhereSSN==:ssn; if

(SQLCODE == 0) printf(fname, …);

else printf(―SSN does not exist: ―, ssn);

prompt(―MoreSSN?(1=yes,0=no):―,loop);

END-EXEC

}

Dynamic SQL

 Dynamic SQL is a programming methodology for generating and running SQL statements at runtime.

 It is useful when writing general-purpose and flexible programs like dynamic query systems, when writing

programs that must run database definition language (DDL) statements, or when you do not know at compile

time the full text of a SQL statement or the number or data types of its input and outputvariables.

Difference between Static SQL and Dynamic SQL

S.

No.
Static SQL Dynamic SQL

1. InstaticSQL howdatabasewillbe accessed is

predeterminedintheembeddedSQL

statement.

In dynamic SQL, how database will be accessed

isdeterminedatruntime.

2. It is less flexible and more efficient. It is more flexible and less efficient.

3. SQL statements are compiled at compile

time.

SQLstatementsarecompiledatruntime.

4. Parsing, validation, optimization, and generation

of application plan aredone at

compile time.

Parsing, validation, optimization, and generation

of application plan aredone at

run time.

5. It is generally used for situations where data

is distributed uniformly.

It is generally used for situations where

data is distributed non-uniformly.

6. EXECUTEIMMEDIATE,EXECUTEand

PREPARE statements are not used.

EXECUTE IMMEDIATE, EXECUTE and

PREPARE statements are used.

Page | 48

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COMMON FOR: DEPARTMENT OF INFORMATION TECHNOLOGY

CS8493- Operating System

 R – 2017

LECTURE NOTES

CS8493- Operating System

UNIT-I

1.1 introduction

An operating system acts as an intermediary between the user of a computer and the computer

hardware. The purpose of an operating system is to provide an environment in which a user can execute

programs in a convenient and efficient manner.

An operating system is a program that manages a computer’s hardware. It also provides a basis for

application programs and acts as an intermediary between the computer user and the computer hardware. An

amazing aspect of operating systems is how they vary in accomplishing these tasks. Mainframe operating

systems are designed primarily to optimize utilization of hardware. Personal computer (PC) operating systems

support complex games, business applications, and everything in between. Operating systems for mobile

computers provide an environment in which a user can easily interface with the computer to execute

programs. Thus, some operating systems are designed to be convenient, others to be efficient, and others to

be some combination of the two.

1.2 Computer system overview

A computer system can be divided roughly into four components: the hardware, the operating

system, the application programs, and the users (Figure 1.1). The hardware—the central processing unit

(CPU), the memory, and the input/output (I/O) devices—provides the basic computing resources for the

system. The application programs—such as word processors, spreadsheets, compilers, and Web browsers—

define the ways in which these resources are used to solve users’ computing problems. The operating system

controls the hardware and coordinates its use among the various application programs for the various users.

1.1.1 User View

The user’s view of the computer varies according to the interface being used. Most computer users sit

in front of a PC, consisting of a monitor, keyboard, mouse, and system unit. Such a system is designed for one

user to monopolize its resources. The goal is to maximize the work (or play) that the user is performing. In

this case, the operating system is designed mostly for ease of use, with some attention paid to performance

and none paid to resource utilization—how various hardware and software resources are shared.

Performance is, of course, important to the user; but such systems are optimized for the single-user experience

rather than the requirements of multiple users.

1.1.2 System View

From the computer’s point of view, the operating system is the program most intimately involved

with the hardware. In this context, we can view an operating system as a resource allocator. A computer

system has many resources that may be required to solve a problem: CPU time, memory space, file-storage

space, I/O devices, and so on. The operating system acts as the manager of these resources. Facing numerous

and possibly conflicting requests for resources, the operating system must decide how to allocate them to

specific programs and users so that it can operate the computer system efficiently and fairly. As we have seen,

resource allocation is especially important where many users access the same mainframe or minicomputer.

1.3 Basic elements

A modern general-purpose computer system consists of one or more CPUs and a number of device

controllers connected through a common bus that provides access to shared memory (Figure 1.2). Each device

controller is in charge of a specific type of device (for example, disk drives, audio devices, or video displays).

The CPU and the device controllers can execute in parallel, competing for memory cycles. To ensure orderly

access to the shared memory, a memory controller synchronizes access to the memory.

For a computer to start running—for instance, when it is powered up or rebooted—it needs to have an

initial program to run. This initial program, or bootstrap program, tends to be simple. Typically, it is stored

within the computer hardware in read-only memory (ROM) or electrically erasable programmable read-only

memory (EEPROM), known by the general term firmware. It initializes all aspects of the system, from CPU

registers to device controllers to memory contents. The bootstrap program must know how to load the

operating system and how to start executing that system. To accomplish this goal, the bootstrap program must

locate the operating-system kernel and load it into memory. Once the kernel is loaded and executing, it can

start providing services to the system and its users. Some services are provided outside of the kernel, by

system programs that are loaded into memory at boot time to become system processes, or system daemons

that run the entire time the kernel is running.

1.4 Instruction Execution and Interrupts

The occurrence of an event is usually signaled by an interrupt from either the hardware or the

software. Hardware may trigger an interrupt at any time by sending a signal to the CPU, usually by way of the

.

http://www.studentsfocus.com/

system bus. Software may trigger an interrupt by executing a special operation called a system call (also

called a monitor call).

When the CPU is interrupted, it stops what it is doing and immediately transfers execution to a fixed

location. The fixed location usually contains the starting address where the service routine for the interrupt is

located. The interrupt service routine executes; on completion, the CPU resumes the

Interrupted computation. A timeline of this operation is shown in Figure 1.3.

Interrupts are an important part of computer architecture. Each computer design has its own

interrupt mechanism, but several functions are common. The interrupt must transfer control to the appropriate

interrupt service routine. The straightforward method for handling this transfer would be to invoke a generic

routine to examine the interrupt information. The routine, in turn, would call the interrupt-specific handler.

However, interrupts must be handled quickly. Since only a predefined number of interrupts is possible, a table

of pointers to interrupt routines can be used instead to provide the necessary speed. The interrupt routine is

called indirectly through the table, with no intermediate routine needed. Generally, the table of pointers is

stored in low memory (the first hundred or so locations). These locations hold the addresses of the interrupt

service routines for the various devices. This array, or interrupt vector, of addresses is then indexed by a

unique device number, given with the interrupt request, to provide the address of the interrupt service routine

for the interrupting device.

1.5 Memory Hierarchy

.

http://www.studentsfocus.com/

The wide variety of storage systems can be organized in a hierarchy (Figure 1.4) according to speed

and cost. The higher levels are expensive, but they are fast. As we move down the hierarchy, the cost per bit

generally decreases, whereas the access time generally increases. This trade-off is reasonable; if a given

storage system were both faster and less expensive than another—other properties being the same—then there

would be no reason to use the slower, more expensive memory. In fact, many early storage devices, including

paper tape and core memories, are relegated to museums now that magnetic tape and semiconductor

memory have become faster and cheaper. The top four levels of memory in Figure 1.4 may be constructed

using semiconductor memory.

In addition to differing in speed and cost, the various storage systems are either volatile or

nonvolatile. As mentioned earlier, volatile storage loses its contents when the power to the device is

removed. In the absence of expensive battery and generator backup systems, data must be written to

nonvolatile storage for safekeeping. In the hierarchy shown in Figure 1.4, the storage systems above the

solid-state disk are volatile, whereas those including the solid-state disk and below are nonvolatile.

Solid-state disks have several variants but in general are faster than magnetic disks and are

nonvolatile. One type of solid-state disk stores data in a large DRAM array during normal operation but also

contains a hidden magnetic hard disk and a battery for backup power. If external power is interrupted, this

solid-state disk’s controller copies the data from RAM to the magnetic disk. When external power is restored,

the controller copies the data back into RAM. Another form of solid-state disk is flash memory, which is

popular in cameras and personal digital assistants (PDAs), in robots, and increasingly for storage on

general-purpose computers. Flash memory is slower than DRAM but needs no power to retain its contents.

Another form of nonvolatile storage is NVRAM, which is DRAM with battery backup power. This memory

can be as fast as DRAM and (as long as the battery lasts) is nonvolatile.

1.6 Cache Memory

 Important principle, performed at many levels in a computer (in hardware, operatingsystem,

software)

 Information in use copied from slower to faster storage temporarily

 Faster storage (cache) checked first to determine if information is there

 If it is, information used directly from the cache (fast)

 If not, data copied to cache and used there

 Cache smaller than storage being cached

 Cache management important design problem

 Cache size and replacement policy

1.7 Direct Memory Access

Interrupt-driven I/O is fine for moving small amounts of data but can produce high overhead when

used for bulk data movement such as disk I/O. To solve this problem, direct memory access (DMA) is used.

After setting up buffers, pointers, and counters for the I/O device, the device controller transfers an entire

block of data directly to or from its own buffer storage to memory, with no intervention by the CPU. Only one

interrupt is generated per block, to tell the device driver that the operation has completed, rather than the one

interrupt per byte generated for low-speed devices. While the device controller is performing these operations,

the CPU is available to accomplish other work.

.

http://www.studentsfocus.com/

Some high-end systems use switch rather than bus architecture. On these systems, multiple

components can talk to other components concurrently, rather than competing for cycles on a shared bus. In

this case, DMA is even more effective. Figure 1.5 shows the interplay of all components of a computer

system.

1.7 Multiprocessor and Multicore Organization

1.7.1 Multiprocessor Organization

Within the past several years, multiprocessor systems (also known as parallel systems or multicore

systems) have begun to dominate the landscape of computing. Such systems have two or more processors in

close communication, sharing the computer bus and sometimes the clock, memory, and peripheral devices.

Multiprocessor systems first appeared prominently appeared in servers and have since migrated to desktop

and laptop systems. Recently, multiple processors have appeared on mobile devices such as smart phones and

tablet computers. Multiprocessor systems have three main advantages:

1. Increased throughput. By increasing the number of processors, we expect to get more work done in less

time. The speed-up ratio with N processors is not N, however; rather, it is less than N. When multiple

processors cooperate on a task, a certain amount of overhead is incurred in keeping all the parts working

correctly. This overhead, plus contention for shared resources, lowers the expected gain from additional

processors. Similarly, N programmers working closely together do not produce N times the amount of work a

single programmer would produce.

2. Economy of scale. Multiprocessor systems can cost less than equivalent multiple single-processor systems,

because they can share peripherals, mass storage, and power supplies. If several programs operate on the same

set of data, it is cheaper to store those data on one disk and to have all the processors share them than to have

many computers with local disks and many copies of the data.

3. Increased reliability. If functions can be distributed properly among several processors, then the failure of

one processor will not halt the system, only slow it down. If we have ten processors and one fails, then each

of the remaining nine processors can pick up a share of the work of the failed processor. Thus, the entire

system runs only 10 percent slower, rather than failing altogether.

The multiple-processor systems in use today are of two types. Some systems use asymmetric

multiprocessing, in which each processor is assigned a specific task.Aboss processor controls the system; the

other processors either look to the boss for instruction or have predefined tasks. This scheme defines a boss–

.

http://www.studentsfocus.com/

worker relationship. The boss processor schedules and allocates work to the worker processors. The most

common systems use symmetric multiprocessing (SMP), in which each processor performs all tasks within

the operating system. SMP means that all processors are peers; no boss–worker relationship exists between

processors. Figure 1.6 illustrates a typical SMP architecture.

Multiprocessing adds CPUs to increase computing power. If the CPU has an integrated memory

controller, then adding CPUs can also increase the amount of memory addressable in the system. Either way,

multiprocessing can cause a system to change its memory access model from uniform memory access (UMA)

to non-uniform memory access (NUMA). UMA is defined as the situation in which access to any RAM from

any CPU takes the same amount of time. With NUMA, some parts of memory may take longer to access than

other parts, creating a performance penalty. Operating systems can minimize the NUMA penalty through

resource management

1.7.2 Multicore Organization

Earlier in the history of computer design, in response to the need for more computing performance,

single-CPU systems evolved into multi-CPU systems. A more recent, similar trend in system design is to

place multiple computing cores on a single chip. Each core appears as a separate processor to the operating

system (Section 1.3.2). Whether the cores appear across CPU chips or within CPU chips, we call these

systems multicore or multiprocessor systems. Multithreaded programming provides a mechanism for more

efficient use of these multiple computing cores and improved concurrency. Consider an application with four

threads. On a system with a single computing core, concurrency merely means that the execution of the

threads will be interleaved over time (Figure 4.3), because the processing core is capable of executing only

one thread at a time. On a system with multiple cores, however, concurrency means that the threads can run in

parallel, because the system can assign a separate thread to each core (Figure 4.4).

.

http://www.studentsfocus.com/

Notice the distinction between parallelism and concurrency in this discussion. A system is parallel if

it can perform more than one task simultaneously. In contrast, a concurrent system supports more than one

task by allowing all the tasks to make progress. Thus, it is possible to have concurrency without parallelism.

Before the advent of SMP and multicore architectures, most computer systems had only a single processor.

CPU schedulers were designed to provide the illusion of parallelism by rapidly switching between processes

in the system, thereby allowing each process to make progress. Such processes were running concurrently, but

not in parallel.

As systems have grown from tens of threads to thousands of threads, CPU designers have improved

system performance by adding hardware to improve thread performance. Modern Intel CPUs frequently

support two threads per core, while the Oracle T4 CPU supports eight threads per core. This support means

that multiple threads can be loaded into the core for fast switching. Multicore computers will no doubt

continue to increase in core counts and hardware thread support.

1.8 Operating system overview-objectives and functions.

.

http://www.studentsfocus.com/

1.9 Evolution of Operating System

.

1.9.

http://www.studentsfocus.com/

1.9.2

1.9.3

.

http://www.studentsfocus.com/

 1.9.4

 1.9.5

.

http://www.studentsfocus.com/

1.10 Computer System Organization

1.10.1 Operating System Structure and Operations

.

1.10.

1.10.1.1

 1.10.1.2

http://www.studentsfocus.com/

.

 1.10.1.3

 1.10.1.4

1.10.

http://www.studentsfocus.com/

 System Calls

 Programming interface to the services provided by the OS

 Typically written in a high-level language (C or C++)

 Mostly accessed by programs via a high-level Application Program Interface (API) rather than

direct system call use

 Three most common APIs are Win32 API for Windows, POSIX API for POSIX-based systems

(including virtually all versions of UNIX, Linux, and Mac OS X), and Java API for the Java

virtual machine (JVM)

 System call sequence to copy the contents of one file to another file

1.11.1 System Call Implementation

 Typically, a number associated with each system call

 System-call interface maintains a table indexed according to these numbers

 The system call interface invokes intended system call in OS kernel and returns status of the

system call and any return values

 The caller need know nothing about how the system call is implemented

 Just needs to obey API and understand what OS will do as a result call

 Most details of OS interface hidden from programmer by API

 Managed by run-time support library (set of functions built into libraries included withcompiler)

.

http://www.studentsfocus.com/

1.11.2 System Call Parameter Passing

 Often, more information is required than simply identity of desired system call

 Exact type and amount of information vary according to OS and call

 Three general methods used to pass parameters to the OS

 Simplest: pass the parameters in registers

 In some cases, may be more parameters than registers

 Parameters stored in a block, or table, in memory, and address of block passed as a parameter

in a register

 This approach taken by Linux and Solaris

 Parameters placed, or pushed, onto the stack by the program and popped off the stack by the

operating system

 Block and stack methods do not limit the number or length of parameters being passed

Types of System Calls

 Process control

 File management

 Device management

 Information maintenance

 Communications

1.12 System Programs

 System programs provide a convenient environment for program development and

execution. The can be divided into:

 File manipulation

 Status information

 File modification

.

http://www.studentsfocus.com/

 Programming language support

 Program loading and execution

 Communications

 Application programs

 Most users’ view of the operation system is defined by system programs, not the actual systemcalls

 Provide a convenient environment for program development and execution

 Some of them are simply user interfaces to system calls; others are considerablymore

complex

 File management - Create, delete, copy, rename, print, dump, list, and generally manipulate files and

directories

 Status information

 Some ask the system for info - date, time, amount of available memory, disk space, number

of users

 Others provide detailed performance, logging, and debugging information

 Typically, these programs format and print the output to the terminal or other output devices

 Some systems implement a registry - used to store and retrieve configuration information

 File modification

 Text editors to create and modify files

 Special commands to search contents of files or perform transformations of the text

 Programming-language support - Compilers, assemblers, debuggers and interpreterssometimes

provided

 Program loading and execution- Absolute loaders, relocatable loaders, linkage editors, and overlay-

loaders, debugging systems for higher-level and machine language

 Communications - Provide the mechanism for creating virtual connections among processes, users,

and computer systems

 Allow users to send messages to one another’s screens, browse web pages, send electronic-

mail messages, log in remotely, transfer files from one machine to another

.

http://www.studentsfocus.com/

1.12 OS Generation and System Boot.

1.12.1 OS Generation

Historically operating systems have been tightly related to the computer architecture, it is

good idea to study the history of operating systems from the architecture of the computers on which

they run.

Operating systems have evolved through a number of distinct phases or generations which

corresponds roughly to the decades.

The 1940's - First Generations

The earliest electronic digital computers had no operating systems. Machines of the time were so

primitive that programs were often entered one bit at time on rows of mechanical switches (plug

boards). Programming languages were unknown (not even assembly languages). Operating systems

were unheard of .

The 1950's - Second Generation

By the early 1950's, the routine had improved somewhat with the introduction of punch cards. The

General Motors Research Laboratories implemented the first operating systems in early 1950's for

their IBM 701. The system of the 50's generally ran one job at a time. These were called single-

stream batch processing systems because programs and data were submitted in groups or batches.

The 1960's - Third Generation

The systems of the 1960's were also batch processing systems, but they were able to take better

advantage of the computer's resources by running several jobs at once. So operating systems

designers developed the concept of multiprogramming in which several jobs are in main memory at

once; a processor is switched from job to job as needed to keep several jobs advancing while keeping

the peripheral devices in use.

For example, on the system with no multiprogramming, when the current job paused to wait for other

I/O operation to complete, the CPU simply sat idle until the I/O finished. The solution for this

problem that evolved was to partition memory into several pieces, with a different job in each

partition. While one job was waiting for I/O to complete, another job could be using the CPU.

Another major feature in third-generation operating system was the technique called spooling

(simultaneous peripheral operations on line). In spooling, a high-speed device like a disk interposed

between a running program and a low-speed device involved with the program in input/output.

Instead of writing directly to a printer, for example, outputs are written to the disk. Programs can run

to completion faster, and other programs can be initiated sooner when the printer becomes available,

the outputs may be printed.

Note that spooling technique is much like thread being spun to a spool so that it may be later be

unwound as needed.

Another feature present in this generation was time-sharing technique, a variant of multiprogramming

technique, in which each user has an on-line (i.e., directly connected) terminal. Because the user is

.

http://www.studentsfocus.com/

present and interacting with the computer, the computer system must respond quickly to user

requests, otherwise user productivity could suffer. Timesharing systems were developed to

multiprogram large number of simultaneous interactive users.

Fourth Generation

With the development of LSI (Large Scale Integration) circuits, chips, operating system entered in the

system entered in the personal computer and the workstation age. Microprocessor technology evolved

to the point that it become possible to build desktop computers as powerful as the mainframes of the

1970s. Two operating systems have dominated the personal computer scene: MS-DOS, written by

Microsoft, Inc. for the IBM PC and other machines using the Intel 8088 CPU and its successors, and

UNIX, which is dominant on the large personal computers using the Motorola 6899 CPU family.

12.2 System Boot.

 Operating system must be made available to hardware so hardware can start it

 Small piece of code – bootstrap loader, locates the kernel, loads it into memory, and starts it

 Sometimes two-step process where boot block at fixed location loads bootstrap loader

 When power initialized on system, execution starts at a fixed memory location

 Firmware used to hold initial boot code

.

http://www.studentsfocus.com/

CS8493- Operating System

UNIT-II

PROCESS MANAGEMENT

Processes-Process Concept:

 An operating system executes a variety of programs:

O Batch system – ―jobs”

o Time-shared systems – ―user programs” or ―tasks”

 We will use the terms job and process almost interchangeably

 Process – is a program in execution (informal definition)

 Program is passive entity stored on disk (executable file), process is active

o Program becomes process when executable file loaded into memory

 Execution of program started via GUI, command line entry of its name, etc

 One program can be several processes

o Consider multiple users executing the same program

 In memory, a process consists of multiple parts:

o Program code, also called text section

o Current activity including
 program counter

 processor registers

o Stack containing temporary data
 Function parameters return addresses, local variables

o Data section containing global variables

o Heap containing memory dynamically allocated during run time

 As a process executes, it changes state

o new: The process is being created

o ready: The process is waiting to be assigned to a processor

o running: Instructions are being executed

o waiting: The process is waiting for some event to occur

o terminated: The process has finished execution

PROCESS CONTROL BLOCK (PCB)

Each process is represented in the operating system by a process control block (PCB)—also called a

task control block. A PCBis shown in 3.3. It contains many pieces of information associated with a specific

process, including these:

Figure 3.3 Process control block (PCB)

• Process state. The state may be new, ready, running, waiting, halted, and so on.

• Program counter: The counter indicates the address of the next instruction to be executed for this process.

• CPU registers: The registers vary in number and type, depending on the computer architecture. They

include accumulators, index registers, stack pointers, and general-purpose registers, plus any condition-code

information. Along with the program counter, this state information must be saved when an interrupt occurs,

to allow the process to be continued correctly afterward (Figure 3.4).

• CPU-scheduling information:This information includes a process priority, pointers to scheduling

queues, and any other scheduling parameters.

• Memory-management information: This information may include such items as the value of the

base and limit registers and the page tables, or the segment tables, depending on the memory

system used by the operating system

• Accounting information. This information includes the amount of CPU and real time used, time limits,

account numbers, job or process numbers, and so on.

• I/O status information. This information includes the list of I/O devices allocated to the process, a list of

open files, and so on.

Process Scheduling:

The objective of multiprogramming is to have some process running at all times, to maximize CPU

utilization. the process scheduler selects an available process (possibly from a set of several available

processes) for program execution on the CPU. For a single-processor system, there will never be more than

one running process. If there are more processes, the rest will have to wait until the CPU is free and can be

rescheduled.

Scheduling Queues

 Job queue – set of all processes in the system

 Ready queue – set of all processes residing in main memory, ready and waiting to

execute

 Device queues – set of processes waiting for an I/O device Processes migrate among

the various queues.

A common representation of process scheduling is a queueing diagram. Two types of queues are

present: the ready queue and a set of device queues. The circles represent the resources that serve the queues,

and the arrows indicate the flow of processes in the system. A new process is initially put in the ready queue.

It waits there until it is selected for execution, or dispatched. Once the process is allocated the CPU and is

executing, one of several events could occur:

• The process could issue an I/O request and then be placed in an I/O queue.

• The process could create a new child process and wait for the child’s termination.

• The process could be removed forcibly from the CPU, as a result of an interrupt, and be put back in the

ready queue.

Schedulers

 Long-term scheduler (or job scheduler) – selects which processes should be brought into the

ready queue

 Short-term scheduler (or CPU scheduler) – selects which process should be executed next and

allocates CPU

 Short-term scheduler is invoked very frequently (milliseconds) (must be fast)

 Long-term scheduler is invoked very infrequently (seconds, minutes) (may be slow)

 The long-term scheduler controls the degree of multiprogramming

 Processes can be described as either:

o I/O-bound process – spends more time doing I/O than computations, many short CPU bursts

o CPU-bound process – spends more time doing computations; few very long CPU bursts

Some operating systems, such as time-sharing systems, may introduce an additional, intermediate level of

scheduling. The key idea behind a medium-term scheduler is that sometimes it can be advantageous to remove a

process from memory (and from active contention for the CPU) and thus reduce the degree of multiprogramming.

Context Switch

 When CPU switches to another process, the system must save the state of the old process and

load the saved state for the new process

 Context-switch time is overhead; the system does no useful work while switching

 Time dependent on hardware support

Operations on Processes

Process Creation

 Parent process create children processes, which, in turn create other processes, forminga

tree of processes

 Resource sharing

o Parent and children share all resources

o Children share subset of parent’s resources

o Parent and child share no resources

 Execution

o Parent and children execute concurrently

o Parent waits until children terminate

 Address space

o Child duplicate of parent

o Child has a program loaded into it

 UNIX examples

o fork system call creates new process

o exec system call used after a fork to replace the process’ memory space with a newprogram

C Program Forking Separate Process

int main()

{

pid_t pid;

/* fork another process */

pid = fork();

if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");

exit(-1);

}

else if (pid == 0) { /* child process */

execlp("/bin/ls", "ls", NULL);

}

else { /* parent process */

/* parent will wait for the child to complete */

wait (NULL);

printf ("Child Complete");

exit(0);

}

}

A tree of processes on a typical Solaris

Process Termination

 Process executes last statement and asks the operating system to delete it (exit)

o Output data from child to parent (via wait)

o Process’ resources are deallocated by operating system

 Parent may terminate execution of children processes (abort)

o Child has exceeded allocated resources

o Task assigned to child is no longer required

o If parent is exiting

 Some operating system do not allow child to continue if its parent terminates

 All children terminated - cascading termination

Cooperating Processes

 Independent process cannot affect or be affected by the execution of another process

 Cooperating process can affect or be affected by the execution of another process

 Advantages of process cooperation

o Information sharing

o Computation speed-up

o Modularity

o Convenience

Interprocess Communication (IPC)

 Mechanism for processes to communicate and to synchronize their actions

 Message system – processes communicate with each other without resorting to shared variables

 IPC facility provides two operations:

o send(message) – message size fixed or variable

o receive(message)

 If P and Q wish to communicate, they need to:

o establish a communication link between them

o exchange messages via send/receive

 Implementation of communication link

o physical (e.g., shared memory, hardware bus)

o logical (e.g., logical properties)

Direct Communication

 Processes must name each other explicitly:

o send (P, message) – send a message to process P

o receive(Q, message) – receive a message from process Q

 Properties of communication link

o Links are established automatically

o A link is associated with exactly one pair of communicating processes

o Between each pair there exists exactly one link

o The link may be unidirectional, but is usually bi-directional

Indirect Communication

 Messages are directed and received from mailboxes (also referred to as ports)

o Each mailbox has a unique id

o Processes can communicate only if they share a mailbox

 Properties of communication link

o Link established only if processes share a common mailbox

o A link may be associated with many processes

o Each pair of processes may share several communication links

o Link may be unidirectional or bi-directional

Threads- Overview

A thread is a basic unit of CPU utilization; it comprises a thread ID, a program counter, a

register set, and a stack. It shares with other threads belonging to the same process its code section, data

section, and other operating-system resources, such as open files and signals. A traditional (or heavyweight)

process has a single thread of control. If a process has multiple threads of control, it can perform more than

one task at a time.

Benefits

The benefits of multithreaded programming can be broken down into four major categories:

1. Responsiveness. Multithreading an interactive application may allow a program to continue

running even if part of it is blocked or is performing a lengthy operation, thereby increasing

responsiveness to the user.

2. Resource sharing. Processes can only share resources through techniques such as shared

memory and message passing.

3. Economy. Allocating memory and resources for process creation is costly. Because threads share

the resources of the process to which they belong, it is more economical to create and context-

switch threads.

4. Scalability. The benefits of multithreading can be even greater in a multiprocessor architecture,

where threads may be running in parallel on different processing cores.

Multicore Programming

Earlier in the history of computer design, in response to the need for more computing

performance, single-CPU systems evolved into multi-CPU systems. A more recent, similar trend in

system design is to place multiple computing cores on a single chip. Each core appears as a separate

processor to the operating Whether the cores appear across CPU chips or within CPU chips, we call

these systems multicore or multiprocessor systems.

Multithreaded programming provides a mechanism for more efficient use of these multiple

computing cores and improved concurrency. Consider an application with four threads. On a system

with a single computing core, concurrency merely means that the execution of the threads will be

interleaved over time because the processing core is capable of executing only one thread at a time.

On a system with multiple cores, however,

Concurrency means that the threads can run in parallel, because the system can assign a

separate thread to each core .Notice the distinction between parallelism and concurrency in this

discussion. A system is parallel if it can perform more than one task simultaneously. In contrast, a

concurrent system supports more than one task by allowing all the tasks to make progress.

Multithreading Models

 Many-to-One

 One-to-One

 Many-to-Many

1. Many-to-One

 Many user-level threads mapped to single kernel thread

 Examples:

o Solaris Green Threads

o GNU Portable Threads

2. One-to-One

 Each user-level thread maps to kernel thread

 Examples

o Windows NT/XP/2000

o Linux

o Solaris 9 and later

3. Many-to-Many Model

 Allows many user level threads to be mapped to many kernel threads

 Allows the operating system to create a sufficient number of kernel threads

 Solaris prior to version 9

 Windows NT/2000 with the ThreadFiber package

Windows 7

Windows implements the Windows API, which is the primary API for the family of Microsoft

operating systems (Windows 98, NT, 2000, and XP, as well as Windows 7). Indeed, much of what is

mentioned in this section applies to this entire family of operating systems. A Windows application runs as a

separate process, and each process may contain one or more threads.

The general components of a thread include:

• A thread ID uniquely identifying the thread

• A register set representing the status of the processor

• A user stack, employed when the thread is running in user mode, and a kernel stack, employed when

the thread is running in kernel mode

• A private storage area used by various run-time libraries and dynamic link libraries (DLLs).

The register set, stacks, and private storage area are known as the context of the thread. The primary

data structures of a thread include:

• ETHREAD—executive thread block

• KTHREAD—kernel thread block

• TEB—thread environment block

Process Synchronization

 Concurrent access to shared data may result in data inconsistency.

 Maintaining data consistency requires mechanisms to ensure the orderly execution of cooperating

processes.

 Shared-memory solution to bounded-butter problem allows at most n – 1 items in buffer at the same

time. A solution, where all N buffers are used is not simple.

 Suppose that we modify the producer-consumer code by adding a variable counter, initialized to 0

and increment it each time a new item is added to the buffer

 Race condition: The situation where several processes access – and manipulate shared data

concurrently. The final value of the shared data depends upon which process finishes last.

 To prevent race conditions, concurrent processes must be synchronized.

The Critical-Section Problem:

 There are n processes that are competing to use some shared data

 Each process has a code segment, called critical section, in which the shared data is accessed.

 Problem – ensure that when one process is executing in its critical section, no other process is allowed

to execute in its critical section.

Requirements to be satisfied for a Solution to the Critical-Section Problem:

1. Mutual Exclusion - If process Pi is executing in its critical section, then no other processes can be

executing in their critical sections.

2. Progress - If no process is executing in its critical section and there exist some processes that wish to enter

their critical section, then the selection of the processes that will enter the critical section next cannot be

postponed indefinitely.

3. Bounded Waiting - A bound must exist on the number of times that other processes are allowed to enter

their critical sections after a process has made a request to enter its critical section and before that request is

granted.

do {

entry section

critical section

exit section

remainder section

} while (true);

 Two general approaches are used to handle critical sections in operating systems: preemptive

kernels and nonpreemptive kernels.

 A preemptive kernel allows a process to be preempted while it is running in kernel mode.

 A non-preemptive kernel does not allow a process running in kernel mode to be preempted; a kernel-

mode process will run until it exits kernel mode, blocks, or voluntarily yields control of the CPU.

Mutex Locks

 □ A high-level abstraction that provides a convenient and effective mechanism for process

synchronization

 □ Only one process may be active within the monitor at atime monitor monitor-name

{

// shared variable declarations

procedure body P1 (…) { …. }

…

procedure body Pn (…) {……}

{

initialization code

}

}

 □ To allow a process to wait within the monitor, a condition variable must be declared as o condition

x, y;

 □ Two operations on a condition variable:

 □ x.wait ()–a process that invokes the operation is suspended.

 □ x.signal ()–resumes one of the suspended processes(if any)

Solution to Dining Philosophers Problem

Monitor DP

{

enum { THINKING; HUNGRY, EATING) state [5] ;

condition self [5];

void pickup (int i) {

state[i] = HUNGRY;

test(i);

if (state[i] != EATING) self [i].wait;

}

void putdown (int i) {

state[i] = THINKING;

// test left and right neighbors

test((i + 4) % 5);

test((i + 1) % 5);

}

void test (int i) {

if ((state[(i + 4) % 5] != EATING) &&

(state[i] == HUNGRY) &&

(state[(i + 1) % 5] != EATING)) {

state[i] = EATING ;

self[i].signal () ;

}

}

initialization_code() {

for (int i = 0; i < 5; i++)

state[i] = THINKING;

}

}

Semophores

 It is a synchronization tool that is used to generalize the solution to the critical section problem in

complex situations.

 A Semaphore s is an integer variable that can only be accessed via two indivisible (atomic) operations

namely

wait (s)

{

1. wait or P operation (to test)

2. signal or V operation (to increment)

while(s□ 0);

s--;

}

signal (s)

{

s++;

}

Mutual Exclusion Implementation using semaphore

do

{

wait(mutex);

critical section

remainder section

} while (1);

signal(mutex);

Semaphore Implementation

 The semaphore discussed so far requires a busy waiting. That is if a process is in critical-section, the

other process that tries to enter its critical-section must loop continuously in the entry code.

 To overcome the busy waiting problem, the definition of the semaphore operations wait andsignal

should be modified.

 When a process executes the wait operation and finds that the semaphore value is not

positive, the process can block itself. The block operation places the process into a waiting

queue associated with the semaphore.

 A process that is blocked waiting on a semaphore should be restarted when some other

process executes a signal operation. The blocked process should be restarted by a wakeup

operation which put that process into ready queue.

 To implemented the semaphore, we define a semaphore as a record as:

typedef struct {

int value;

struct process *L;

} semaphore;

Deadlock & starvation:

Example: Consider a system of two processes , P0 & P1 each accessing two semaphores ,S & Q, set

to the value 1.

P0 P1

Wait (S) Wait (Q)

Wait (Q) Wait (S)

. .

. .

. .

Signal(S) Signal(Q)

Signal(Q) Signal(S)

 Suppose that P0 executes wait(S), then P1 executes wait(Q). When P0 executes wait(Q), it

must wait until P1 executes signal(Q).Similarly when P1 executes wait(S), it must wait until

P0 executes signal(S). Since these signal operations cannot be executed, P0 & P1 are

deadlocked.

 Another problem related to deadlock is indefinite blocking or starvation, a situation wherea

process wait indefinitely within the semaphore. Indefinite blocking may occur if we add or

remove processes from the list associated with a semaphore in LIFO order.

Types of Semaphores

 Counting semaphore – any positive integer value

 Binary semaphore – integer value can range only between 0 and 1

CPU Scheduling

 CPU scheduling is the basis of multi programmed operating systems.

 The objective of multiprogramming is to have some process running at all times, in order to

maximize CPU utilization.

 Scheduling is a fundamental operating-system function.

 Almost all computer resources are scheduled before use.

CPU-I/O Burst Cycle

 Process execution consists of a cycle of CPU execution and I/O wait.

 Processes alternate between these two states.

 Process execution begins with a CPU burst.

 That is followed by an I/O burst, then another CPU burst, then another I/O burst, and so on.

 Eventually, the last CPU burst will end with a system request to terminate execution, rather

than with another I/O burst.

CPU Scheduler

Whenever the CPU becomes idle, the operating system must select one of the processes in the ready queue to

be executed.

The selection process is carried out by the short-term scheduler (or CPU scheduler).
The ready queue is not necessarily a first-in, first-out (FIFO) queue. It may be a FIFO queue, a priority queue,

a tree, or simply an unordered linked list.

Preemptive Scheduling

 CPU scheduling decisions may take place under the following four circumstances:

1. When a process switches from the running state to the waiting state

2. When a process switches from the running state to the ready state

3. When a process switches from the waiting state to the ready state

4. When a process terminates

 Under 1 & 4 scheduling scheme is non preemptive.

 Otherwise the scheduling scheme is preemptive.

Non-preemptive Scheduling

□ In non preemptive scheduling, once the CPU has been allocated a process, the process keeps the CPU

until it releases the CPU either by termination or by switching to the waiting state.

□ This scheduling method is used by the Microsoft windows environment.

Dispatcher

The dispatcher is the module that gives control of the CPU to the process selected by the short-term

scheduler.

This function involves:
1. Switching context

2. Switching to user mode

3. Jumping to the proper location in the user program to restart that program

Scheduling Criteria

1. CPU utilization: The CPU should be kept as busy as possible. CPU utilization may range from 0 to 100

percent. In a real system, it should range from 40 percent (for a lightly loaded system) to 90 percent (for a

heavily used system).

2. Throughput: Itis the number of processes completed per time unit. For long processes, this rate may be 1

process per hour; for short transactions, throughput might be 10 processes per second.

3. Turnaround time: The interval from the time of submission of a process to the time of completion is the

turnaround time. Turnaround time is the sum of the periods spent waiting to get into memory, waiting in the

ready queue, executing on the CPU, and doing I/O.

4. Waiting time: Waiting time is the sum of the periods spent waiting in the ready queue.
5. Response time: It is the amount of time it takes to start responding, but not the time that it takes to output

that response.

CPU Scheduling Algorithms

1. First-Come, First-Served Scheduling
2. Shortest Job First Scheduling

3. Priority Scheduling

4. Round Robin Scheduling

First-Come, First-Served (FCFS) Scheduling

 Process Burst Time

P1 24

P2 3

P3 3

• Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

• Waiting time for P1 = 0; P2 = 24; P3 = 27

• Average waiting time: (0 + 24 + 27)/3 = 17

Suppose that the processes arrive in the order

The Gantt chart for the schedule is:

• Waiting time for P1 = 6; P2 = 0; P3 = 3

• Average waiting time: (6 + 0 + 3)/3 = 3

• Much better than previous case

• Convoy effect short process behind long process

n

Shortest-Job-First (SJF) Scheduling

• Associate with each process the length of its next CPU burst. Use these lengths to schedule the

process with the shortest time

• SJF is optimal – gives minimum average waiting time for a given set of processes

– The difficulty is knowing the length of the next CPU request

Process Arrival Time Burst Time

P1 0.0 6

P2 2.0 8

P3 4.0 7

P4 5.0 3

• SJF scheduling chart

• Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

Determining Length of Next CPU Burst

• Can only estimate the length

• Can be done by using the length of previous CPU bursts, using exponential averaging

1. t actual length of nth CPU burst

2. n1 predicted valuefor thenext CPU

3. , 0 1

4. Define :

n1 tn 1 n .

burst

Examples of Exponential Averaging

• =0

– n+1 = n

– Recent history does not count

• =1

– n+1 = tn

– Only the actual last CPU burst counts

• If we expand the formula, we get:

n+1 = tn+(1 -) tn -1 + …

+(1 -)j tn -j + …

+(1 -)n +1 0

• Since both and (1 -) are less than or equal to 1, each successive term has less weight than its

predecessor

Priority Scheduling

• A priority number (integer) is associated with each process

• The CPU is allocated to the process with the highest priority (smallest integer highest priority)

– Preemptive

– nonpreemptive

• SJF is a priority scheduling where priority is the predicted next CPU burst time

• Problem Starvation – low priority processes may never execute

• Solution Aging – as time progresses increase the priority of the process

Round Robin (RR)

• Each process gets a small unit of CPU time (time quantum), usually 10-100 milliseconds. After this

time has elapsed, the process is preempted and added to the end of the ready queue.

• If there are n processes in the ready queue and the time quantum is q, then each process gets 1/n of

the CPU time in chunks of at most q time units at once. No process waits more than (n-1)q time

units.

• Performance

– q large FIFO

– q small q must be large with respect to context switch, otherwise overhead is too high

Example of RR with Time Quantum = 4

Process Burst Time

P1 24

P2 3

•

P3 3

The Gantt chart is:

• Typically, higher average turnaround than SJF, but better response

Multilevel Queue

• Ready queue is partitioned into separate queues:

foreground (interactive)

background (batch)

• Each queue has its own scheduling algorithm

– foreground – RR

– background – FCFS

• Scheduling must be done between the queues

– Fixed priority scheduling; (i.e., serve all from foreground then from background). Possibility

of starvation.

– Time slice – each queue gets a certain amount of CPU time which it can schedule amongst its

processes; i.e., 80% to foreground in RR

– 20% to background in FCFS

Multilevel Feedback Queue

• A process can move between the various queues; aging can be implemented this way

• Multilevel-feedback-queue scheduler defined by the following parameters:

– number of queues

– scheduling algorithms for each queue

– method used to determine when to upgrade a process

– method used to determine when to demote a process

– method used to determine which queue a process will enter when that process needs service

Deadlocks

• A set of blocked processes each holding a resource and waiting to acquire a resource held by another

process in the set.

• Example

– System has 2 disk drives.

– P1 and P2 each hold one disk drive and each needs another one.

• Example

– semaphores A and B, initialized to 1

P0 P1

wait (A);

wait (B);

wait(B)

wait(A)

System Model

• Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

• Each resource type Ri has Wi instances.

• Each process utilizes a resource as follows:

– request

– use

– release

Deadlock Characterization

Deadlock can arise if four conditions hold simultaneously.

• Mutual exclusion: only one process at a time can use a resource.

• Hold and wait: a process holding at least one resource is waiting to acquire additional resources held

by other processes.

• No preemption: a resource can be released only voluntarily by the process holding it, after that

process has completed its task.

• Circular wait: there exists a set {P0, P1, …, P0} of waiting processes such that P0 is waiting for a

resource that is held by P1, P1 is waiting for a resource that is held by

P2, …, Pn–1 is waiting for a resource that is held by

Pn, and P0 is waiting for a resource that is held by P0.

Resource-Allocation Graph

A set of vertices V and a set of edges E.

• V is partitioned into two types:

– P = {P1, P2, …, Pn}, the set consisting of all the processes in the system.

– R = {R1, R2, …, Rm}, the set consisting of all resource types in the system.

• request edge – directed edge P1 Rj

• assignment edge – directed edge Rj Pi

• Process

• Resource Type with 4 instances

• Pi requests instance of Rj

• Pi is holding an instance of Rj

Example of a Resource Allocation Graph

Basic Facts

• If graph contains no cycles no deadlock.

• If graph contains a cycle

– if only one instance per resource type, then deadlock.

– if several instances per resource type, possibility of deadlock.

Deadlock Prevention

• Mutual Exclusion – not required for sharable resources; must hold for non-sharable resources.

• Hold and Wait – must guarantee that whenever a process requests a resource, it does not hold any

other resources.

– Require process to request and be allocated all its resources before it begins execution, or

allow process to request resources only when the process has none.

– Low resource utilization; starvation possible.

• No Preemption –

– If a process that is holding some resources requests another resource that cannot be

immediately allocated to it, then all resources currently being held are released.

– Preempted resources are added to the list of resources for which the process is waiting.

– Process will be restarted only when it can regain its old resources, as well as the newones

that it is requesting.

• Circular Wait – impose a total ordering of all resource types, and require that each process requests

resources in an increasing order of enumeration.

Deadlock Avoidance

Requires that the system has some additional a priori information available.

• Simplest and most useful model requires that each process declare the maximum number of resources

of each type that it may need.

• The deadlock-avoidance algorithm dynamically examines the resource-allocation state to ensure that

there can never be a circular-wait condition.

• Resource-allocation state is defined by the number of available and allocated resources, and the

maximum demands of the processes.

Safe State

• When a process requests an available resource, system must decide if immediate allocation leaves the

system in a safe state.

• System is in safe state if there exists a sequence <P1, P2, …, Pn> of ALL the processes is the systems

such that for each Pi, the resources that Pi can still request can be satisfied by currently available

resources + resources held by all the Pj, with j < i.

• That is:

– If Pi resource needs are not immediately available, then Pi can wait until all Pj have finished.

– When Pj is finished, Pi can obtain needed resources, execute, return allocated resources, and

terminate.

– When Pi terminates, Pi +1 can obtain its needed resources, and soon.

Avoidance algorithms

• Single instance of a resource type. Use a resource-allocation graph

• Multiple instances of a resource type. Use the banker’s algorithm

Resource-Allocation Graph Scheme

• Claim edge Pi Rj indicated that process Pj may request resource Rj; represented by a dashed line.

• Claim edge converts to request edge when a process requests a resource.

• Request edge converted to an assignment edge when the resource is allocated to the process.

• When a resource is released by a process, assignment edge reconverts to a claim edge.

• Resources must be claimed a priori in the system.

Unsafe State In Resource-Allocation Graph

Banker’s Algorithm

• Multiple instances.

• Each process must a priori claim maximum use.

• When a process requests a resource it may have to wait.

• When a process gets all its resources it must return them in a finite amount of time.

• Let n = number of processes, and m = number of resources types.

• Available: Vector of length m. If available [j] = k, there are k instances of resource type Rj

available.

• Max: n x m matrix. If Max [i,j] = k, then process Pi may request at most k instances of

resource type Rj.

• Allocation: n x m matrix. If Allocation[i,j] = k then Pi is currently allocated k instances of

Rj.

• Need: n x m matrix. If Need[i,j] = k, then Pi may need k more instances of Rj to completeits

task.

Need [i,j] = Max[i,j] – Allocation [i,j].

Example of Banker’s Algorithm

• 5 processes P0 through P4;

3 resource types:

A (10 instances), B (5instances), and C (7 instances).

• Snapshot at time T0:

Allocation Max Available

A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

• The content of the matrix Need is defined to be Max – Allocation.

 Need

A B C

P0 7 4 3

P1 1 2 2

P2 6 0 0

P3 0 1 1

P4 4 3 1

• The system is in a safe state since the sequence < P1, P3, P4, P2, P0> satisfies safety criteria.

Deadlock Detection

• Allow system to enter deadlock state

• Detection algorithm

• Recovery scheme

Single Instance of Each Resource Type

• Maintain wait-for graph

– Nodes are processes.

– Pi Pj if Pi is waiting for Pj.

• Periodically invoke an algorithm that searches for a cycle in the graph. If there is a cycle, there exists

a deadlock.

• An algorithm to detect a cycle in a graph requires an order of n2 operations, where n is the number of

vertices in the graph.

Several Instances of a Resource Type

• Available: A vector of length m indicates the number of available resources of each type.

• Allocation: An n x m matrix defines the number of resources of each type currently allocated to each

process.

• Request: An n x m matrix indicates the current request of each process. If Request [ij] = k, then

process Pi is requesting k more instances of resource type. Rj.

Detection Algorithm

1. Let Work and Finish be vectors of length m and n, respectively Initialize:

(a) Work = Available

(b) For i = 1,2, …, n, if Allocationi 0, then

Finish[i] = false;otherwise, Finish[i] = true.

2. Find an index i such that both:

(a) Finish[i] == false

(b) Requesti Work

If no such i exists, go to step 4.

3. Work = Work + Allocationi

Finish[i] = true

go to step 2.

4. If Finish[i] == false, for some i, 1 i n, then the system is in deadlock state. Moreover,if

Finish[i] == false, then Pi is deadlocked.

Example of Detection Algorithm

• Five processes P0 through P4; three resource types

A (7 instances), B (2 instances), and C (6 instances).

• Snapshot at time T0:

Allocation Request Available

 A B C A B C A B C

P0 0 1 0 0 0 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 0

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

• Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all i.

• P2 requests an additional instance of type C.

Request

A B C

P0 0 0 0

P1 2 0 1

P2 0 0 1

P3 1 0 0

P4 0 0 2

• State of system?

– Can reclaim resources held by process P0, but insufficient resources to fulfill other processes;

requests.

– Deadlock exists, consisting of processes P1, P2, P3, and P4.

Recovery from Deadlock: Process Termination

• Abort all deadlocked processes.

• Abort one process at a time until the deadlock cycle is eliminated.

• In which order should we choose to abort?

– Priority of the process.

– How long process has computed, and how much longer to completion.

– Resources the process has used.

– Resources process needs to complete.

– How many processes will need to be terminated.

– Is process interactive or batch?

• Selecting a victim – minimize cost.

• Rollback – return to some safe state, restart process for that state.

• Starvation – same process may always be picked as victim, include number of rollback in cost factor.

UNIT-III

STORAGE MANAGEMENT

Memory Management: Background

 In general, to rum a program, it must be brought into memory.

 Input queue – collection of processes on the disk that are waiting to be brought into memory to run

the program.

 User programs go through several steps before being run

 Address binding: Mapping of instructions and data from one address to another address in memory.

Three different stages of binding:

1. Compile time: Must generate absolute code if memory location is known in prior.

2. Load time: Must generate relocatable code if memory location is not known at compile time

3. Execution time: Need hardware support for address maps (e.g., base and limit registers).

Logical vs. Physical Address Space

• Logical address – generated by the CPU; also referred to as “virtual address“

• Physical address – address seen by the memory unit.

• Logical and physical addresses are the same in compile-time and load-time address-binding schemes"

• Logical (virtual) and physical addresses differ in execution-time address- binding scheme"

Memory-Management Unit (MMU)

• It is a hardware device that maps virtual / Logical address to physical address

• In this scheme, the relocation register‘s value is added to Logical address generated by a user process.

.

http://www.studentsfocus.com/

• The user program deals with logical addresses; it never sees the real physical addresses

• Logical address range: 0 to max

• Physical address range: R+0 to R+max, where R—value in relocation register.

Dynamic Loading

• Through this, the routine is not loaded until it is called.

o Better memory-space utilization; unused routine is never loaded

o Useful when large amounts of code are needed to handle infrequently occurring cases

o No special support from the operating system is required implemented through program

design

Dynamic Linking

• Linking postponed until execution time & is particularly useful for libraries

• Small piece of code called stub, used to locate the appropriate memory- resident library

routine or function.

• Stub replaces itself with the address of the routine, and executes the routine

• Operating system needed to check if routine is in processes’ memory address

• Shared libraries: Programs linked before the new library was installed will continue using the older

library.

Swapping

• A process can be swapped temporarily out of memory to a backing store (SWAP OUT)and then brought

back into memory for continued execution (SWAP IN).

• Backing store – fast disk large enough to accommodate copies of all memory images for all

users & it must provide direct access to these memory images

• Roll out, roll in – swapping variant used for priority-based scheduling algorithms; lower-priority process

is swapped out so higher-priority process can be loaded and executed

• Transfer time: Major part of swap time is transfer time. Total transfer time is directly proportional to the

amount of memory swapped.

□ Example: Let us assume the user process is of size 1MB & the backing store is a standard hard disk with

a transfer rate of 5MBPS.

.

http://www.studentsfocus.com/

Transfer time = 1000KB/5000KB per second

= 1/5 sec = 200ms

Contiguous Allocation

• Each process is contained in a single contiguous section of memory.

• There are two methods namely:

□ Fixed – Partition Method

□ Variable – Partition Method

 Fixed – Partition Method :

o Divide memory into fixed size partitions, where each partition has exactly one process.

o The drawback is memory space unused within a partition is wasted.(eg.when

process size < partition size)

 Variable-partition method:

o Divide memory into variable size partitions, depending upon the size of the incoming

process.

o When a process terminates, the partition becomes available for another process.

o As processes complete and leave they create holes in the main memory.

o Hole – block of available memory; holes of various size are scattered throughout memory.

Dynamic Storage- Allocation Problem:

How to satisfy a request of size n‘ from a list of free holes?

Solution:

o First-fit: Allocate the first hole that is big enough.
o Best-fit: Allocate the smallest hole that is big enough; must search entire list, unless ordered

by size. Produces the smallest leftover hole.

o Worst-fit: Allocate the largest hole; must also search entire list. Produces the largest leftover

hole.

NOTE: First-fit and best-fit are better than worst-fit in terms of speed and storage utilization

.

http://www.studentsfocus.com/

• Fragmentation:

o External Fragmentation – This takes place when enough total memory space exists to

satisfy a request, but it is not contiguous i.e, storage is fragmented into a large number of small holes scattered

throughout the main memory.

o Internal Fragmentation – Allocated memory may be slightly larger than requested memory.

Example: hole = 184 bytes

Process size = 182 bytes.

We are left with a hole of 2 bytes.

o Solutions

1. Coalescing: Merge the adjacent holes together.

2. Compaction: Move all processes towards one end of memory, hole towards other end

of memory, producing one large hole of available memory. This scheme is expensive as

it can be done if relocation is dynamic and done at execution time.

3. Permit the logical address space of a process to be non-contiguous. This is achieved

through two memory management schemes namely paging and segmentation.

Segmentation
o Memory-management scheme that supports user view of memory

o A program is a collection of segments. A segment is a logical unit such as:Main program, Procedure,

Function, Method, Object, Local variables, global variables, Common block, Stack, Symbol table, arrays

Logical View of Segmentation

.

http://www.studentsfocus.com/

Segmentation Hardware

o Logical address consists of a two tuple :

<Segment-number, offset>

o Segment table – maps two-dimensional physical addresses; each table entry has:
□ Base – contains the starting physical address where the segments reside in memory

□ Limit – specifies the length of the segment

o Segment-table base register (STBR) points to the segment table‘s location in memory

o Segment-table length register (STLR) indicates number of segments used by a program;

Segment number=s‘ is legal, if s < STLR

o Relocation.

□ dynamic

□ by segment table

o Sharing.

□ shared segments

□ same segment number

o Allocation.

□ first fit/best fit

□ external fragmentation

o Protection: With each entry in segment table associate:

□ validation bit = 0 □ illegalsegment

□ read/write/execute privileges

o Protection bits associated with segments; code sharing occurs at segment level

o Since segments vary in length, memory allocation is a dynamic storage- allocation problem

o A segmentation example is shown in the following diagram

EXAMPLE:

.

http://www.studentsfocus.com/

o Another advantage of segmentation involves the sharing of code or data.

o Each process has a segment table associated with it, which the dispatcher uses to define the hardware

segment table when this process is given the CPU.

o Segments are shared when entries in the segment tables of two different processes point to the

same physical location.

Segmentation with paging

o The IBM OS/ 2.32 bit version is an operating system running on top of the Intel 386 architecture.

The 386 uses segmentation with paging for memory management. The maximum number of segments

per process is 16 KB, and each segment can be as large as 4 gigabytes.

o The local-address space of a process is divided into two partitions.

□ The first partition consists of up to 8 KB segments that are private to that process.

□ The second partition consists of up to 8KB segments that are shared among all the

processes.

o Information about the first partition is kept in the local descriptor table

(LDT), information about the second partition is kept in the global descriptor table (GDT).

o Each entry in the LDT and GDT consist of 8 bytes, with detailed information about a

particular segment including the base location and length of the segment.

The logical address is a pair (selector, offset) where the selector is a16-bit number:

s g p

13 1 2

.

http://www.studentsfocus.com/

Where s designates the segment number, g indicates whether the segment is in the GDT

or LDT, and p deals with protection. The offset is a 32-bit number specifying the location of the byte within

the segment in question.

o The base and limit information about the segment in question are used to generate a linear-

address.

o First, the limit is used to check for address validity. If the address is not valid, a memory fault is

generated, resulting in a trap to the operating system. If it is valid, then the value of the offset is added

to the value of the base, resulting in a 32-bit linear address. This address is then translated into a

physical address.

o The linear address is divided into a page number consisting of 20 bits, and a page offset

consisting of 12 bits. Since we page the page table, the page number is further divided into a 10-

bit page directory pointer and a 10-bit

page table pointer. The logical address is as follows.

p1 p2 d

10 10 12

o To improve the efficiency of physical memory use. Intel 386 page tables can be swapped to disk. In this

case, an invalid bit is used in the page directory entry to indicate whether the table to which the entry is

pointing is in memory or on disk.

o If the table is on disk, the operating system can use the other 31 bits to specify the disk location of the table;

the table then can be brought into memory on demand.

.

http://www.studentsfocus.com/

Paging

• It is a memory management scheme that permits the physical address space of a process to be

noncontiguous.

• It avoids the considerable problem of fitting the varying size memory chunks on to the backing

store.

(i) Basic Method:

o Divide logical memory into blocks of same size called “pages”. o Divide physical

memory into fixed-sized blocks called “frames” o Page size is a power of 2, between

512 bytes and 16MB.

Address Translation Scheme

o Address generated by CPU(logical address) is divided into:

□ Page number (p) – used as an index into a page table which contains base address of each page

in physical memory

□ Page offset (d) –combined with base address to define the physical address i.e.,

Physical address = base address + offset

Paging Hardware

.

http://www.studentsfocus.com/

Paging model of logical and physical memory

Paging example for a 32-byte memory with 4-byte pages

Page size = 4 bytes

Physical memory size = 32 bytes i.e (4 X 8 = 32 so, 8 pages)

Logical address 0‘ maps to physical address 20 i.e ((5 X 4) +0)

Where Frame no = 5, Page size = 4, Offset = 0

Allocation

o When a process arrives into the system, its size (expressed in pages) is examined.
o Eachpageofprocessneedsoneframe. Thus iftheprocess requires n‘pages,atleast n‘frames mustbeavailable inmemory.

.

http://www.studentsfocus.com/

o If n‘ frames areavailable, they are allocated to this arriving process.
st

o The 1 page of the process is loaded into one of the allocated frames & the frame number is put into the

page table.

o Repeat the above step for the next pages & so on.

(a) Before Allocation (b) After Allocation

Frame table: It is used to determine which frames are allocated, which frames are available, how many

total frames are there, and so on.(ie) It contains all the information about the frames in the physical memory.

(ii) Hardware implementation of Page Table

o This can be done in several ways :

1. Using PTBR

2. TLB

o The simplest case is Page-table base register (PTBR), is an index to point the pagetable.

o TLB (Translation Look-aside Buffer)

□ It is a fast lookup hardware cache.

□ It contains the recently or frequently used page table entries.

□ It has two parts: Key (tag) & Value.

□ More expensive.

Paging Hardware with TLB

.

http://www.studentsfocus.com/

o When a logical address is generated by CPU, its page number is presented to

TLB.

o TLB hit: If thepage number is found, its frame number is immediately available & is used to

access memory

o TLB miss: If the page number is not in the TLB, a memory reference to the page table must bemade.

o Hit ratio: Percentage of times that a particular page is found in the TLB.

□ For example hit ratio is 80% means that the desired page

number in the TLB is 80% of the time.

o Effective Access Time:

□ Assume hit ratio is 80%.

□ If it takes 20ns to search TLB & 100ns to access memory, then the memoryaccess

takes 120ns(TLB hit)

□ If we fail to find page no. in TLB (20ns), then we must 1
st

access memory for page

table (100ns) & then access the desired byte in memory (100ns).

Therefore Total = 20 + 100 + 100

= 220 ns(TLB miss).

Then Effective Access Time (EAT) = 0.80 X (120 + 0.20) X 220.

= 140 ns.

(iii) Memory Protection

o Memory protection implemented by associating protection bit with each frame

o Valid-invalid bit attached to each entry in the page table:

□ “valid (v)” indicates that the associated page is in the process‘ logical address space, and is thus alegal

page

□ “invalid (i)” indicates that the page is not in the process‘ logical address spaces

.

http://www.studentsfocus.com/

(iv) Structures of the Page Table

a) Hierarchical Paging b)

Hashed Page Tables c) Inverte

Page Tables

a) Hierarchical Paging

o Break up the Page table into smaller pieces. Because if the page table is too large then it is qui
difficult to search the page number.

Example: “Two-Level Paging “

.

http://www.studentsfocus.com/

Virtual Memory

o It is a technique that allows the execution of processes that may not be completely in main

memory.

o Advantages:

□ Allows the program that can be larger than the physical memory.

□ Separation of user logical memory from physical memory

□ Allows processes to easily share files & address space.

□ Allows for more efficient process creation.

Virtual memory can be implemented using

□ Demand paging

□ Demand segmentation

Virtual Memory That is Larger than Physical Memory

Demand Paging

o It is similar to a paging system with swapping.

o Demand Paging - Bring a page into memory only when it is needed

o To execute a process, swap that entire process into memory. Rather than

swapping theentireprocessintomemoryhowever, we use LazySwapperǁ

o Lazy Swapper - Never swaps a page into memory unless that page will be

needed.

o Advantages

□ Less I/O needed

□ Less memory needed

□ Faster response

□ More users

Transfer of a paged memory to contiguous disk space

.

http://www.studentsfocus.com/

Basic Concepts:

o Instead of swapping in the whole processes, the pager brings only those necessary pages into

memory. Thus,

1. It avoids reading into memory pages that will not be used anyway.

2. Reduce the swap time.

3. Reduce the amount of physical memory needed.

o To differentiate between those pages that are in memory & those that are on the disk we use the

Valid-Invalid bit

o A valid – invalid bit is associated with each page tableentry.

o Valid □ associated page is in memory.

In-Valid □

□ invalid page

□ valid page but is currently on the disk

.

http://www.studentsfocus.com/

Page Fault

o Access to a page marked invalid causes a page fault trap.

Steps in Handling a Page Fault

Page table when some pages are not in main memory

1. Determine whether the reference is a valid or invalid memory access

2. a) If the reference is invalid then terminate the process.

b) If the reference is valid then the page has not been yet brought into main memory.

3. Find a free frame.

4. Read the desired page into the newly allocated frame.

5. Reset the page table to indicate that the page is now in memory.

6. Restart the instruction that was interrupted .

.

http://www.studentsfocus.com/

Pure demand paging

o Never bring a page into memory until it is required.
o We could start a process with no pages in memory.

st
o When the OS sets the instruction pointer to the 1 instruction of the process,

which is on the non-memory resident page, then the process immediately

faults for the page.

o After this page is bought into the memory, the process continue to execute, faulting as necessary

until every page that it needs is in memory.

Performance of demand paging

o Let p be the probability of a page fault 0 □ p □ 1

o Effective Access Time (EAT)

EAT = (1 – p) x ma + p x page fault time.

Where ma □ memory access, p □ Probability of page fault (0≤ p ≤ 1)

o The memory access time denoted ma is in the range 10 to 200 ns.

o If there are no page faults then EAT = ma.

o To compute effective access time, we must know how much time is needed

to service a page fault.

o A page fault causes the following sequence to occur:

1. Trap to the OS

2. Save the user registers and process state.

3. Determine that the interrupt was a page fault.

4. Check whether the reference was legal and find the location of page on disk.

5. Read the page from disk to free frame.

a. Wait in a queue until read request is serviced. b. Wait for

seek time and latency time.

c. Transfer the page from disk to free frame.

6. While waiting ,allocate CPU to some other user.

7. Interrupt from disk.

8. Save registers and process state for other users.

9. Determine that the interrupt was from disk.

7. Reset the page table to indicate that the page is now in memory.

8. Wait for CPU to be allocated to this process again.

9. Restart the instruction that was interrupted .

Page Replacement

o If no frames are free, we could find one that is not currently being used &

free it.

o We can free a frame by writing its contents to swap space & changing the page table to indicate that

the page is no longer in memory.

o Then we can use that freed frame to hold the page for which the process faulted.

Basic Page Replacement

.

http://www.studentsfocus.com/

1. Find the location of the desired page on disk

2. Find a free frame

- If there is a free frame , then use it.

- If there is no free frame, use a page replacement algorithm to select a victim frame

- Write the victim page to the disk, change the page & frame tables accordingly.

3. Read the desired page into the (new) free frame. Update the page and frame tables.

4. Restart the process

Page Replacement Algorithms

1. FIFO Page Replacement

2. Optimal Page Replacement

3. LRU Page Replacement

4. LRU Approximation Page Replacement

5. Counting-Based Page Replacement

(a) FIFO page replacement algorithm

o Replace the oldest page.

o This algorithm associates with each page ,the time when that page was brought in.

Example:

Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

No.of available frames = 3 (3 pages can be in memory at a time per process)

.

http://www.studentsfocus.com/

Drawback:

No. of page faults = 15

o FIFO page replacement algorithm s performance is not always good.

o To illustrate this, consider the following example:

Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

o If No.of available frames -= 3 then the no.of page faults=9

o If No.of available frames =4 then the no.of page faults=10

o Here the no. of page faults increases when the no.of frames increases .This is called as Belady’s

Anomaly.

(b) Optimal page replacement algorithm

o Replace the page that will not be used for the longest period of time.

Example:

No. of page faults = 9

Drawback:

.

Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

No.of available frames = 3

http://www.studentsfocus.com/

o It is difficult to implement as it requires future knowledge of the reference string.

(c) LRU(Least Recently Used) page replacement algorithm

o Replace the page that has not been used for the longest period of time.

Example:

Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

No.of available frames = 3

No. of page faults = 12

o LRU page replacement can be implemented using

1. Counters

□ Every page table entry has a time-of-use field and a clock or

counter is associated with the CPU.

□ The counter or clock is incremented for every memory reference.

□ Each time a page is referenced , copy the counter into the time- of-use field.

□ When a page needs to be replaced, replace the page with the smallest counter

value.

2. Stack

□ Keep a stack of page numbers

□ Whenever a page is referenced, remove the page from the stack and put it on top of

the stack.

□ When a page needs to be replaced, replace the page that is at the bottom of the

stack.(LRU page)

Use of A Stack to Record The Most Recent Page References

.

http://www.studentsfocus.com/

(d) LRU Approximation Page Replacement

o Reference bit

□ With each page associate a reference bit, initially set to 0

□ When page is referenced, the bit is set to 1

o When a page needs to be replaced, replace the page whose reference bit is 0

o The order of use is not known , but we know which pages were used and which were not used.

(i) Additional Reference Bits Algorithm

o Keep an 8-bit byte for each page in a table in memory.

o At regular intervals , a timer interrupt transfers control to OS.

o The OS shifts reference bit for each page into higher- order bit shifting

the other bits right 1 bit and discarding the lower-order bit.

Example:

oIf reference bit is 00000000 then the page has not been used for 8 time periods.

oIf reference bit is 11111111 then the page has been used atleast once each time period.

oIf the reference bit of page 1 is 11000100 and page 2 is 01110111 then page 2 is the LRU

page.

(ii) Second Chance Algorithm

oBasic algorithm is FIFO

oWhen a page has been selected , check its reference bit.

□ If 0 proceed to replace the page

□ If 1 give the page a second chance and move on to the next FIFO page.

□ When a page gets a second chance, its reference bit is cleared and arrival

time is reset to current time.

□ Hence a second chance page will not be replaced until all other pages are

replaced.

.

http://www.studentsfocus.com/

(iii) Enhanced Second Chance Algorithm o Consider
both reference bit and modify bit o There are four possible
classes

1. (0,0) – neither recently used nor modified □ Best page to replace

2. (0,1) – not recently used but modified □ page has to be written out

before replacement.

3. (1,0) - recently used but not modified □ page may be used again

4. (1,1) – recently used and modified □ page may be used again and

page has to be written to disk

(e) Counting-Based Page Replacement

o Keep a counter of the number of references that have been made to each page

1. Least Frequently Used (LFU)Algorithm: replaces page with smallest count

2. Most Frequently Used (MFU)Algorithm: replaces page with largest count

□ It is based on the argument that the page with the smallest count

was probably just brought in and has yet to be used

Page Buffering Algorithm

o These are used along with page replacement algorithms to improve their performance

Technique 1:

o A pool of free frames is kept.

o When a page fault occurs, choose a victim frame as before.

o Read the desired page into a free frame from the pool

o The victim frame is written onto the disk and then returned to the pool of

free frames.

Technique 2:

.

http://www.studentsfocus.com/

o Maintain a list of modified pages.

o Whenever the paging device is idles, a modified is selected and written to

disk and its modify bit is reset.

Technique 3:

o A pool of free frames is kept.

o Remember which page was in each frame.

o If frame contents are not modified then the old page can be reused directly from the free frame pool

when needed

Allocation of Frames

o There are two major allocation schemes

□ Equal Allocation

□ Proportional Allocation

o Equal allocation

□ If there are n processes and m frames then allocate m/n frames to each

process.

□ Example: If there are 5 processes and 100 frames, give each process

20 frames.

o Proportional allocation

□ Allocate according to the size of process

Let si be the size of process i.

Let m be the total no. of frames

Then S = ∑ si

ai = si / S * m

where ai is the no.of frames allocated to process i.

Global vs. Local Replacement

o Global replacement – each process selects a replacement frame from the set of all frames; one
process can take a frame from another.

o Local replacement – each process selects from only its own set of allocated frames.

Thrashing

o High paging activity is called thrashing.

o If a process does not have enoughǁ pages, the page-fault rate is very high.

This leads to:

□ low CPU utilization

□ operating system thinks that it needs to increase the degree of multiprogramming

□ another process is added to the system

o When the CPU utilization is low, the OS increases the degree of multiprogramming.

o If global replacement is used then as processes enter the main memory they tend to steal frames

belonging to other processes.

o Eventually all processes will not have enough frames and hence the page fault rate becomes very

.

http://www.studentsfocus.com/

high.

o Thus swapping in and swapping out of pages only takes place.

o This is the cause of thrashing.

o To limit thrashing, we can use a local replacement algorithm.

o To prevent thrashing, there are two methods namely ,

□ Working Set Strategy

□ Page Fault Frequency

1. Working-Set Strategy

o It is based on the assumption of the model of locality.

o Locality is defined as the set of pages actively used together.

o Working set is the set of pages in the most recent □ page references

o □ is the working set window.

□ if □ too small , it will not encompass entire locality

□ if □ too large ,it will encompass several localities

□ if □ = □□ it will encompass entire program

o D = □ WSSi

□ Where WSSi is the working set size for process i.

□ D is the total demand of frames

o if D > m then Thrashing will occur.

.

http://www.studentsfocus.com/

2. Page-Fault Frequency Scheme

o If actual rate too low, process loses frame

o If actual rate too high, process gains frame

Other Issues

o Prepaging

□ To reduce the large number of page faults that occurs at process

startup

□ Prepage all or some of the pages a process will need, before they are referenced

□ But if prepaged pages are unused, I/O and memory are wasted

o Page Size

Page size selection must take into consideration:

o fragmentation

o table size

o I/O overhead

o locality

o TLB Reach

□ TLB Reach - The amount of memory accessible from the TLB

□ TLB Reach = (TLB Size) X (Page Size)

□ Ideally, the working set of each process is stored in the TLB.

Otherwise there is a high degree of page faults.

□ Increase the Page Size. This may lead to an increase in fragmentation as not all

applications require a large page size

□ Provide Multiple Page Sizes. This allows applications that require

larger page sizes the opportunity to use them without an increase in fragmentation.

o I/O interlock

□ Pages must sometimes be locked into memory

□ Consider I/O. Pages that are used for copying a file from a device must be locked

from being selected for eviction by a page replacement algorithm.

.

http://www.studentsfocus.com/

Allocating Kernel Memory

When a process running in user mode requests additional memory, pages are allocated from the list

of free page frames maintained by the kernel. This list is typically populated using a page-replacement

algorithm such as those discussed in Section 9.4 and most likely contains free pages scattered throughout

physical memory, as explained earlier. Remember, too, that if a user process requests a single byte of

memory, internal fragmentation will result, as the process will be granted an entire page frame.

Kernel memory is often allocated from a free-memory pool different from the list used to satisfy

ordinary user-mode processes. There are two primary reasons for this:

1. The kernel requests memory for data structures of varying sizes, some of which are less than a

page in size. As a result, the kernel must use memory conservatively and attempt to minimize waste due to

fragmentation. This is especially important because many operating systems do not subject kernel code or

data to the paging system.

2. Pages allocated to user-mode processes do not necessarily have to be in contiguous physical

memory. However, certain hardware devices interact directly with physical memory—without the benefit of

a virtual memory interface—and consequently may require memory residing in physically contiguous pages.

Buddy System

The buddy system allocates memory from a fixed -size segment consisting of physically contiguous

pages. Memory is allocated from this segment using a power-of-2 allocator, which satisfies requests in units

sized as a power of 2 (4KB,8KB,16KB, and so forth). A request in units not appropriately sized is rounded up

to the next highest power of 2. For example, a request for 11 KB is satisfied with a 16K segment

OS Examples

Windows

.

http://www.studentsfocus.com/

Windows implements virtual memory using demand paging with clustering. Clustering handles page faults by

bringing in not only the faulting page but also several pages following the faulting page. When a process is first created,

it is assigned a working-set minimum and maximum. The working-set minimum is the minimum number of pages the

process is guaranteed to have in memory.

If sufficient memory is available, a process may be assigned as many pages as its working-set maximum. (In

some circumstances, a process may be allowed to exceed its working-set maximum.) The virtual memory manager

maintains a list of free page frames. Associated with this list is a threshold value that is used to indicate whether

sufficient free memory is available. If a page fault occurs for a process that is below its working-set maximum, the

virtual memory manager allocates a page from this list of free pages. If a process that is at its working-set maximum

incurs a page fault, it must select a page for replacement using a local LRU page-replacement policy.

Solaris

In Solaris, when a thread incurs a page fault, the kernel assigns a page to the faulting thread fromthe list of free

pages it maintains. Therefore, it is imperative that the kernel keep a sufficient amount of free memory available.

Associated with this list of free pages is a parameter— lotsfree—that represents a threshold to begin paging. The

lotsfree parameter is typically set to 1/64 the size of the physical memory. Four times per second, the kernel checks

whether the amount of free memory is less than lotsfree. If the number of free pages falls below lotsfree, a process

known as a pageout starts up. The pageout process is similar to the second

.

http://www.studentsfocus.com/

Magnetic Disks

CS6401- Operating System

UNIT-IV

I/O SYSTEMS

Magnetic disks provide the bulk of secondary storage for modern computer systems. Each disk platter

has a flat circular shape, like a CD. Common platter diameters range from 1.8 to 3.5 inches. The two surfaces

of a platter are covered with a magnetic material. We store information by recording it magnetically on the

platters

A read–write head “flies” just above each surface of every platter. The heads are attached to a disk

arm that moves all the heads as a unit. The surface of a platter is logically divided into circular tracks, which

are subdivided into sectors. The set of tracks that are at one arm position makes up a cylinder. There may be

thousands of concentric cylinders in a disk drive, and each track may contain hundreds of sectors. The storage

capacity of common disk drives is measured in gigabytes.

A disk drive is attached to a computer by a set of wires called an I/O bus. Several kinds of buses are

available, including advanced technology attachment (ATA), serial ATA (SATA), eSATA, universal

serial bus (USB),and fibre channel (FC). The data transfers on a bus are carried out by special electronic

processors called controllers.Thehost controller is the controller at the computer end of the bus. A disk

controller is built into each disk drive. To perform a disk I/O operation, the computer places a command into

the host controller, typically using memory-mapped I/O ports.

The host controller then sends the command via messages to the disk controller, and the disk

controller operates the disk-drive hardware to carry out the command. Disk controllers usually have a built-in

cache. Data transfer at the disk drive happens between the cache and the disk surface, and data transfer to the

host, at fast electronic speeds, occurs between the cache and the host controller.

Solid-State Disks

Sometimes old technologies are used in new ways as economics change or the technologies evolve.

An example is the growing importance of solid-state disks,or SSDs. Simply described, an SSD is nonvolatile

memory that is used like a hard drive. There are many variations of this technology, from DRAM with a

battery to allow it to maintain its state in a power failure through flash-memory technologies like single-level

cell (SLC) and multilevel cell (MLC) chips.

SSDs have the same characteristics as traditional hard disks but can be more reliable because they

have no moving parts and faster because they have no seek time or latency. In addition, they consume less

power. However, they are more expensive per megabyte than traditional hard disks, have less capacity than

the larger hard disks, and may have shorter life spans than hard disks, so their uses are somewhat limited. One

use for SSDs is in storage arrays, where they hold file-system metadata that require high performance. SSDs

are also used in some laptop computers to make them smaller, faster, and more energy-efficient. Because

SSDs can be much faster than magnetic disk drives, standard bus interfaces can cause a major limit on

throughput.

Magnetic Tapes

Magnetic tape was used as an early secondary-storage medium. Although it is relatively permanent

and can hold large quantities of data, its access time is slow compared with that of main memory and

magnetic disk. In addition, random access to magnetic tape is about a thousand times slower than random

access to magnetic disk, so tapes are not very useful for secondary storage. Tapes are used mainly for backup,

for storage of infrequently used information, and as a medium for transferring information from one system to

another.

A tape is kept in a spool and is wound or rewound past a read–write head. Moving to the correct spot

on a tape can take minutes, but once positioned, tape drives can write data at speeds comparable to disk

drives. Tape capacities vary greatly, depending on the particular kind of tape drive, with current capacities

exceeding several terabytes. Some tapes have built-in compression that can more than double the effective

storage. Tapes and their drivers are usually categorized by width, including 4, 8, and 19 millimetres and 1/4

and 1/2 inch. Some are named according to technology, such as LTO-5 and SDLT.

Disk Scheduling and Management

One of the responsibilities of the operating system is to use the hardware efficiently. For the

disk drives,

1. A fast access time and

2. High disk bandwidth.

• The access time has two major components;

□ The seek time is the time for the disk arm to move the heads to the cylinder containing the desired

sector.

□ The rotational latency is the additional time waiting for the disk to rotate the desired sectorto

the disk head.

• The disk bandwidthisthe total number of bytes transferred, divided by the total time between the first

request for service and the completion of the last transfer.

One of the responsibilities of the operating system is to use the hardware efficiently.

For the disk drives,

1. A fast access time and
2. High disk bandwidth.
□ The access time has two major components;

✓ The seek time is the time for the disk arm to move the heads to the cylinder containing the desired
sector.

✓ The rotational latency is the additional time waiting for the disk to rotate the desired sector to the
disk head.

□ The disk bandwidth is the total number of bytes transferred, divided by the total time between the first

request for service and the completion of the last transfer.

We can improve both the access time and the bandwidth by disk scheduling.

Disk scheduling: Servicing of disk I/O requests in a good order.

1. FCFS Scheduling:

The simplest form of disk scheduling is, of course, the first-come, first-served (FCFS) algorithm. This

algorithm is intrinsically fair, but it generally does not provide the fastest service. Consider, for example, a

disk queue with requests for I/O to blocks on cylinders

I/O to blocks on cylinders

98, 183, 37, 122, 14, 124, 65, 67,

If the disk head is initially at cylinder 53, it will first move from 53 to 98, then to 183, 37, 122, 14,

124, 65, and finally to 67, for a total head movement of 640 cylinders. The wild swing from 122 to 14 and
then back to 124 illustrates the problem with this schedule. If the requests for cylinders 37 and 14 could be
serviced together, before or after the requests for 122 and 124, the total head movement could be decreased
substantially, and performance could be thereby improved.

2. SSTF (shortest-seek-time-first)Scheduling

Service all the requests close to the current head position, before moving the head far away

to service other requests. That is selects the request with the minimum seek time from the current

head position.

Total head movement = 236 cylinders

3. SCAN Scheduling

The disk head starts at one end of the disk, and moves toward the other end, servicing requests as it

reaches each cylinder, until it gets to the other end of the disk. At the other end, the direction of head

movement is reversed, and servicing continues. The head continuously scans back and forth across the disk.

4. C-SCAN Scheduling
Variant of SCAN designed to provide a more uniform wait time. It moves the head from one end of

the disk to the other, servicing requests along the way. When the head reaches the other end, however, it

immediately returns to the beginning of the disk, without servicing any requests on the return trip.

5. LOOK Scheduling
Both SCAN and C-SCAN move the disk arm across the full width of the disk. In this, the arm

goes only as far as the final request in each direction. Then, it reverses direction immediately, without

going all the way to the end of the disk.

Disk Management

1. Disk Formatting:

Before a disk can store data, the sector is divided into various partitions. This process is calledlow-

level formatting or physical formatting. It fills the disk with a special data structure for each sector.

The data structure for a sector consists of

✓ Header,

✓ Data area (usually 512 bytes in size), and

✓ Trailer.

The header and trailer contain information used by the disk controller, such as a sector number and an

error-correcting code (ECC).

This formatting enables the manufacturer to

1. Test the disk and

2. To initialize the mapping from logical block numbers

To use a disk to hold files, the operating system still needs to record its own data structures on thedisk.

It does so in two steps.

(a) The first step is Partition the disk into one or more groups of cylinders. Among the partitions, one

partition can hold a copy of the OS‘s executable code, while another holds userfiles.

(b) The second step is logical formatting .The operating system stores the initial file-system data

structures onto the disk. These data structures may include maps of free and allocated space and aninitial

empty directory.

2. Boot Block:

For a computer to start running-for instance, when it is powered up or rebooted-it needs to have an

initial program to run. This initial program is called bootstrap program & it should be simple. It

initializes all aspects of the system, from CPU registers to device controllers and the contents of main

memory, and then starts the operating system.

To do its job, the bootstrap program

1. Finds the operating system kernel on disk,

2. Loads that kernel into memory, and

3. Jumps to an initial address to begin the operating-system execution. The

bootstrap is stored in read-only memory (ROM).

Advantages:

1. ROM needs no initialization.

2. It is at a fixed location that the processor can start executing when powered up or reset.

3. It cannot be infected by a computer virus. Since, ROM is read only.

The full bootstrap program is stored in a partition called the boot blocks, at a fixed location on the

disk. A disk that has a boot partition is called a boot disk or system disk.

The code in the boot ROM instructs the disk controller to read the boot blocks into memory and then

starts executing that code.

Bootstrap loader: load the entire operating system from a non-fixed location on disk, and to start the

operating system running.

3. Bad Blocks:

The disk with defected sector is called as bad block.

Depending on the disk and controller in use, these blocks are handled in a variety of ways;

Method 1: “Handled manuallyǁ

If blocks go bad during normal operation, a special program must be run manually to search for

the bad blocks and to lock them away as before. Data that resided on the bad blocks usually are lost.

Method 2: “sector sparing or forwarding”

The controller maintains a list of bad blocks on the disk. Then the controller can be told

to replace each bad sector logically with one of the spare sectors. This scheme is known as sector sparing or

forwarding.

A typical bad-sector transaction might be as follows:

1. The operating system tries to read logical block 87.

2. The controller calculates the ECC and finds that the sector is bad.

3. It reports this finding to the operating system.

4. The next time that the system is rebooted, a special command is run to tell the controller to replace

the bad sector with a spare.

5. After that, whenever the system requests logical block 87, the request is translated into the

replacement sector's address by the controller.

Method 3: “sector slipping”

For an example, suppose that logical block 17 becomes defective, and the first available spare

follows sector 202. Then, sector slipping would remap all the sectors from 17 to 202, moving them all

down one spot. That is, sector 202 would be copied into the spare, then sector 201 into 202, and then 200

into 201, and so on, until sector 18 is copied into sector 19. Slipping the sectors in this way frees up the

space of sector 18, so sector 17 can be mapped to it.

File System Storage-File Concepts

File Concept

A file is a named collection of related information that is recorded on secondary storage.
• From a user’s perspective, a file is the smallest allotment of logical secondary storage; that

is, data cannot be written to secondary storage unless they are within a file.

Examples of files:

• A text file is a sequence of characters organized into lines (and possibly pages). A source file is a

sequence of subroutines and functions, each of which is further organized as declarations followed by

executable statements. An object file is a sequence of bytes organized into blocks understandable by the

system’s linker.

An executable file is a series of code sections that the loader can bring into memory and execute.

File Attributes

• Name: The symbolic file name is the only information kept in human readable form.
• Identifier: This unique tag, usually a number identifies the file within the file system. It is thenon-human

readable name for the file.

• Type: This information is needed for those systems that support different types.

• Location: This information is a pointer to a device and to the location of the file on that device.

• Size: The current size of the file (in bytes, words or blocks)and possibly the maximum allowed sizeare

included in this attribute.

• Protection: Access-control information determines who can do reading, writing, executing and so on.
• Time, date and user identification: This information may be kept for creation, last modification and last

use. These data can be useful for protection, security and usage monitoring.

File Operations

• Creating a file

• Writing a file

• Reading a file

• Repositioning within a file

• Deleting a file

• Truncating a file

Access Methods

1. Sequential Access

a. The simplest access method is sequential access. Information in the file is processed in

order, one record after the other. This mode of access is by far the most common; for

example, editors and compilers usually access files in this fashion.

The bulk of the operations on a file is reads and writes. A read operation reads the next portion of the

file and automatically advances a file pointer, which tracks the I/O location. Similarly, a write appends to the

end of the file and advances to the end of the newly written material (the new end of file). Such a file can be

reset to the beginning and, on some systems, a program may be able to skip forward or back ward n records,

for some integer n-perhaps only for n=1. Sequential access is based on a tape model of a file, and works as

well on sequential-access devices as it does on random – access ones.

2. Direct Access

Another method is direct access (or relative access). A file is made up of fixed length logical records

that allow programs to read and write records rapidly in no particular order. The direct- access methods is

based on a disk model of a file, since disks allow random access to any file block.

For direct access, the file is viewed as a numbered sequence of blocks or records. A direct-access file

allows arbitrary blocks to be read or written. Thus, we may read block 14, then read block 53, and then write

block7. There are no restrictions on the order of reading or writing for a direct-access file.

Direct – access files are of great use for immediate access to large amounts of information. Database

is often of this type. When a query concerning a particular subject arrives, we compute which block contains

the answer, and then read that block directly to provide the desired information.

Directory and Disk Structure

There are five directory structures. They are

1. Single-level directory

2. Two-level directory

3. Tree-Structured directory

4. Acyclic Graph directory

5. General Graph directory

1. Single – Level Directory

• The simplest directory structure is the single- level directory.

• All files are contained in the same directory.

• Disadvantage:

➢ When the number of files increases or when the system has more than one user, since all files are
in the same directory, they must have unique names.

2. Two – Level Directory

• In the two level directory structures, each user has her own user file directory (UFD).

• When a user job starts or a user logs in, the system’s master file directory (MFD) is searched. The MFD is

indexed by user name or account number, and each entry points to the UFD for that user.

• When a user refers to a particular file, only his own UFD is searched.

• Thus, different users may have files with the same name.
• Although the two – level directory structure solves the name-collision problem
Disadvantage:

➢ Users cannot create their own sub-directories.

3. Tree – Structured Directory

• A tree is the most common directory structure.

• The tree has a root directory. Every file in the system has a unique path name.

• A path name is the path from the root, through all the subdirectories to a specified file.

• A directory (or sub directory) contains a set of files or sub directories.

• A directory is simply another file. But it is treated in a special way.

• All directories have the same internal format.

• One bit in each directory entry defines the entry as a file (0) or as a subdirectory (1).

• Special system calls are used to create and delete directories.

• Path names can be of two types: absolute path names or relative path names.

• An absolute path name begins at the root and follows a path down to the specified file, giving thedirectory

names on the path.

• A relative path name defines a path from the current directory.

4. Acyclic Graph Directory.

• An acyclic graph is a graph with no cycles.

• To implement shared files and subdirectories this directory structure is used.
• An acyclic – graph directory structure is more flexible than is a simple tree structure, but it is also more

complex. In a system where sharing is implemented by symbolic link, this situation is somewhat easier to

handle. The deletion of a link does not need to affect the original file; only the link is removed.

• Another approach to deletion is to preserve the file until all references to it are deleted. To implementthis

approach, we must have some mechanism for determining that the last reference to the file has been deleted.

Sharing and Protection

File Sharing

1. Multiple Users:

• When an operating system accommodates multiple users, the issues of file sharing, file naming and file

protection become preeminent.

• The system either can allow user to access the file of other users by default, or it may require that a user

specifically grant access to the files.

• These are the issues of access control and protection.
• To implementing sharing and protection, the system must maintain more file and directory attributes than a

on a single-user system.

• The owner is the user who may change attributes, grand access, and has the most control over the file or

directory.

• The group attribute of a file is used to define a subset of users who may share access to the file.

• Most systems implement owner attributes by managing a list of user names and associated user identifiers

(user Ids).

• When a user logs in to the system, the authentication stage determines the appropriate user ID for the user.

That user ID is associated with all of user’s processes and threads. When they need to be user readable, they

are translated, back to the user name via the user name list. Likewise, group functionality can be implemented

as a system wide list of group names and group identifiers.

• Every user can be in one or more groups, depending upon operating system design decisions. The user’s

group Ids is also included in every associated process and thread.

2. Remote File System:

• Networks allowed communications between remote computers.

• Networking allows the sharing or resource spread within a campus or even around the world.

• User manually transfer files between machines via programs like ftp.

• A distributed file system (DFS) in which remote directories is visible from the local machine.

• The World Wide Web: A browser is needed to gain access to the remote file and separate operations

(essentially a wrapper for ftp) are used to transfer files.

a) The client-server Model:

• Remote file systems allow a computer to a mount one or more file systems from one or more

remote machines.

• A server can serve multiple clients, and a client can use multiple servers, depending on the

implementation details of a given client –server facility.

• Client identification is more difficult. Clients can be specified by their network name or other

identifier, such as IP address, but these can be spoofed (or imitate). An unauthorized client can spoof the

server into deciding that it is authorized, and the unauthorized client could be allowed access.

b) Distributed Information systems:

• Distributed information systems, also known as distributed naming service, have been devised to
provide a unified access to the information needed for remote computing.

• Domain name system (DNS) provides host-name-to-network address translations for theirentire

Internet (including the World Wide Web).

• Before DNS was invented and became widespread, files containing the same information were sent

via e-mail of ftp between all networked hosts.

c) Failure Modes:

• Redundant arrays of inexpensive disks (RAID) can prevent the loss of a disk from resulting in

the loss of data.

• Remote file system has more failure modes. By nature of the complexity of networking system and

the required interactions between remote machines, many more problems can interfere with the proper

operation of remote file systems.

d) Consistency Semantics:

• It is characterization of the system that specifies the semantics of multiple users accessing a shared file
simultaneously.

• These semantics should specify when modifications of data by one user are observable by other users.

• The semantics are typically implemented as code with the file system.

• A series of file accesses (that is reads and writes) attempted by a user to the same file is always enclosed

between the open and close operations.

• The series of access between the open and close operations is a file session.

(i) UNIX Semantics:

The UNIX file system uses the following consistency semantics:
1. Writes to an open file by a user are visible immediately to other users that have this file open at thesame

time.

2. One mode of sharing allows users to share the pointer of current location into the file. Thus, the advancing

of the pointer by one user affects all sharing users.

(ii) Session Semantics:

The Andrew file system (AFS) uses the following consistency semantics:
1. Writes to an open file by a user are not visible immediately to other users that have the same file open

simultaneously.

2. Once a file is closed, the changes made to it are visible only in sessions starting later. Already open

instances of the file do not reflect this change.

(iii) Immutable –shared File Semantics:

• Once a file is declared as shared by its creator, it cannot be modified.

• An immutable file has two key properties:

□ Its name may not be reused and its contents may not be altered.

File Protection

(i) Need for file protection.

• When information is kept in a computer system, we want to keep it safe from physical damage (reliability)

and improper access (protection).

• Reliability is generally provided by duplicate copies of files. Many computers have systems programs that

automatically (or though computer-operator intervention) copy disk files to tape at regular intervals (once per

day or week or month) to maintain a copy should a file system be accidentally destroyed.

• File systems can be damaged by hardware problems (such as errors in reading or writing), power surges or

failures, head crashes, dirt, temperature extremes, and vandalism. Files may be deleted accidentally. Bugs in

the file-system software can also cause file contents to be lost.

• Protection can be provided in many ways. For a small single-user system, we might provide protectionby

physically removing the floppy disks and locking them in a desk drawer or file cabinet. In a multi-user

system, however, other mechanisms are needed.

(ii) Types of Access

• Complete protection is provided by prohibiting access.

• Free access is provided with no protection.

• Both approaches are too extreme for general use.

• What is needed is controlled access.

• Protection mechanisms provide controlled access by limiting the types of file access that can be made.

Access is permitted or denied depending on several factors, one of which is the type of access requested.

Several different types of operations may be controlled:

1. Read: Read from the file.

2. Write: Write or rewrite the file.

3. Execute: Load the file into memory and execute it.

4. Append: Write new information at the end of the file.

5. Delete: Delete the file and free its space for possible reuse.

6. List: List the name and attributes of the file.

(iii) Access Control

• Associate with each file and directory an access-control list (ACL) specifying the user name and the types

of access allowed for each user.

• When a user requests access to a particular file, the operating system checks the access list associated with

that file. If that user is listed for the requested access, the access is allowed. Otherwise, a protection violation

occurs and the user job is denied access to the file.

• This technique has two undesirable consequences:

□ Constructingsuchalistmaybeatediousandunrewardingtask,especiallyifwedonotknowinadvance
the list of users in the system.

□ Thedirectoryentry,previouslyoffixedsize,nowneedstobeofvariablesize,resultinginmore
complicated space management.

• To condense the length of the access control list, many systems recognize three classifications of usersin

connection with each file:

➢ Owner: The user who created the file is the owner.
➢ Group: A set of users who are sharing the file and need similar access is a group, or work

group.

➢ Universe: All other users in the system constitute the universe.

File System Implementation- File System Structure

• Disk provide the bulk of secondary storage on which a file system is maintained.

• Characteristics of a disk:

1. They can be rewritten in place, it is possible to read a block from the disk, to modify the block and towrite

it back into the same place.

2. They can access directly any given block of information to the disk.

• To produce an efficient and convenient access to the disk, the operating system imposes one or more file

system to allow the data to be stored, located and retrieved easily.

• The file system itself is generally composed of many different levels. Each level in the design uses the

features of lower level to create new features for use by higher levels.

Layered File System

• The I/O control consists of device drivers and interrupt handlers to transfer information between themain

memory and the disk system .

• The basic file system needs only to issue generic commands to the appropriate device driver to read and

write physical blocks on the disk. Each physical block is identified by its numeric disk address (for example,

drive –1, cylinder 73, track 2, sector 10)

Directory Implementation

1. Linear List

• The simplest method of implementing a directory is to use a linear list of file names with pointer to the data

blocks.

• A linear list of directory entries requires a linear search to find a particular entry.
• This method is simple to program but time- consuming to execute. To create a new file, we must first

search the but time – consuming to execute.

• The real disadvantage of a linear list of directory entries is the linear search to find a file.

2. Hash Table

• In this method, a linear list stores the directory entries, but a hash data structure is also used.
• The hash table takes a value computed from the file name and returns a pointer to the file name in thelinear
list.

• Therefore, it can greatly decrease the directory search time.

• Insertion and deleting are also fairly straight forward, although some provision must be made for collisions

– situation where two file names hash to the same location.

• The major difficulties with a hash table are its generally fixed size and the dependence of the hash function

on that size.

Allocation Methods

• The main problem is how to allocate space to these files so that disk space is utilized effectively and files

can be accessed quickly.

• There are three major methods of allocating disk space:

1. Contiguous Allocation

2. Linked Allocation

3. Indexed Allocation

1. Contiguous Allocation

• The contiguous – allocation method requires each file to occupy a set of contiguous blocks on the disk.

• Contiguous allocation of a file is defined by the disk address and length (in block units) of the first block. If

the file is n blocks long and starts at location b, then it occupies blocks b,. b+1, b+2,….,b+n-1.

• The directory entry for each file indicates the address of the starting block and the length of the area

allocated for this file.

Disadvantages:

1. Finding space for a new file.

• The contiguous disk space-allocation problem suffer from the problem of external fragmentation. As file

are allocated and deleted, the free disk space is broken into chunks. It becomes a problem when the largest

contiguous chunk is insufficient for a request; storage is fragmented into a number of holes, no one of which

is large enough to store the data.

2. Determining how much space is needed for a file.

• When the file is created, the total amount of space it will need must be found an allocated how doesthe

creator know the size of the file to be created?

• If we allocate too little space to a file, we may find that file cannot be extended. The other possibility is to

find a larger hole, copy the contents of the file to the new space, and release the previous space. This seriesof

actions may be repeated as long as space exists, although it can be time – consuming. However, in this case,

the user never needs to be informed explicitly about what is happening ; the system continues despite the

problem, although more and more slowly.

• Even if the total amount of space needed for a file is known in advance pre-allocation may be inefficient.

• A file that grows slowly over a long period (months or years) must be allocated enough space for its final

size, even though much of that space may be unused for a long time the file, therefore has a large amount of

internal fragmentation.

To overcome these disadvantages:

• Use a modified contiguous allocation scheme, in which a contiguous chunk of space called as an extent is

allocated initially and then, when that amount is not large enough another chunk of contiguous space an

extent is added to the initial allocation.

• Internal fragmentation can still be a problem if the extents are too large, and external fragmentation can be

a problem as extents of varying sizes are allocated and deallocated.

2. Linked Allocation

• Linked allocation solves all problems of contiguous allocation.

• With linked allocation, each file is a linked list of disk blocks, the disk blocks may be scattered any where

on the disk.

• The directory contains a pointer to the first and last blocks of the file. For example, a file of five blocks

might start at block 9, continue at block 16, then block 1, block 10, and finally bock 25.

• Each block contains a pointer to the next block. These pointers are not made available to the user.

• There is no external fragmentation with linked allocation, and any free block on the free space list can be

used to satisfy a request.

• The size of a file does not need to the declared when that file is created. A file can continue to grow as long

as free blocks are available consequently, it is never necessary to compacts disk space.

Disadvantages:

1. Used effectively only for sequential access files.

• To find the ith block of a file, we must start at the beginning of that file, and follow the pointers until we

get to the ith block. Each aces to a pointer requires a disk read, and sometimes a disk seek consequently, it is

inefficient to support a direct- access capability for linked allocation files.

2. Space required for the pointers

• If a pointer requires 4 bytes out of a 512-byte block, then 0.78 percent of the disk is being used for pointers,

rather than for information.

• Solution to this problem is to collect blocks into multiples, called clusters, and to allocate the clusters

rather than blocks. For instance, the file system may define a clusters as 4 blocks, and operate on the disk in

only cluster units.

3. Reliability

• Since the files are linked together by pointers scattered all over the disk hardware failure might result in

picking up the wrong pointer. This error could result in linking into the free- space list or into another file.

Partial solution are to use doubly linked lists or to store the file names in a relative block number in each

block; however, these schemes require even more over head for each file.

File Allocation Table(FAT)

• An important variation on the linked allocation method is the use of a file allocation table(FAT).

• This simple but efficient method of disk- space allocation is used by the MS-DOS and OS/2 operating

systems.

• A section of disk at beginning of each partition is set aside to contain the table.

• The table has entry for each disk block, and is indexed by block number.

• The FAT is much as is a linked list.

• The directory entry contains the block number the first block of the file.

• The table entry indexed by that block number contains the block number of the next block in thefile.

• This chain continues until the last block which has a special end – of – file value as the table entry.

• Unused blocks are indicated by a 0 table value.

• Allocating a new block file is a simple matter of finding the first 0 – valued table entry, and replacing the

previous end of file value with the address of the new block.

• The 0 is replaced with the end – of – file value, an illustrative example is the FAT structure for a file

consisting of disk blocks 217,618, and 339.

3. Indexed Allocation

• Linked allocation solves the external – fragmentation and size- declaration problems of contiguous

allocation.

• Linked allocation cannot support efficient direct access, since the pointers to the blocks are scattered with

the blocks themselves all over the disk and need to be retrieved in order.

• Indexed allocation solves this problem by bringing all the pointers together into one location: the index

block.

• Each file has its own index block, which is an array of disk – block addresses.

• The ith entry in the index block points to the ith block of the file.

• The directory contains the address of the index block .

• To read the ith block, we use the pointer in the ith index – block entry to find and read the desired block

this scheme is similar to the paging scheme .

• When the file is created, all pointers in the pointers in the index block are set to nil. when the ith block is

first written, a block is obtained from the free space manager, and its address is put in the ith index – block

entry.

• Indexed allocation supports direct access, without suffering from external fragmentation, because any free

block on the disk may satisfy a request for more space.

Disadvantages

1.Pointer Overhead
• Indexed allocation does suffer from wasted space. The pointer over head of the index block is generally
greater than the pointer over head of linked allocation.

2. Size of Index block

If the index block is too small, however, it will not be able to hold enough pointers for a large file, and a

mechanism will have to be available to deal with this issue:

• Linked Scheme: An index block is normally one disk block. Thus, it can be read and written directlyby

itself. To allow for large files, we may link together several index blocks.

• Multilevel index: A variant of the linked representation is to use a first level index block to point to a set

of second – level index blocks.

• Combined scheme:

o Another alternative, used in the UFS, is to keep the first, say, 15 pointers of the index block in thefile’s

inode.

o The first 12 of these pointers point to direct blocks; that is for small (no more than 12 blocks) files do not

need a separate index block

o The next pointer is the address of a single indirect block.

□ The single indirect block is an index block, containing not data, but rather the addresses of blocks that do
contain data.
o Then there is a double indirect block pointer, which contains the address of a block that contain pointers to

the actual data blocks. The last pointer would contain pointers to the actual data blocks.

o The last pointer would contain the address of a triple indirect block.

Free-space Management

• Since disk space is limited, we need to reuse the space from deleted files for new files, if possible.

• To keep track of free disk space, the system maintains a free-space list.

• The free-space list records all free disk blocks – those not allocated to some file or directory.
• To create a file, we search the free-space list for the required amount of space, and allocate that space to the

new file.

• This space is then removed from the free-space list.

• When a file is deleted, its disk space is added to the free-space list.

1. Bit Vector

• The free-space list is implemented as a bit map or bit vector.
• Each block is represented by 1 bit. If the block is free, the bit is 1; if the block is allocated, the bit is 0.
• For example, consider a disk where block 2,3,4,5,8,9,10,11,12,13,17,18,25,26 and 27 are free, and the rest
of the block are allocated. The free space bit map would be

001111001111110001100000011100000 …
• The main advantage of this approach is its relatively simplicity and efficiency in finding the first free

block, or n consecutive free blocks on the disk.

2. Linked List

• Another approach to free-space management is to link together all the free disk blocks, keeping a pointer to

the first free block in a special location on the disk and caching it in memory.

• This first block contains a pointer to the next free disk block, and so on.
• In our example, we would keep a pointer to block 2, as the first free block. Block 2 would contain a pointer

to block 3, which would point to block 4, which would point to block 5, which would point to block 8, and so

on.

• However, this scheme is not efficient; to traverse the list, we must read each block, which requires

substantial I/O time.

• The FAT method incorporates free-block accounting data structure. No separate method is needed.

3. Grouping

• A modification of the free-list approach is to store the addresses of n free blocks in the first free block.

• The first n-1 of these blocks are actually free.

• The last block contains the addresses of another n free blocks, and so on.

• The importance of this implementation is that the addresses of a large number of free blocks can be found

quickly.

4. Counting

• We can keep the address of the first free block and the number n of free contiguous blocks that followthe
first block.

• Each entry in the free-space list then consists of a disk address and a count.

• Although each entry requires more space than would a simple disk address, the overall list will be shorter,

as long as the count is generally greater than 1.

I/O Systems

I/O Hardware

The role of the operating system in computer I/O is to manage and control I/O operations and I/O

devices. A device communicates with a computer system by sending signals over a cable or even through the

air.

Port: The device communicates with the machine via a connection point (or port), for example, a serial

port.

Bus: If one or more devices use a common set of wires, the connection is called a bus.

Daisy chain: Device A‘ has a cable that plugs into device B‘, and device B‘ has a cable that plugs into

device C‘, and device C‘ plugs into a port on the computer, this arrangement is called a daisy chain. A

daisy chain usually operates as a bus.

PC bus structure:

A PCI bus that connects the processor-memory subsystem to the fast devices, and an expansion bus

that connects relatively slow devices such as the keyboard and serial and parallel ports. In the upper-right

portion of the figure, four disks are connected together on a SCSI bus plugged into a SCSI controller.

A controller or host adapter is a collection of electronics that can operate a port, a bus, or a device.

A serial-port controller is a simple device controller. It is a single chip in the computer that controls the

signals on the wires of a serial port. By contrast, a SCSI bus controller is not simple. Because the SCSI

protocol is complex, the SCSI bus controller is often implemented as a separate circuit board. It typically

contains a processor, microcode, and some private memory. Some devices have their own built-in controllers.

• How can the processor give commands and data to a controller to accomplish an I/O transfer?

o Direct I/O instructions

o Memory-mapped I/O
Direct I/O instructions

Use special I/O instructions that specify the transfer of a byte or word to an I/O port address. The I/O

instruction triggers bus lines to select the proper device and to move bits into or out of a device register

Memory-mapped I/O

The device-control registers are mapped into the address space of the processor. The CPU executes I/O

requests using the standard data-transfer instructions to read and write the device-control registers.

An I/O port typically consists of four registers: status, control, data-in, and data-out registers.
Status register Read by the host to indicate states such as

whether the current command has completed,

whether a byte is available to be read from the

data-in register, and whether there has been a

device error.

Control register Written by the host to start a command or to
change the mode of a device.

data-in register Read by the host to get input

data-out register Written by the host to send output

Polling

Interaction between the host and a controller
• The controller sets the busy bit when it is busy working, and clears the busy bit when it is ready toaccept

the next command.

• The host sets the command ready bit when a command is available for the controller to execute.

Coordination between the host & the controller is done by handshaking as follows:

1. The host repeatedly reads the busy bit until that bit becomes clear.

2. The host sets the write bit in the command register and writes a byte into the data-out register.

3. The host sets the command-ready bit.

4. When the controller notices that the command-ready bit is set, it sets the busy bit.
5. The controller reads the command register and sees the write command. It reads the data-out register to get

the byte, and does the I/O to the device.

6. The controller clears the command-ready bit, clears the error bit in the status register to indicate thatthe

device I/O succeeded, and clears the busy bit to indicate that it is finished.

In step 1, the host is busy-waiting or polling : It is in a loop, reading the status register over and over until

the busy bit becomes clear.

Interrupts

The CPU hardware has a wire called the interrupt-request line .
The basic interrupt mechanism works as follows;

1. Device controller raises an interrupt by asserting a signal on the interrupt request line.

2. The CPU catches the interrupt and dispatches to the interrupt handler and
3. The handler clears the interrupt by servicing the device.

Two interrupt request lines:

1. Nonmaskable interrupt: which is reserved for events such as unrecoverable memory errors?

2. Maskable interrupt: Used by device controllers to request service

Application I/O Interface

• I/O system calls encapsulate device behaviors in generic classes

• Device-driver layer hides differences among I/O controllers from kernel

www.studentsfocus.co Coursematerial

• Devices vary in many dimensions

1. Character-stream or block

2. Sequential or random-access

3. Sharable or dedicated

4. Speed of operation

5. read-write, read only, or write only

Types Description Example

Character-stream or block A character-stream device transfers

bytes one by one, whereas a block
device transfers a block of bytes as
a unit.

Terminal,

Disk

Sequential or random-access A sequential device transfers data

in a fixed order determined by the

device, whereas the user of a

random-access device can instruct

the device to seek to any of the

available data storage locations.

Modem,

CD-ROM

Sharable or dedicated A sharable device can be used

concurrently by several processes

or threads; a dedicated device
cannot.

Tape,

Keyboard

Speed of operation Latency, seek time, transfer rate,

delay between operations

read-write, read only, or write only Some devices perform both input
and output, but others support only

one data direction.

CD-ROM,

Graphics controller,

Disk

Block and Character Devices

Block-device: The block-device interface captures all the aspects necessary for accessing disk drives

and other block-oriented devices. The device should understand the commands such as read () & write (), and

if it is a random access device, it has a seek() command to specify which block to transfer next.

Applications normally access such a device through a file-system interface. The OS itself, and special

applications such as database-management systems, may prefer to access a block device as a simple linear

array of blocks. This mode of access is sometimes called raw I/O.

Memory-mapped file access can be layered on top of block-device drivers. Rather than offering read and

write operations, a memory-mapped interface provides access to disk storage via an array of bytes in main

memory.

Character Devices: A keyboard is an example of a device that is accessed through a character stream

interface. The basic system calls in this interface enable an application to get() or put() one character.

On top of this interface, libraries can be built that offer line-at-a-time access, with buffering and editing

services.

(+) This style of access is convenient for input devices where it produce input "spontaneously".
(+) This access style is also good for output devices such as printers or audio boards, which naturally fit

the concept of a linear stream of bytes.

Network Devices

Because the performance and addressing characteristics of network I/O differ significantly from those

of disk I/O, most operating systems provide a network I/O interface that is different from the read0 -write() -

seek() interface used for disks.

http://www.studentsfocus.co/

www.studentsfocus.co Coursematerial

• Windows NT provides one interface to the network interface card, and a second interface to the network

protocols.

• In UNIX, we find half-duplex pipes, full-duplex FIFOs, full-duplex STREAMS, message queues and

sockets.

Clocks and Timers

Most computers have hardware clocks and timers that provide three basic functions:
1. Give the current time

2. Give the elapsed time

3. Set a timer to trigger operation X at time T

These functions are used by the operating system & also by time sensitive applications.

Programmable interval timer: The hardware to measure elapsed time and to trigger operations is called a

programmable interval timer. It can be set to wait a certain amount of time and then to generate an interrupt.

To generate periodic interrupts, it can be set to do this operation once or to repeat.

Blocking and Non-blocking I/O (or) synchronous & asynchronous:

Blocking I/O: When an application issues a blocking system call;

□ Theexecution of the application is suspended.

□ The application is moved from the operating system's run queue to a wait queue.

□ Afterthesystemcallcompletes,theapplicationismovedbacktotherunqueue,whereitis
eligible to resume execution, at which time it will receive the values returned by the system call.

Non-blocking I/O: Some user-level processes need non-blocking I/O.
Examples: 1. User interface that receives keyboard and mouse input while processing and

displaying data on the screen.

2. Video application that reads frames from a file on disk while

simultaneously decompressing and displaying the output on the display.

Kernel I/O Subsystem

Kernels provide many services related to I/O.
□ Oneway that the I/O subsystem improves the efficiency of the computer is by scheduling I/O
operations.

□ Anotherwayisbyusingstoragespaceinmainmemoryorondisk,viatechniquescalledbuffering,
caching, and spooling.

I/O Scheduling:

To determine a good order in which to execute the set of I/O requests.
Uses:

a) It can improve overall system performance,

b) It can share device access fairly among processes, and

c) It can reduce the average waiting time for 1/0 to complete.

Implementation: OS developers implement scheduling by maintaining a queue of requestsǁ for each device.

1. When an application issues a blocking I/O system call,

2. The request is placed on the queue for that device.

http://www.studentsfocus.co/

www.studentsfocus.co Coursematerial

3. The I/O scheduler rearranges the order of the queue to improve the overall system efficiency andthe

average response time experienced by applications.

Buffering:

Buffer: A memory area that stores data while they are transferred between two devices or between a

device and an application.

Reasons for buffering:

a) To cope with a speed mismatch between the producer and consumer of a data stream.

b) To adapt between devices that have different data-transfer sizes.

c) To support copy semantics for application I/O.

Copy semantics: Suppose that an application has a buffer of data that it wishes to write to disk. It calls

the write () system call, providing a pointer to the buffer and an integer specifying the number of bytes to

write.

After the system call returns, what happens if the application changes the contents of the buffer?
With copy semantics, the version of the data written to disk is guaranteed to be the version at the time of the

application system call, independent of any subsequent changes in the application's buffer.

A simple way that the operating system can guarantee copy semantics is for the write() system call to

copy the application data into a kernel buffer before returning control to the application. The disk write is

performed from the kernel buffer, so that subsequent changes to the application buffer have no effect.

Caching

A cache is a region of fast memory that holds copies of data. Access to the cached copy is more

efficient than access to the original

Cache vs buffer: A buffer may hold the only existing copy of a data item, whereas a cache just holds a

copy on faster storage of an item that resides elsewhere.

When the kernel receives a file I/O request,

1. The kernel first accesses the buffer cache to see whether that region of the file is already available

in main memory.

2. If so, a physical disk I/O can be avoided or deferred. Also, disk writes are accumulated in the buffer

cache for several seconds, so that large transfers are gathered to allow efficient write schedules.

Spooling and Device Reservation:

Spool: A buffer that holds output for a device, such as a printer, that cannot accept interleaved data

streams. A printer can serve only one job at a time, several applications may wish to print their output

concurrently, without having their output mixed together

The os provides a control interface that enables users and system administrators ;

a) To display the queue,

b) To remove unwanted jobs before those jobs print,

c) To suspend printing while the printer is serviced, and so on.

Device reservation - provides exclusive access to a device

□ System calls for allocation and de-allocation

□ Watch out for deadlock
Error Handling:

• An operating system that uses protected memory can guard against many kinds of hardware andapplication

errors.

• OS can recover from disk read, device unavailable, transient write failures

• Most return an error number or code when I/O request fails
• System error logs hold problem reports.

http://www.studentsfocus.co/

UNIX V CASE STUDIES

5.1 The Linux System

 An operating system is a program that acts as an interface between the user and the computer

hardware and controls the execution of all kinds of programs. The Linux open source

operating system, or Linux OS, is a freely distributable, cross-platform operating system based

on UNIX.

 The Linux consist of a kernel and some system programs. There are also some application

programs for doing work. The kernel is the heart of the operating system which provides a set

of tools that are used by system calls.

 The defining component of Linux is the Linux kernel, an operating system kernel first released

on 5 October 1991 by Linus Torvalds.

 A Linux-based system is a modular Unix-like operating system. It derives much of its basic

design from principles established in UNIX. Such a system uses a monolithic kernel which

handles process control, networking, and peripheral and file system access.

5.2 Important features of Linux Operating System

 Portable - Portability means software can work on different types of hardware in same way.

Linux kernel and application programs supports their installation on any kind of hardware

platform.

 Open Source - Linux source code is freely available and it is community based development
project.

 Multi-User & Multiprogramming - Linux is a multiuser system where multiple users can

access system resources like memory/ ram/ application programs at same time. Linux is a

multiprogramming system means multiple applications can run at same time.

 Hierarchical File System - Linux provides a standard file structure in which system files/ user
filesar

arranged.

 Shell - Linux provides a special interpreter program which can be used to execute commands

of the operating system.

 Security - Linux provides user security using authentication features like password

protection/ controlled access to specific files/ encryption of data.

5.3 Components of Linux System

Linux Operating System has primarily three components

 Kernel - Kernel is the core part of Linux. It is responsible for all major activities of this operating

system. It is consists of various modules and it interacts directly with the underlying hardware.

Kernel provides the required abstraction to hide low level hardware details to system or

application programs.

 System Library - System libraries are special functions or programs using which application

programs or system utilities accesses Kernel's features. These libraries implements most of

the functionalities of the operating system and do not requires kernel module's code access

rights.

 System Utility - System Utility programs are responsible to do specialized, individual level tasks

Installed components of a Linux system include the following:

 A bootloader is a program that loads the Linux kernel into the computer's main memory, by

being executed by the computer when it is turned on and after the firmware initialization is

performed.

 An init program is the first process launched by the Linux kernel, and is at the root of the
process tree.

 Software libraries, which contain code that can be used by running processes. The most

commonly used software library on Linux systems, the GNU C Library (glibc), C standard library

and Widget toolkits.

 User interface programs such as command shells or windowing environments. The user

interface, also known as the shell, is either a command-line interface (CLI), a graphical user

interface (GUI), or through controls attached

5.4 Architecture

Linux System Architecture is consists of following layers

1. Hardware layer - Hardware consists of all peripheral devices (RAM/ HDD/ CPU etc).

2. Kernel - Core component of Operating System, interacts directly with hardware, provides

low level services to upper layer components.

3. Shell - An interface to kernel, hiding complexity of kernel's functions from users. Takes

commands from user and executes kernel's functions.

4. Utilities - Utility programs giving user most of the functionalities of an operating systems.

5.5 Modes of operation

 Kernel Mode:

 Kernel component code executes in a special privileged mode called kernel mode with

full access to all resources of the computer.

 This code represents a single process, executes in single address space and do not

require any context switch and hence is very efficient and fast.

 Kernel runs each processes and provides system services to processes, provides

protected access to hardware to processes.

 User Mode:

 The system programs use the tools provided by the kernel to implement the various

services required from an operating system. System programs, and all other programs,

run `on top of the kernel', in what is called the user mode.

 Support code which is not required to run in kernel mode is in System Library.

 User programs and other system programs work in User Mode which has no access to

system hardware and kernel code.

 User programs/ utilities use System libraries to access Kernel functions to get system's

low level tasks.

5.6 Major Services provided by LINUX System

1. Initialization (init)

The single most important service in a LINUX system is provided by init

program. The init is started as the first process of every LINUX system, as the last

thing the kernel does when it boots. When init starts, it continues the boot process by

doing various startup chores (checking and mounting file systems, starting daemons,

etc).

2. Logins from terminals (getty)

Logins from terminals (via serial lines) and the console are provided by the

getty program. init starts a separate instance of getty for each terminal upon which

logins are to be allowed. Getty reads the username and runs the login program, which

reads the password. If the username and password are correct, login runs the shell.

3. Logging and Auditing (syslog)

The kernel and many system programs produce error, warning, and other

messages. It is often important that these messages can be viewed later, so they

should be written to a file. The program doing this logging operation is known as

syslog.

4. Periodic command execution (cron & at)

Both users and system administrators often need to run commands periodically.

For example, the system administrator might want to run a command to clean the

directories with temporary files from old files, to keep the disks from filling up, since not

all programs clean up after themselves correctly.

o The cron service is set up to do this. Each user can have a crontab file, where

the lists the commands wish to execute and the times they should be executed.

o The at service is similar to cron, but it is once only: the command is executed at

the given time, but it is not repeated.

5. Graphical user interface

o UNIX and Linux don't incorporate the user interface into the kernel; instead,

they let it be implemented by user level programs. This applies for both text

mode and graphical environments. This arrangement makes the system more

flexible.

o The graphical environment primarily used with Linux is called the X Window

System (X for short) that provides tools with which a GUI can be implemented.

Some popular window managers are blackbox and windowmaker. There are

also two popular desktop managers, KDE and Gnome.

6. Network logins (telnet, rlogin & ssh)

Network logins work a little differently than normal logins. For each person logging in

via the network there is a separate virtual network connection. It is therefore not possible to

run a separate getty for each virtual connection. There are several different ways to log in via a

network, telnet and ssh being the major ones in TCP/IP networks.

Most of Linux system administrators consider telnet and rlogin to be insecure and

prefer ssh, the ``secure shell'', which encrypts traffic going over the network, thereby making it

far less likely that the malicious can ``sniff'' the connection and gain sensitive data like

usernames and passwords.

7. Network File System (NFS & CIFS)

One of the more useful things that can be done with networking services is sharing files

via a network file system. Depending on your network this could be done over the Network File

System (NFS), or over the Common Internet File System (CIFS).

NFS is typically a 'UNIX' based service. In Linux, NFS is supported by the kernel. CIFS

however is not. In Linux, CIFS is supported by Samba. With a network file system any file

operations done by a program on one machine are sent over the network to another computer.

5.7 SYSTEM ADMINISTRATOR

 A system administrator is a person who is responsible for the configuration and reliable

operation of computer systems, especially multi-user computers, such as servers.

 The system administrator seeks to ensure that the uptime, performance, resources,

and security of the computers without exceeding the budget.

 To meet these needs, a system administrator may acquire, install, or upgrade

computer components and software, provide routine automation, maintain security

policies AND troubleshoot.

5.7.1 Responsibilities of a System Administrator

A system administrator's responsibilities might include:

 Installing and configuring new hardware and software.

 Applying operating system updates, patches, and configuration changes.

 Analyzing system logs and identifying potential issues with computer systems.

 Introducing and integrating new technologies into existing data center environments

and configuring, adding, and deleting file systems.

 Performing routine audit of systems and software.

 Adding, removing, or updating user account information, resetting passwords, etc.

 Responsibility for security and documenting the configuration of the system.

 Troubleshooting any reported problems.

 System performance tuning.

5.7.2 Various System Administrator Roles

In a larger company, these may all be separate positions within a computer support or

Information Services (IS) department. In a smaller group they may be shared by a few

sysadmins, or even a single person.

 A database administrator (DBA) maintains a database system, and is responsible for

the integrity of the data and the efficiency and performance of the system.

 A network administrator maintains network infrastructure such as switches and

routers, and diagnoses problems with these or with the behaviour of network-attached

computers.

 A security administrator is a specialist in computer and network security, including

the administration of security devices such as firewalls, as well as consulting on

general security measures.

 A web administrator maintains web server services (such as Apache or IIS) that allow

for internal or external access to web sites. Tasks include managing multiple sites,

administering security, and configuring necessary components and software.

 A computer operator performs routine maintenance and upkeep, such as changing

backup tapes or replacing failed drives in a redundant array of independent disks

(RAID).

 A postmaster administers a mail server.

 A Storage Administrator (SAN) can create, provision, add or remove Storage to/from

Computer systems. Storage can be attached locally to the system or from a storage

area network (SAN) or network-attached storage (NAS).

5.7.3 Requirements for LINUX system administrator

1. While specific knowledge is a boon, system administrator should possess basic knowledge

about all aspects of Linux. For example, a little knowledge about Solaris, BSD, nginx or

various flavors of Linux.

2. Knowledge in at least one of the upper tier scripting language such as Python, Perl, Ruby or
more.

3. To be a system administrator, he/she at least needs to have some hands-on experience of

system management, system setup and managing Linux or Solaris based servers as well

as configuring them.

4. Knowledge in shell programming such as Buorne or Korn and architecture.

5. Knowledge about storage technologies like FC, NFS or iSCSI is great, while knowledge

regarding backup technologies is a must for a system administrator.

6. Knowledge in testing methodologies like Subversion or Git is great, while knowledge of

version control is also an advantage.

7. Knowledge about basics of configuration management tools like Puppet and Chef.

8. Skills with system and application monitoring tools like SNMP or Nagios are also

important, as they show your ability as an administrator in a team setting.

9. Knowledge about how to operate virtualized VMWare or Xen Server, Multifunction Server

and Samba

10. An ITIL Foundation certification for Linux system administrator.

5.8 SETTING UP A LINUX MULTIFUNCTION SERVER

A Linux machine can be configured as a server either by compiling several well-

defined scripts and off-line downloaded packages or through on-line installation method.

Setting up a multifunction server, the system administrator should have knowledge about a

series of shell commands. A Linux machine can be configured as any of following

application servers such as,

• A Web Server (Apache 2.0.x)

• A Mail Server (Postfix)

• A DNS Server (BIND 9)

• An FTP Server (ProFTPD)

• Mail Delivery Agents (POP3/POP3s/IMAP/IMAPs)

• Webalizer for web site statistics

Files and directories shared by Linux system, as viewed from a
Windows PC

5.8.1 Server Requirements

To set up a Linux Internet server, we will need a connection to the Internet and a

static IP address. The system can also be setup with the address leased by ISP and

configure it statically.

Computer with at least a Pentium III CPU, a minimum of 256 MB of RAM, and a 10

GB hard drive is preferred. Obviously, a newer CPU and additional memory will provide

better performance. This chapter is based on Debian’s stable version. We strongly suggest

using a CD with the Netinstall kernel. The Debian web site provides downloadable CD

images.

5.8.2 Installing & Configuring Network Services

Administrator should log into the server from a remote console on desktop. It is

recommended to do further administration from another system (even a laptop), because a

secure server normally runs in what is called headless mode—that is, it has no monitor or

keyboard.

Get used to administering the server like this. A SSH client on the remote machine is

needed which virtually all Linux distributions have and which can be downloaded for other

operating systems as well.

Configuring the Network

If DHCP is used during the Debian installation, Server with a static IP address should

be configured as follows,

1. To change the settings to use a static IP address, you’ll need to become

root and edit the file /etc/network/interfaces to suit your needs. As an

example, we’ll use the IP address 70.153.258.42.

2. To add the IP address 70.153.258.42 to the interface eth0, we must change

the file to look like this (you’ll have to obtain some of the information from

your ISP):

auto

iface

eth0

eth0 inet static

address 70.153.258.42

netmask 255.255.255.248

network 70.153.258.0

broadcast 70.153.258.47

gateway 70.153.258.46

3. After editing the /etc/network/interfaces file, restart the network by entering:

/etc/init.d/networking restart

4. To edit /etc/resolv.conf and add nameservers to resolve Internet hostnames

to their corresponding IP addresses. At this point, we will simply set up a

minimal DNS

server. Our resolv.conf looks as follows:

search server

nameserver 70.153.258.42

nameserver 70.253.158.45

nameserver 151.164.1.8

5. Now edit /etc/hosts and add your IP addresses:

127.0.0.1 localhost.localdomain localhost server1

70.153.258.42 server1.centralsoft.org server1

6. Now, to set the hostname, enter these commands:

echo server1.centralsoft.org > /etc/hostname

/bin/hostname -F /etc/hostname

7. verify that you configured your hostname correctly by running the hostname

command:

~$ hostname -f

server1.centralsoft.org

5.9 Providing Domain Name Services (BIND - the ubiquitous DNS server)

 Debian provides a stable version of BIND in its repositories. BIND can be installed,

setup and secure it in a chroot environment, meaning it won’t be able to see or

access files outside its own directory tree. This is an important security technique.

 The term chroot refers to the trick of changing the root filesystem (the /directory)

that a process sees, so that most of the system is effectively inaccessible to it.

 The BIND server also can be configured to run as a non-root user. That way, if

someone gains access to BIND, he/she won’t gain root privileges or be able to

control other processes.

1. To install BIND on your Debian server, run this command:

apt-get install bind9

Debian downloads and configures the file as an Internet service and the status

can be seen on the console:

Setting up bind9 (9.2.4-1)

Adding group `bind' (104) - Done.

Adding system user `bind'

Adding new user `bind' (104) with group `bind'.

Not creating home directory.

Starting domain name service: named.

2. To put BIND in a secured environment, create a directory where the service can run

unexposed to other processes. First stop the service by running the following
command:

/etc/init.d/bind9 stop

3. Edit the file /etc/default/bind9 so that the daemon will run as the unprivileged user

bind, chrooted to /var/lib/named. Change the line:

OPTS="-u bind"

So that it reads:

OPTIONS="-u bind -t /var/lib/named"

4. To provide a complete environment for running BIND, create the necessary

directories under /var/lib:

mkdir -p /var/lib/named/etc

mkdir /var/lib/named/dev

mkdir -p /var/lib/named/var/cache/bind

mkdir -p /var/lib/named/var/run/bind/run

Then move the config directory from /etc to /var/lib/named/etc:

mv /etc/bind /var/lib/named/etc

Next, create a symbolic link to the new config directory from the old location, to

avoid problems when BIND is upgraded in the future:

ln -s /var/lib/named/etc/bind /etc/bind

Make null and random devices for use by BIND, and fix the permissions of the
directories:

mknod /var/lib/named/dev/null c 1 3

mknod /var/lib/named/dev/random c 1 8

Then change permissions and ownership on the files:

chmod 666 /var/lib/named/dev/null

/var/lib/named/dev/random

chown -R bind:bind /var/lib/named/var/*

chown -R bind:bind /var/lib/named/etc/bind

5. Finally, start BIND:

/etc/init.d/bind9 start

6. To check whether named is functioning without any trouble.

Execute this command:

server1:/home/admin# rndc status

number of zones: 6

debug level: 0

xfers running: 0

xfers deferred: 0

soa queries in progress: 0

query logging is OFF

server is up and running

server1:/home/admin#

Setting up Ubuntu shares in a Windows environment

Ubuntu’s setup screen for file-sharing

5.10 Virtualization

 Virtualization refers to the act of creating a virtual (rather than actual) version of

something, including a virtual computer hardware platform, operating system

(OS), storage device, or computer network resources.

Traditional Architecture vs. Virtual Architecture

Virtual Machine Server – A Layered Approach

 Hardware virtualization or platform virtualization refers to the creation of a virtual

machine that acts like a real computer with an operating system. Software

executed on these virtual machines is separated from the underlying hardware

resources.

 Hardware virtualization hides the physical characteristics of a computing platform from

material

 For example, a computer that is running Microsoft Windows may host a virtual

machine that looks like a computer with the Ubuntu Linux operating system;

Ubuntu-based software can be run on the virtual machine.

Hardware Virtualization

Benefits of Virtualization

1. Instead of deploying several physical servers for each service, only one

server can be used. Virtualization let multiple OSs and applications to run on

a server at a time. Consolidate hardware to get vastly higher productivity

from fewer servers.

2. If the preferred operating system is deployed as an image, so we needed to

go through the installation process only once for the entire infrastructure.

3. Improve business continuity: Virtual operating system images allow us for

instant recovery in case of a system failure. The crashed system can be

restored back by coping the virtual image.

4. Increased uptime: Most server virtualization platforms offer a number of

advanced features that just aren't found on physical servers which increases

servers’ uptime. Some of features are live migration, storage migration, fault

tolerance, high availability, and distributed resource scheduling.

5. Reduce capital and operating costs: Server consolidation can be done by

running multiple virtual machines (VM) on a single physical server. Fewer

servers means lower capital and operating costs.

Architecture - Virtualization

The heart of virtualization is the “virtual machine” (VM), a tightly isolated

software container with an operating system and application inside. Because each

virtual machine is completely separate and independent, many of them can run

simultaneously on a single computer. A thin layer of software called a hypervisor

decouples the virtual machines from the host and dynamically allocates computing

resources to each virtual machine as needed.

This architecture redefines your computing equation and delivers:

 Many applications on each server: As each virtual machine encapsulates an

entire machine, many applications and operating systems can run on a single

host at the same time.

 Maximum server utilization, minimum server count: Every physical machine

is used to its full capacity, allowing you to significantly reduce costs by

deploying fewer servers overall.

 Faster, easier application and resource provisioning: As self-contained

software files, virtual machines can be manipulated with copy-and-paste ease.

Virtual machines can even be transferred from one physical server to another

while running, via a process known as live migration.

5.10.1 Setting up a VMware Workstation

5.10.2 VMware Workstation is developed and sold by VMware, Inc., a

division of EMC Corporation. VMware Workstation is a hypervisor that runs on

x86 or x86-64 computers; it enables users to set up one or more virtual

machines (VMs) on a single physical machine, and use them simultaneously

along with the actual machine.

Each virtual machine can execute its own operating system, including versions

of Microsoft Windows, Linux, BSD, and MS-DOS. VMware Workstation supports

bridging existing host network adapters and share physical disk drives and USB

devices with a virtual machine. In addition, it can simulate disk drives. It can mount an

existing ISO image file into a virtual optical disc drive so that the virtual machine sees it

as a real one. Likewise, virtual hard disk drives are made via .vmdk files.

VMware Workstation can save the state of a virtual machine (a "snapshot") at

any instant. These snapshots can later be restored, effectively returning the virtual

machine to the saved state.

VMware Workstation

VMware Workstation includes the ability to designate multiple virtual machines

as a team which can then be powered on, powered off, suspended or resumed as a

single object, making it particularly useful for testing client-server environments.

VMWare Player

The VMware Player, a virtualization package of basically similar, but reduced,

functionality, is also available, and is free of charge for non-commercial use, or for

distribution or other use by written agreement.

VMware Player is a virtualization software package supplied free of charge by

VMware, Inc. VMware Player can run existing virtual appliances and create its own

virtual machines. It uses the same virtualization core as VMware Workstation, a similar

program with more features, but not free of charge. VMware Player is available for

personal non-commercial use, or for distribution or other use by written agreement.

VMware claims the Player offers better graphics, faster performance, and

tighter integration for running Windows XP under Windows Vista or Windows 7 than

Microsoft's Windows XP Mode running on Windows Virtual PC, which is free of charge

for all purposes.

VMware Tools

VMware Tools is a package with drivers and other software that can be installed

in guest operating systems to increase their performance. It has several components,

including the following drivers for the emulated hardware:

 VESA-compliant graphics for the guest machine to access high screen
resolutions

 Mouse integration, Drag-and-drop file support

 Clipboard sharing between host and guest

 Time synchronization capabilities (guest syncs with host machine's clock)

 Support for Unity, a feature that allows seamless integration of applications with

the host desktop

Installing and Configuring VMWare

1. Download VMware Server 2. VMware management console on a remote

Ubuntu desktop behind a firewall at a remote location. Run the following

command:

$gksu vmware-server-console

2. Install the VMware Server 2.0.2 rpm as shown below.

rpm -ivh VMware-server-2.0.2-203138.i386.rpm

Preparing...

1:VMware-server

[100%]

The installation of VMware Server 2.0.2 for Linux completed successfully.

You can decide to remove this software from your system at any time by

invoking the following command:

rpm -e VMware-server

Before running VMware Server for the first time, you need to configure it for your

running kernel by invoking the following command:

/usr/bin/vmware-config.pl

3. Configure VMware Server 2 using vmware-config.pl. Execute the vmware-

config.pl as shown below. Accept default values for everything. Partial output of

the vmware- config.pl is shown below.

/usr/bin/vmware-config.pl

4. Go to VMware Infrastructure Webaccess. Go to https://{host-os-ip}:8333/ui to

access the VMware Infrastructure web access console.

VMware Web Access Login

Installing a VMware Guest OS

1. Start VMware Workstation

Windows host: Double-click the VMware Workstation icon on your desktop or

use the Start menu (Start > Programs > VMware > VMware Workstation).

Linux host: In a terminal window, enter the command

vmware &

2. Start the New Virtual Machine Wizard

When you start VMware Workstation, you can open an existing virtual machine

or create a new one. Choose File > New > Virtual Machine to begin creating

your virtual machine.

3. Select the method you want to use for configuring your virtual machine.

If you select Typical, the wizard prompts you to specify or accept defaults for the

following choices:

 The guest operating system

 The virtual machine name and the location of the virtual machine's files

 The network connection type

 Whether to allocate all the space for a virtual disk at the time you create it

 Whether to split a virtual disk into 2GB files

If you select Custom, the wizard prompts you to specify or accept defaults for

the following choices:

 Make a legacy virtual machine that is compatible with Workstation 4.x,

GSX Server 3.x, ESX Server 2.x and VMware ACE 1.x.

 Use an IDE virtual disk for a guest operating system that would

otherwise have a SCSI virtual disk created by default

 Use a physical disk rather than a virtual disk and Set memory options

that are different from the defaults

4. Select a guest operating system and type a name and folder for the virtual
machine.

Linux hosts: The default location for this Windows XP Professional virtual machine is

<homedir>/vmware/winXPPro, where <homedir> is the home directory of the user who

is currently logged on.

5. Specify the number of processors for the virtual machine. The setting Two is

supported only for host machines with at least two logical processors.

If you selected Custom as your configuration path, you may adjust the memory

settings or accept the defaults, then click Next to continue.

6. Configure the networking capabilities of the virtual machine.

If you selected Typical as your configuration path, click Finish and the

wizard sets up the files needed for your virtual machine.

If you selected Custom as your configuration path, continue with the

steps below to configure a disk for your virtual machine.

7. Select whether to create an IDE or SCSI disk and specify the capacity of the
virtual disk.

8. Click Finish. The wizard sets up the files needed for your virtual machine.

5.10.3 Setting up a XEN

Workstation XEN

Workstation

Xen is a hypervisor using a microkernel design, providing services that allow

multiple computer operating systems to execute on the same computer hardware

concurrently.

The University of Cambridge Computer Laboratory developed the first versions

of Xen. The Xen community develops and maintains Xen as free and open-source

software, subject to the requirements of the GNU General Public License (GPL),

version 2. Xen is currently available for the IA-32, x86-64 and ARM instruction sets.

XenServer runs directly on server hardware without requiring an underlying

operating system, which results in an efficient and scalable system. XenServer works

by abstracting elements from the physical machine (such as hard drives, resources

and ports) and allocating

them to the virtual machines running on it.

XEN Environment

Responsibilities of the hypervisor include memory management and CPU

scheduling of all virtual machines, and for launching the most privileged domain - the

only virtual machine which by default has direct access to hardware. From the dom0

the hypervisor can be managed and unprivileged domains can be launched.

Benefits of Using XenServer

1. Using XenServer reduces costs by:

• Consolidating multiple VMs onto physical servers

• Reducing the number of separate disk images that need to be managed

• Allowing for easy integration with existing networking and storage
infrastructures

2. Using XenServer increases flexibility by:

• Allowing you to schedule zero downtime maintenance by using XenMotion to

live migrate VMs between XenServer hosts

• Increasing availability of VMs by using High Availability to configure policies

that restart VMs on another XenServer host if one fails

• Increasing portability of VM images, as one VM image will work on a range of

deployment infrastructures

Administering XenServer

 There are two methods by which to administer XenServer: XenCenter and the

XenServer Command-Line Interface (CLI).

 XenCenter is a graphical, Windows-based user interface. XenCenter allows you to

manage XenServer hosts, pools and shared storage, and to deploy, manage and

monitor VMs from your Windows desktop machine.

 The XenCenter on-line Help is a useful resource for getting started with XenCenter

and for context-sensitive assistance.

Installing and Configuring XenServer

1. Type the following command to get information about xen server package

yum info xen

2. Run the system-config-securitylevel program or edit /etc/selinux/config to looks as follows:

SELINUX=Disabled

SELINUXTYPE=targeted

If you changed the SELINUX value from enforcing, you’ll need to reboot Fedora before
proceeding.

3. This command will install the Xen hypervisor, a Xen-modified Fedora kernel called domain

0, and various utilities:

yum install kernel-xen0

4. To make the Xen kernel the default, change this line:

default=1

to

default=0

5. Now you can reboot. Xen should start automatically, but let’s check:

/usr/sbin/xm list

Name ID Mem(MiB) VCPUs State Time(s)

Domain-0 0 880 1 r----- 20.5

The output should show that Domain-0 is running. Domain 0 controls

all the guest operating systems that run on the processor,

similarly to how the kernel controls processes in an operating

system.

Installing a Xen Guest OS from the Command-line

1. Preparing the System for virt-install

Fedora Linux does not install VNC by default. To verify whether VNC is installed, run the

following command from a Terminal Window:

If rpm reports that VNC is not installed, it may be installed from root as follows:

yum install vnc

2. Running virt-install to Build the Xen Guest System

virt-install must be run as root and, once invoked, will ask a number of questions

before creating the guest system. The question are as follows:

i. What is the name of your virtual machine and install location?

ii. How much RAM should be allocated (in megabytes)?

iii. What would you like to use as the disk (path)?

iv. Would you like to enable graphics support? (yes or no)

The following transcript shows a typical virt-install session:

virt-install

3. Once the guest system has been created, the vncviewer screen will appear containing the

operating system installer:

Installing a Xen Guest OS (Fedora Core 5)

1. Fedora Core 5 has a Xen guest installation script that simplifies the process,

although it installs only FC5 guests. The script expects to access the FC5 install

tree via FTP, the Web, or NFS; for some reason, you can’t specify a directory or

file.

mkdir /var/www/html/dvd

mount -t iso9660 /dev/dvd /var/www/html/dvd

apachectl start

Now we’ll run the installation script and answer its questions:

xenguest-install.py

2. Xen does not start the guest operating system automatically. You need to type this

command on the host:

3. To prove that both servers are running, try these commands:

xm list

xentop

4. To start Xen domains automatically, use these commands:

/sbin/chkconfig --level 345 xendomains on

/sbin/service xendomains start

5. To Edit A Xen Guest Configuration File, Which Is A Text File (Actually, A Python Script)
In The

/Etc/Xen Directory.

man xmdomain.cfg

And edit as follows,

Automatically generated Xen config file

name = "guest1"

memory = "256"

disk = ['file:/xenguest,xvda,w']

vif = ['mac=00:16:3e:63:c7:76']

uuid = "bc2c1684-c057-99ea-962b-de44a038bbda"

bootloader="/usr/bin/pygrub"

on_reboot = 'restart'

on_crash = 'restart'

6. Once you have a guest configuration file, create the Xen guest with

this command:

where

xm create -c guest_name

guest_name can be a full pathname or a relative filename (in which case
Xen places

it in /etc/xen/guest_name).

Xen will create the guest domain and try to boot it from the given file or

device. The -c option attaches a console to the domain when it starts, so you can

answer the installation questions that appear.

2MARKS

CS3301-DATA STRUCTURES QUESTION BANK

UNIT I

1. Define data structure.

The data structure can be defined as the collection of elements and all the possible

operations which are required for those set of elements. Formally data structure can be defined as

a data structure is a set of domains D, a set of domains F and a set of axioms A. this triple

(D,F,A) denotes the data structure d.

2. What do you mean by non-linear data structure? Give example.

The non-linear data structure is the kind of data structure in which the data may be

arranged in hierarchical fashion. For example- Trees and graphs.

3. What do you linear data structure? Give example.

The linear data structure is the kind of data structure in which the data is linearly

arranged. For example- stacks, queues, linked list.

4. List the various operations that can be performed on data structure.

Various operations that can be performed on the data structure are

• Create

• Insertion of element

• Deletion of element

• Searching for the desired element

• Sorting the elements in the data structure

• Reversing the list of elements.

5. What is abstract data type? What are all not concerned in an ADT?

The abstract data type is a triple of D i.e. set of axioms, F-set of functions and A-Axioms

in which only what is to be done is mentioned but how is to be done is not mentioned. Thus ADT

is not concerned with implementation details.

6. List out the areas in which data structures are applied extensively.

Following are the areas in which data structures are applied extensively.

• Operating system- the data structures like priority queues are used for
scheduling the jobs in the operating system.

• Compiler design- the tree data structure is used in parsing the source program.
Stack data structure is used in handling recursive calls.

• Database management system- The file data structure is used in database
management systems. Sorting and searching techniques can be applied
on these data in the file.

• Numerical analysis package- the array is used to perform the
numerical analysis on the given set of data.

• Graphics- the array and the linked list are useful in graphics applications.

• Artificial intelligence- the graph and trees are used for the applications
like building expression trees, game playing.

7. What is a linked list?

A linked list is a set of nodes where each node has two fields ‘data’ and ‘link’. The data

field is used to store actual piece of information and link field is used to store address of next
node.

8. What are the pitfall encountered in singly linked list?

Following are the pitfall encountered in singly linked list

• The singly linked list has only forward pointer and no backward link is provided. Hence

the traversing of the list is possible only in one direction. Backward traversing is not
possible.

• Insertion and deletion operations are less efficient because for inserting the element at
desired position the list needs to be traversed. Similarly, traversing of the list is required

for locating the element which needs to be deleted.

9. Define doubly linked list.

Doubly linked list is a kind of linked list in which each node has two link fields. One link

field stores the address of previous node and the other link field stores the address of the next

node.

10. Write down the steps to modify a node in linked lists.

➢ Enter the position of the node which is to be modified.

➢ Enter the new value for the node to be modified.

➢ Search the corresponding node in the linked list.

➢ Replace the original value of that node by a new value.

➢ Display the messages as “The node is modified”.

11. Difference between arrays and lists.
In arrays any element can be accessed randomly with the help of index of array, whereas

in lists any element can be accessed by sequential access only.

Insertion and deletion of data is difficult in arrays on the other hand insertion and
deletion of data is easy in lists.

12. State the properties of LIST abstract data type with suitable example.

Various properties of LIST abstract data type are

(i) It is linear data structure in which the elements are arranged adjacent to each other.

(ii) It allows to store single variable polynomial.

(iii) If the LIST is implemented using dynamic memory then it is called linked list.
Example of LIST are- stacks, queues, linked list.

13. State the advantages of circular lists over doubly linked list.

In circular list the next pointer of last node points to head node, whereas in doubly linked

list each node has two pointers: one previous pointer and another is next pointer. The main

advantage of circular list over doubly linked list is that with the help of single pointer field we

can access head node quickly. Hence some amount of memory get saved because in circular list

only one pointer is reserved.

14. What are the advantages of doubly linked list over singly linked list?

The doubly linked list has two pointer fields. One field is previous link field and another

is next link field. Because of these two pointer fields we can access any node efficiently whereas

in singly linked list only one pointer field is there which stores forward pointer.

15. Why is the linked list used for polynomial arithmetic?

We can have separate coefficient and exponent fields for representing each term of

polynomial. Hence there is no limit for exponent. We can have any number as an exponent.

16. What is the advantage of linked list over arrays?

The linked list makes use of the dynamic memory allocation. Hence the user can allocate

or de allocate the memory as per his requirements. On the other hand, the array makes use of the

static memory location. Hence there are chances of wastage of the memory or shortage of

memory for allocation.

17. What is the circular linked list?

The circular linked list is a kind of linked list in which the last node is connected to

the first node or head node of the linked list.

18. What is the basic purpose of header of the linked list?

The header node is the very first node of the linked list. Sometimes a dummy value such
- 999 is stored in the data field of header node.

This node is useful for getting the starting address of the linked list.

19. What is the advantage of an ADT?

➢ Change: the implementation of the ADT can be changed without making changes in

theclient program that uses the ADT.

➢ Understandability: ADT specifies what is to be done and does not specify
theimplementation details. Hence code becomes easy to understand due to ADT.

➢ Reusability: the ADT can be reused by some program in future.

20. What is static linked list? State any two applications of it.

➢ The linked list structure which can be represented using arrays is called static linked list.

➢ It is easy to implement, hence for creation of small databases, it is useful

➢ The searching of any record is efficient, hence the applications in which the record need
to be searched quickly, the static linked list are used.

16 MARKS

1. Explain the insertion operation in linked list. How nodes are inserted after a specified node.

2. Write an algorithm to insert a node at the beginning of list?

3. Discuss the merge operation in circular linked lists.

4. What are the applications of linked list in dynamic storage management?

5. How polynomial expression can be represented using linked list?

6. What are the benefit and limitations of linked list?

7. Define the deletion operation from a linked list.

8. What are the different types of data structure?

9. Explain the operation of traversing linked list. Write the algorithm and give an

example.

UNIT II

2MARKS

1. Define Stack

A Stack is an ordered list in which all insertions (Push operation) and deletion (Pop

operation) are made at one end, called the top. The topmost element is pointed by top. The top is

initialized to -1 when the stack is created that is when the stack is empty. In a stack S = (a1,an),

a1 is the bottom most element and element a is on top of element ai-1. Stack is also referred as

Last In First Out (LIFO) list.

2. What are the various Operations performed on the Stack?

The various operations that are performed on the stack are

CREATE(S) – Creates S as an empty stack.

PUSH(S,X) – Adds the element X to the top of the stack.

POP(S) – Deletes the top most elements from the stack.

TOP(S) – returns the value of top element from the stack.

ISEMTPTY(S) – returns true if Stack is empty else false.

ISFULL(S) - returns true if Stack is full else false.

3. Write the postfix form for the expression -A+B-C+D?

A-B+C-D+

4. What are the postfix and prefix forms of the expression?

A+B*(C-D)/(P-R)

Postfix form: ABCD-*PR-/+

Prefix form: +A/*B-CD-PR

5. Explain the usage of stack in recursive algorithm implementation?

In recursive algorithms, stack data structures is used to store the return address when a

recursive call is encountered and also to store the values of all the parameters essential to the

current state of the function.

6. Define Queue.

A Queue is an ordered list in which all insertions take place at one end called the rear, while

all deletions take place at the other end called the front. Rear is initialized to -1 and front is

initialized to 0. Queue is also referred as First In First Out (FIFO) list.

7. What are the various operations performed on the Queue?

The various operations performed on the queue are

CREATE(Q) – Creates Q as an empty Queue.

Enqueue(Q,X) – Adds the element X to the Queue.

Dequeue(Q) – Deletes a element from the Queue.

ISEMTPTY(Q) – returns true if Queue is empty else false.

ISFULL(Q) - returns true if Queue is full else false.

8. How do you test for an empty Queue?

The condition for testing an empty queue is rear=front-1. In linked list implementation of
queue the condition for an empty queue is the header node link field is NULL.

9. Write down the function to insert an element into a queue, in which the queue is

implemented as an array. (May 10)

Q – Queue

X – element to added to the queue Q IsFull(Q)

– Checks and true if Queue Q is full Q->Size -

Number of elements in the queue Q Q->Rear –

Points to last element of the queue Q Q->Array

– array used to store queue elements void

enqueue (int X, Queue Q) {

if(IsFull(Q))

Error (“Full queue”);

else {

Q->Size++;

Q->Rear = Q->Rear+1;

Q->Array[Q->Rear]=X;

}

}

10..Define Dequeue.

Deque stands for Double ended queue. It is a linear list in which insertions and deletion
are made from either end of the queue structure.

11. Define Circular Queue.

Another representation of a queue, which prevents an excessive use of memory by

arranging elements/ nodes Q1,Q2,…Qn in a circular fashion. That is, it is the queue, which wraps

around upon reaching the end of the queue

12. List any four applications of stack.

 Parsing context free languages

 Evaluating arithmetic expressions

 Function call

 Traversing trees and graph

 Tower of Hanoi

16 MARKS

1. Write an algorithm for Push and Pop operations on Stack using Linked list. (8)

2. Explain the linked list implementation of stack ADT in detail?

3. Define an efficient representation of two stacks in a given area of memory with n words
and explain.

4. Explain linear linked implementation of Stack and Queue?

a. Write an ADT to implement stack of size N using an array. The elements in the

stack are to be integers. The operations to be supported are PUSH, POP and

DISPLAY. Take into account the exceptions of stack overflow and stack

underflow. (8)

b. A circular queue has a size of 5 and has 3 elements 10,20 and 40 where F=2 and

R=4. After inserting 50 and 60, what is the value of F and R. Trying to insert 30 at

this stage what happens? Delete 2 elements from the queue and insert 70, 80 &

90. Show the sequence of steps with necessary diagrams with the value of F & R.

(8 Marks)

5. Write the algorithm for converting infix expression to postfix (polish) expression?

6. Explain in detail about priority queue ADT in detail?

7. Write a function called ‘push’ that takes two parameters: an integer variable and a stack

into which it would push this element and returns a 1 or a 0 to show success of addition or

failure.

8. What is a DeQueue? Explain its operation with example?

9. Explain the array implementation of queue ADT in detail?

10. Explain the addition and deletion operations performed on a circular queue with
necessary algorithms.(8) (Nov 09)

UNIT III

2MARKS

1. Define tree?

Trees are non-liner data structure, which is used to store data items in a shorted sequence.

It represents any hierarchical relationship between any data Item. It is a collection of nodes,
which has a distinguish node called the root and zero or more non-empty sub trees T1,
T2,….Tk. each of which are connected by a directed edge from the root.

2. Define Height of tree?

The height of n is the length of the longest path from root to a leaf. Thus all leaves have

height zero. The height of a tree is equal to a height of a root.

3. Define Depth of tree?

For any node n, the depth of n is the length of the unique path from the root to node n.

Thus for a root the depth is always zero.

4. What is the length of the path in a tree?
The length of the path is the number of edges on the path. In a tree there is exactly one

path form the root to each node.

5. Define sibling?

Nodes with the same parent are called siblings. The nodes with common parents are

called siblings.

6. Define binary tree?

A Binary tree is a finite set of data items which is either empty or consists of a single

item called root and two disjoin binary trees called left sub tree max degree of any node is two.

7. What are the two methods of binary tree implementation?

Two methods to implement a binary tree are,

a. Linear representation.

b. Linked representation

8. What are the applications of binary tree?

Binary tree is used in data processing.

a. File index schemes

b. Hierarchical database management system

9. List out few of the Application of tree data-structure?

Ø The manipulation of Arithmetic expression

Ø Used for Searching Operation

Ø Used to implement the file system of several popular operating systems

Ø Symbol Table construction

Ø Syntax analysis

10. Define expression tree?

Expression tree is also a binary tree in which the leafs terminal nodes or operands and

non-terminal intermediate nodes are operators used for traversal.

11. Define tree– traversal and mention the type of traversals?

Visiting of each and every node in the tree exactly is called as tree traversal.

Three types of tree traversal

1. Inorder traversal

2. Preoder traversal

3. Postorder traversal.

12. Define in -order traversal?

In-order traversal entails the following steps;

a. Traverse the left subtree

b. Visit the root node

c. Traverse the right subtree

13. Define threaded binary tree.

A binary tree is threaded by making all right child pointers that would normally be null

point to the in order successor of the node, and all left child pointers that would normally be null

point to the in order predecessor of the node.

14. What are the types of threaded binary tree?

i. Right-in threaded binary tree

ii. Left-in threaded binary tree

iii. Fully-in threaded binary tree

15. Define Binary Search Tree.

Binary search tree is a binary tree in which for every node X in the tree, the values of all the keys

in its left subtree are smaller than the key value in X and the values of all the keys in its right

subtree are larger than the key value in X.

16. What is AVL Tree?

AVL stands for Adelson-Velskii and Landis. An AVL tree is a binary search tree which has the
following properties:

1.The sub-trees of every node differ in height by at most one.

2.Every sub-tree is an AVL tree.

Search time is O(logn). Addition and deletion operations also take O(logn) time.

17. List out the steps involved in deleting a node from a binary search tree.

▪ Deleting a node is a leaf node (ie) No children

▪ Deleting a node with one child.

▪ Deleting a node with two Childs.

18. What is ‘B’ Tree?

A B-tree is a tree data structure that keeps data sorted and allows searches, insertions, and

deletions in logarithmic amortized time. Unlike self-balancing binary search trees, it is optimized
for systems that read and write large blocks of data. It is most commonly used in database and
file systems.

19. Define complete binary tree.

If all its levels, possible except the last, have maximum number of nodes and if all the nodes in

the last level appear as far left as possible

16 MARKS

1. Explain the AVL tree insertion and deletion with suitable example.

2. Describe the algorithms used to perform single and double rotation on AVL tree.

3.Explain about B-Tree with suitable example.

4. Explain about B+ trees with suitable algorithm.

5.Write short notes on

i. Binomial heaps

ii. Fibonacci heaps

6. Explain the tree traversal techniques with an example.

7. Construct an expression tree for the expression (a+b*c) + ((d*e+f)*g). Give the outputs when

you apply inorder, preorder and postorder traversals.

8. How to insert and delete an element into a binary search tree and write down the code for the

insertion routine with an example.

9. What are threaded binary tree? Write an algorithm for inserting a node in a threaded binary

tree.

10. Create a binary search tree for the following numbers start from an empty binary search tree.

45,26,10,60,70,30,40 Delete keys 10,60 and 45 one after the other and show the trees at each

stage.

UNIT- IV

2 MARKS

1. Write the definition of weighted graph?

A graph in which weights are assigned to every edge is called a weighted graph.

2. Define Graph?

A graph G consist of a nonempty set V which is a set of nodes of the graph, a set E which

is the set of edges of the graph, and a mapping from the set of edges E to set of pairs of elements

of V. It can also be represented as G=(V, E).

3. Define adjacency matrix?

The adjacency –matrix is an n x n matrix A whose elements aij are given by

aij = 1 if (vi, vj) Exists =0 otherwise

4. Define adjacent nodes?

Any two nodes, which are connected by an edge in a graph, are called adjacent nodes.

For example, if an edge x E is associated with a pair of nodes

(u,v) where u, v V, then we say that the edge x connects the nodes u and v.

5. What is a directed graph?

A graph in which every edge is directed is called a directed graph.

6. What is an undirected graph?

A graph in which every edge is undirected is called an undirected graph.

7. What is a loop?

An edge of a graph, which connects to itself, is called a loop or sling.

8. What is a simple graph?

A simple graph is a graph, which has not more than one edge between a pair of nodes.

9. What is a weighted graph?

A graph in which weights are assigned to every edge is called a weighted graph.

10. Define indegree and out degree of a graph?

In a directed graph, for any node v, the number of edges, which have v as their initial node, is
called the out degree of the node v.

Outdegree: Number of edges having the node v as root node is the outdegree of the node v.

11. Define path in a graph?

The path in a graph is the route taken to reach terminal node from a starting node.

12. What is a simple path?

i. A path in a diagram in which the edges are distinct is called a simple path.

ii. It is also called as edge simple.

13. What is a cycle or a circuit?

A path which originates and ends in the same node is called a cycle or circuit.

14. What is an acyclic graph?

A simple diagram, which does not have any cycles, is called an acyclic graph.

15. What is meant by strongly connected in a graph?

An undirected graph is connected, if there is a path from every vertex to every other vertex.

A directed graph with this property is called strongly connected.

16. When a graph said to be weakly connected?

aij = 1 if (vi, vj) Exists =0 otherwise

When a directed graph is not strongly connected but the underlying graph is connected, then

the graph is said to be weakly connected.

17. Name the different ways of representing a graph? Give examples (Nov 10)

a. Adjacency matrix

b. Adjacency list

18. What is an undirected acyclic graph?

When every edge in an acyclic graph is undirected, it is called an undirected acyclic graph. It
is also called as undirected forest.

19. What is meant by depth?

The depth of a list is the maximum level attributed to any element with in the list or with in
any sub list in the list.

20. What is the use of BFS?

BFS can be used to find the shortest distance between some starting node and the remaining

nodes of the graph. The shortest distance is the minimum number of edges traversed in order to

travel from the start node the specific node being examined.

21. What is topological sort?

It is an ordering of the vertices in a directed acyclic graph, such that: If there is a path from u
to v, then v appears after u in the ordering.

22. Write BFS algorithm

1. Initialize the first node’s dist number and place in queue

2. Repeat until all nodes have been examined

3. Remove current node to be examined from queue

4. Find all unlabeled nodes adjacent to current node

5. If this is an unvisited node label it and add it to the queue

6. Finished.

23. Define biconnected graph?

A graph is called biconnected if there is no single node whose removal causes the graph to

break into two or more pieces. A node whose removal causes the graph to become disconnected

is called a cut vertex.

24. What are the two traversal strategies used in traversing a graph?

a. Breadth first search

b. Depth first search

25. Articulation Points (or Cut Vertices) in a Graph

A vertex in an undirected connected graph is an articulation point (or cut vertex) if

removing it (and edges through it) disconnects the graph. Articulation points represent
vulnerabilities in a connected network – single points whose failure would split the network into
2 or more disconnected components. They are useful for designing reliable networks.

16 MARKS

1. Explain the various representation of graph with example in detail?

2. Explain Breadth First Search algorithm with example?

3. Explain Depth first and breadth first traversal?

4. What is topological sort? Write an algorithm to perform topological sort?(8) (Nov 09)

5. (i) write an algorithm to determine the biconnected components in the given graph. (10) (may

10)

(ii)determine the biconnected components in a graph. (6)

6. Explain the various applications of Graphs.

UNIT – V

2 MARKS

1. What is meant by Sorting?

Sorting is ordering of data in an increasing or decreasing fashion according to some
linear relationship among the data items.

2. List the different sorting algorithms.

• Bubble sort

• Selection sort

• Insertion sort

• Shell sort

• Quick sort

• Radix sort

• Heap sort

• Merge sort

3. Why bubble sort is called so?

The bubble sort gets its name because as array elements are sorted they gradually

“bubble” to their proper positions, like bubbles rising in a glass of soda.

4. State the logic of bubble sort algorithm.

The bubble sort repeatedly compares adjacent elements of an array. The first and second

elements are compared and swapped if out of order. Then the second and third elements are

compared and swapped if out of order. This sorting process continues until the last two

elements of the array are compared and swapped if out of order.

5. What number is always sorted to the top of the list by each pass of the Bubble

sort algorithm?

Each pass through the list places the next largest value in its proper place. In essence, each item

“bubbles” up to the location where it belongs.

6. When does the Bubble Sort Algorithm stop?

The bubble sort stops when it examines the entire array and finds that no "swaps" are

needed. The bubble sort keeps track of the occurring swaps by the use of a flag.

7. State the logic of selection sort algorithm.

It finds the lowest value from the collection and moves it to the left. This is repeated

until the complete collection is sorted.

8. What is the output of selection sort after the 2
nd

iteration given the following

sequence?

16 3 46 9 28 14

Ans: 3 9 46 16 28 14

9. How does insertion sort algorithm work?

In every iteration an element is compared with all the elements before it. While comparing if

it is found that the element can be inserted at a suitable position, then space is created for it by

shifting the other elements one position up and inserts the desired element at the suitable

position. This procedure is repeated for all the elements in the list until we get the sorted

elements.

10. What operation does the insertion sort use to move numbers from the unsorted section
to the sorted section of the list?

The Insertion Sort uses the swap operation since it is ordering numbers within a single

list.

11. How many key comparisons and assignments an insertion sort makes in its worst case?

The worst case performance in insertion sort occurs when the elements of the input array

are in descending order. In that case, the first pass requires one comparison, the second pass requires

two comparisons, third pass three comparisons,….kth pass requires (k-1), and finally the

last pass requires (n-1) comparisons. Therefore, total numbers of comparisons are:

f(n) = 1+2+3+………+(n-k)+…..+(n-2)+(n-1) = n(n-1)/2 = O(n2)

12. Which sorting algorithm is best if the list is already sorted? Why?

Insertion sort as there is no movement of data if the list is already sorted and

complexity is of the order O(N).

13. Which sorting algorithm is easily adaptable to singly linked lists? Why?

Insertion sort is easily adaptable to singly linked list. In this method there is an array link

of pointers, one for each of the original array elements. Thus the array can be thought of as a

linear link list pointed to by an external pointer first initialized to 0. To insert the k
th

element the

linked list is traversed until the proper position for x[k] is found, or until the end of the list is

reached. At that point x[k] can be inserted into the list by merely adjusting the pointers without

shifting any elements in the array which reduces insertion time.

14. Why Shell Sort is known diminishing increment sort?

The distance between comparisons decreases as the sorting

algorithm runs until the last phase in which adjacent elements are compared. In each step, the

sortedness of the sequence is increased, until in the last step it is completely sorted.

15. Which of the following sorting methods would be especially suitable to sort alist L

consisting of a sorted list followed by a few “random” elements?

Quick sort is suitable to sort a list L consisting of a sorted list followed by a few

“random” elements.

16. What is the output of quick sort after the 3
rd

iteration given the following sequence?

24 56 47 35 10 90 82 31

Pass 1:- (10) 24 (56 47 35 90 82 31)

Pass 2:- 10 24 (56 47 35 90 82 31)

Pass 3:- 10 24 (47 35 31) 56 (90 82)

17. Mention the different ways to select a pivot element.

The different ways to select a pivot element are

• Pick the first element as pivot

• Pick the last element as pivot

• Pick the Middle element as pivot

• Median-of-three elements

• Pick three elements, and find the median x of these elements

• Use that median as the pivot.

• Randomly pick an element as pivot.

18. What is divide-and-conquer strategy?

• Divide a problem into two or more sub problems

• Solve the sub problems recursively

• Obtain solution to original problem by combining these solutions

19. Compare quick sort and merge sort.

Quicksort has a best-case linear performance when the input is sorted, or nearly sorted. It
has a worst-case quadratic performance when the input is sorted in reverse, or nearly sorted in
reverse.

Merge sort performance is much more constrained and predictable than the performance of

quicksort. The price for that reliability is that the average case of merge sort is slower than the
average case of quicksort because the constant factor of merge sort is larger.

20. Define Searching.

Searching for data is one of the fundamental fields of computing. Often, the difference

between a fast program and a slow one is the use of a good algorithm for the data set. Naturally,

the use of a hash table or binary search tree will result in more efficient searching, but more often

than not an array or linked list will be used. It is necessary to understand good ways of searching

data structures not designed to support efficient search.

21. What is linear search?

In Linear Search the list is searched sequentially and the position is returned if the key

element to be searched is available in the list, otherwise -1 is returned. The search in Linear

Search starts at the beginning of an array and move to the end, testing for a match at each item.

22. What is Binary search?

A binary search, also called a dichotomizing search, is a digital scheme for locating a specific

object in a large set. Each object in the set is given a key. The number of keys is always a power

of 2. If there are 32 items in a list, for example, they might be numbered 0 through 31 (binary

00000 through 11111). If there are, say, only 29 items, they can be numbered 0 through 28

(binary 00000 through 11100), with the numbers 29 through31 (binary 11101, 11110, and

11111) as dummy keys.

23. Define hash function?

Hash function takes an identifier and computes the address of that identifier in the hash table
using some function.

16 MARKS

1. Write an algorithm to implement Bubble sort with suitable example.

2. Explain any two techniques to overcome hash collision.

3. Write an algorithm to implement insertion sort with suitable example.

4. Write an algorithm to implement selection sort with suitable example.

5. Write an algorithm to implement radix sort with suitable example.

6. Write an algorithm for binary search with suitable example.

7. Discuss the common collision resolution strategies used in closed hashing system.

8. Given the input { 4371, 1323, 6173, 4199, 4344, 9679, 1989 } and a hash function of
h(X)=X (mod 10) show the resulting:

a. Separate Chaining hash table
b. Open addressing hash table using linear probing

9. Explain Re-hashing and Extendible hashing.

10. Show the result of inserting the keys 2,3,5,7,11,13,15,6,4 into an initially

empty extendible hashing data structure with M=3. (8) (Nov 10)

11. what are the advantages and disadvantages of various

collision resolution strategies? (6)

Page 1

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COMMON FOR: DEPARTMENT OF INFORMATION TECHNOLOGY

CS3351 – DIGITAL PRINCIPLES AND COMPUTER ORGANIZATION

YEAR / SEM : II / III

R – 2021

LECTURE NOTES

Page 2

UNIT I

COMBINATIONAL LOGIC

COMBINATIONAL CIRCUITS

 A combinational circuit consists of logic gates whose outputs at any time are determined from only the

present combination of inputs.

 A combinational circuit performs an operation that can be specified logically by a set of Boolean

functions.

Sequential circuits:

 Sequential circuits employ storage elements in addition to logic gates. Their outputs are a function of

the inputs and the state of the storage elements.

 Because the state of the storage elements is a function of previous inputs, the outputs of a sequential

circuit depend not only on present values of inputs, but also on past inputs, and the circuit behavior must

be specified by a time sequence of inputs and internal states.

ANALYSIS PROCEDURE

Explain the analysis procedure. Analyze the combinational circuit the following logic diagram.

2015)

(May

Combinational Circuits – Analysis and Design Procedures - Binary Adder- Subtractor -Decimal Adder -

Binary Multiplier - Magnitude Comparator - Decoders – Encoders – Multiplexers - Introduction to HDL –

HDL Models of Combinational circuits.

Page 3

 The analysis of a combinat ional circuit requires that we determine t he funct ion that

the circuit implements.

 The analysis can be performed manually by finding the Boolean funct ions or truth

table or by using a computer simulat ion program.

 The first step in the analysis is to make that the given circuit is combinat ional or

sequent ial.

 Once the logic diagram is verified to be combinat ional, one can proceed to obtain the

output Boolean funct ions or the t ruth table.

 To obtain the output Boolean functions from a logic diagram,

 Label all gate outputs that are a function of input variables with arbitrary symbols or names.

Determine the Boolean functions for each gate output.

 Label the gates that are a function of input variables and previously labeled gates with other

arbitrary symbols or names. Find the Boolean functions for these gates.

 Repeat the process in step 2 until the outputs of the circuit are obtained.

 By repeated substitution of previously defined functions, obtain the output Boolean functions in

terms of input variables.

Logic diagramforanalysis example

The Boolean functions for the above outputs are,

Page 4

 Proceed to obtain the truth table for the outputs of those gates which are a function of previously

defined values until the columns for all outputs are determined.

Page 5

DESIGNPROCEDURE

Explain the procedure involved in designing combinational circuits.

 The design of combinational circuits starts from the specification of the design objective and culminates

in a logic circuit diagram or a set of Boolean functions from which the logic diagram can be obtained.

 The procedure involved involves the following steps,

 From the specifications of the circuit, determine the required number of inputs and outputs and assign a

symbol to each.

 Derive the truth table that defines the required relationship between inputs and outputs.

 Obtain the simplified Boolean functions for each output as a function of the input variables.

 Draw the logic diagram and verify the correctness of the design.

**

CIRCUITS FOR ARITHMETIC OPERATIONS

Half adder:

Construct a half adder with necessary diagrams. (Nov-06,May- 07)

 A half-adder is an arithmetic circuit block that can be used to add two bits and produce two outputs

SUM and CARRY.

 The Boolean expressions for the SUM and CARRY outputs are given by the equations

Truth Table:

Logic Diagram: Half adder using NAND gate:

Page 6

Full adder:

Design a full adder using NAND and NOR gates respectively. (Nov -10)

 A Full-adder is an arithmetic circuit block that can be used to add three bits and produce two outputs

SUM and CARRY.

 The Boolean expressions for the SUM and CARRY outputs are given by the equations

Truth table:

Karnaugh map:

K-Map for Sum K-Map for Carry

 The simplified Boolean expressions of the outputs are

S = X′A′B + X′AB′ + XA′B′ + XAB

C = AB + BX + AX

Logic diagram:

Page 7

 The Boolean expressions of S and C are modified as follows

Full adder using Two half adder:

 Logic diagram according to the modified expression is shown Figure.

Half subtractor:

Design a half subtractor circuit. (Nov-2009)

Page 8

 A half-subtractor is a combinational circuit that can be used to subtract one binary digit from anotherto

produce a DIFFERENCE output and a BORROW output.

 The BORROW output here specifies whether a ‘1’ has been borrowed to perform the subtraction. The

Boolean expression for difference and borrow is:

Logic diagram:

Full subtractor:

Design a full subtractor. (Nov-2009,07)

 A full subtractor performs subtraction operation on two bits, a minuend and a subtrahend, and also takes

into consideration whether a ‘1’ has already been borrowed by the previous adjacent lower minuend bit

or not.

 As a result, there are three bits to be handled at the input of a full subtractor, namely the two bits to be

subtracted and a borrow bit designated as Bin .

 There are two outputs, namely the DIFFERENCE output D and the BORROW output Bo. The

BORROW output bit tells whether the minuend bit needs to borrow a ‘1’ from the next possible higher

minuend bit. The Boolean expression for difference and barrow is:

Page 9

K-Map:

Full subtractor using two half subtractor:

Parallel Binary Adder: (Ripple Carry Adder):

Page 10

Explain about four bit adder. (or) Design of 4 bit binary adder – subtractor circuit. (Apr – 2019)

 A binary adder is a digital circuit that produces the arithmetic sum of two binary numbers. It can be

constructed with full adders connected in cascade, with the output carry from each full adder connected

to the input carry of the next full adder in the chain.

 Addition of n-bit numbers requires a chain of n- full adders or a chain of one-half adder and n-1 full

adders. In the former case, the input carry to the least significant position is fixed at 0.

 Figure shows the interconnection of four full-adder (FA) circuits to provide a four-bit binary ripple carry

adder.

 The carries are connected in a chain through the full adders. The input carry to the adder is C0, and it

ripples through the full adders to the output carry C4. The S outputs generate the required sum bits.

Example: Consider the two binary numbers A = 1011and B = 0011. Their sum S = 1110 is formed with

the four-bit adder as follows:

 The carry output of lower order stage is connected to the carry input of the next higher order stage.

Hence this type of adder is called ripple carry adder.

 In a 4-bit binary adder, where each full adder has a propagation delay of tp ns, the output in the fourth

stage will be generated only after 4tp ns.

 The magnitude of such delay is prohibitive for high speed computers.

 One method of speeding up this process is look-ahead carry addition which eliminates ripple carry

delay.

Complement of a number:

1’s complement:

The 1’s complement of a binary number is formed bychanging 1 to 0 and 0 to 1.

Example:

1. The 1’s complement of 1011000 is 0100111.

2. The 1’s complement of 0101101 is 1010010.

2’s complement:

The 2’s complement of a binary number is formed by adding 1 with 1’s complement of a binary

number.

Example:

Page 11

1. The 2’s complement of 1101100 is 0010100

2. The 2’s complement of 0110111 is 1001001

Subtraction using 2’s complement addition:

 The subtraction of unsigned binary number can be done by means of complements.

 Subtraction of A-B can be done by taking 2’s complement of B and adding it to A.

 Check the resulting number. If carry present, the number is positive and remove the carry.

 If no carry present, the resulting number is negative, take the 2’s complement of result and put

negative sign.

Example:

Given the two binary numbers X = 1010100 and Y = 1000011, perform the subtraction

(a) X - Y and (b) Y - X by using 2’s complements.

Solution:

(a) X = 1010100

2’s complement of Y = + 0111101

Sum= 10010001

Discard end carry. Answer: X - Y = 0010001

(b) Y = 1000011

2’s complement of X= + 0101100

Sum= 1101111

There is no end carry. Therefore, the answer is Y - X = -(2’s complement of 1101111) =-0010001.

Parallel Binary Subtractor:

 The subtraction of unsigned binary numbers can be done most conveniently by meansof complements.

The subtraction A - B canbe done by taking the 2’s complement of B and adding it to A . The 2’s

complement canbe obtained by taking the 1’s complement and adding 1 to the least significant pair

ofbits. The 1’s complement can be implemented with inverters, and a 1 can be added tothe sum through

the input carry.

 The circuit for subtracting A - B consists of an adder with inverters placed betweeneach data input B and

the corresponding input of the full adder. The input carry Cin mustbe equal to 1 when subtraction is

Page 12

performed. The operation thus performed becomes A,plus the 1’s complement of B , plus 1. This is equal

to Aplus the 2’s complement of B.

 For unsigned numbers, that gives A-B if A>=B or the 2’s complement of B - Aif A <B. For signed

numbers, the result is A - B, provided that there is no overflow.

Fast adder (or) Carry Look Ahead adder:

Design a carry look ahead adder circuit. (Nov-2010)

 The carry look ahead adder is based on the principle of looking at the lower order bits of the augend

and addend to see if a higher order carry is to be generated.

 It uses two functions carry generate and carry propagate.

Consider the circuit of the full adder shown in Fig. If we define two new binaryvariables

the output sum and carry can respectively be expressed as

Gi is called a carry generate, and it produces a carry of 1 when both Ai and Bi are 1,regardless of

the input carry Ci. Pi is called a carry propagate, because it determines whether a carry into stage i will

propagate into stage i + 1 (i.e., whether an assertion of Ci will propagate to an assertion of Ci+1).

We now write the Boolean functions for the carry outputs of each stage and substitutethe value

of each Ci from the previous equations:

Page 13

 The construction of a four-bit adder with a carry lookahead scheme is shown in Fig.

 Each sum output requires two exclusive-OR gates.

 The output of the first exclusive-OR gate generates the Pi variable, and the AND gate generates the Gi

variable.

 The carries are propagated through the carry look ahead generator and applied as inputs to the second

exclusive-OR gate.

 All output carries are generated after a delay through two levels of gates.

 Thus, outputs S1 through S3 have equal propagation delay times. The two-level circuit for the output

carry C4 is not shown. This circuit can easily be derived by the equation-substitution method.

Page 14

4 bit-Parallel adder/subtractor:

Explain about binary parallel / adder subtractor. [NOV – 2019]

 The addition and subtraction operations can be combined into one circuit with one common binary adder

by including an exclusive-OR gate with each full adder. A four-bit adder–subtractor circuit is shown in

Fig.

 The mode input M controls the operation. When M = 0, the circuit is an adder, and when M = 1, the

circuit becomes a subtractor.

Page 15

 It performs the operations of both addition and subtraction.

 It has two 4bit inputs A3A2A1A0 and B3B2B1B0.

 The mode input M controls the operation when M=0 the circuit is an adder and when M=1 the circuits

become subtractor.

 Each exclusive-OR gate receives input M and one of the inputs of B .

 When M = 0, we have B xor0 = B. The full adders receive the value of B , the input carry is 0, and the

circuit performs A plus B . This results in sum S3S2S1S0and carry C4.

 When M = 1, we have B xor 1 = B’ and C0 = 1. The B inputs are all complemented and a 1 is added

through the input carry thus producing 2’s complement of B.

 Now the data A3A2A1A0will be added with 2’s complement of B3B2B1B0to produce the sum i.e., A-B if

A≥B or the 2’s complement of B-A if A<B.

Comparators

Design a 2 bit magnitude comparator. (May 2006)

It is a combinational circuit that compares two numbers and determines their relative magnitude. The

output of comparator is usually 3 binary variables indicating:

A<B, A=B, A>B

1- bitcomparator: Let’s begin with 1bit comparator and from the name we can easily make out that this

circuit would be used to compare 1bit binary numbers.

Page 16

A B A>B A=B A<B

0 0 0 1 0

1 0 1 0 0

0 1 0 0 1

1 1 0 1 0

For a 2-bit comparator we have four inputs A1 A0 and B1 B0 and three output E (is 1 if two numbers are

equal) G (is 1 when A>B) and L (is 1 when A<B) If we use truth table and K-map the result is

Design of 2 – bit Magnitude Comparator.

The truth table of 2-bit comparator is given in table below

Truth table:

Page 17

K-Map:

Logic Diagram:

Page 18

4 bit magnitude comparator:

Design a 4 bit magnitude comparators. (Apr – 2019)

Input

Function Equation

Page 19

BCD Adder:

Design to perform BCD addition.(or) What is BCD adder? Design an adder to perform arithmetic

addition of two decimal bits in BCD. (May -08)(Apr 2017,2018)[Nov – 2019]

Page 20

 Consider the arithmetic addition of two decimal digits in BCD, together with an input carry from a

previous stage. Since each input digit does not exceed 9, the output sum cannot be greater than 9 + 9 + 1

= 19, the 1 in the sum being an input carry.

 Suppose we apply two BCD digits to a four-bit binary adder. The adder will form the sum in binary and

produce a result that ranges from 0 through 19. These binary numbers are listed in Table and are labeled

by symbols K, Z8, Z4, Z2, and Z1. K is the carry, and the subscripts under the letter Z represent the

weights 8, 4, 2, and 1 that can be assigned to the four bits in the BCD code.

 A BCD adder that adds two BCD digits and produces a sum digit in BCD is shown in Fig. The two

decimal digits, together with the input carry, are first added in the top four-bit adder to produce the

binary sum.

Page 21

 When the output carry is equal to 0, nothing is added to the binary sum. When it is equal to 1, binary

0110 is added to the binary sum through the bottom four-bit adder.

 The condition for a correction and an output carry can be expressed by the Boolean function

C = K + Z8Z4 + Z8Z2

 The output carry generated from the bottom adder can be ignored, since it supplies information already

available at the output carry terminal.

 A decimal parallel adder that adds n decimal digits needs n BCD adder stages. The output carry from

one stage must be connected to the input carry of the next higher order stage.

Binary Multiplier:

Explain about binary Multiplier.

 Multiplication of binary numbers is performed in the same way as multiplication of decimal numbers.

The multiplicand is multiplied by each bit of the multiplier, starting from the least significant bit. Each

such multiplication forms a partial product.

 Successive partial products are shifted one position to the left. The final product is obtained from the

sum of the partial products.

 A combinational circuit binary multiplier with more bits can be constructed in a similar fashion.

 A bit of the multiplier is ANDed with each bit of the multiplicand in as many levels as there are bits in

the multiplier.

 The binary output in each level of AND gates is added with the partial product of the previous level to

form a new partial product. The last level produces the product.

Page 22

Page 23

CODE CONVERSION

Design a binary to gray converter. (Nov-2009)(Nov

Page 24

2017)

Binary to Grayconverter

Gray code is unit distance code.

Input code: Binary [B3 B2 B1 B0]

output code: Gray [G3 G2 G1 G0]

Truth Table

B3 B2 B1 B0 G3 G2 G1 G0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 1

0 0 1 1 0 0 1 0

0 1 0 0 0 1 1 0

0 1 0 1 0 1 1 1

0 1 1 0 0 1 0 1

0 1 1 1 0 1 0 0

1 0 0 0 1 1 0 0

1 0 0 1 1 1 0 1

1 0 1 0 1 1 1 1

1 0 1 1 1 1 1 0

1 1 0 0 1 0 1 0

1 1 0 1 1 0 1 1

1 1 1 0 1 0 0 1

1 1 1 1 1 0 0 0

K-MAP FORG3: K-MAP FORG2:

G3=B3 G2=B3’B2+B3B2’=B3 B2

K-MAP FORG1: K-MAP FORG0:

Page 25

G1=B1’B2+B1B2’=B1 B2 G0=B1’ B0+B1B0’=B1 B0

Logic diagram:

Gray to Binary converter:

Design a gray to binary converter.(OR) Design a combinational circuit that converts a four bit gray

code to a four bit binary number using exclusive – OR gates. (Nov-2009) [NOV – 2019]

Gray code is unit distance code.

Input code: Gray [G3 G2 G1 G0]

output code: Binary [B3 B2 B1 B0]

Truth Table:

Page 26

K-Map:

Page 27

Logic Diagram:

BCD to Excess -3 converter:

Design a combinational circuits to convert binary coded decimal number into an excess-3 code.

 Excess-3 code is modified form of BCD code. (Nov-06,09,10, May-08,10)

 Excess -3 code is derived from BCD code by adding 3to each coded number.

Truth table:

Page 28

K-Map:

Logic Diagram

Page 29

Excess -3 to BCD converter:

Design a combinational circuit to convert Excess-3 to BCD code. (May 2007)

Truth table:

Page 30

Page 31

Design Binary to BCD converter.

Page 32

Truth table:

K-map:

Page 33

Logic diagram:

DECODERS AND ENCODERS

Page 34

Decoder:

Explain about decoders with necessary diagrams. (Apr 2018)(Nov 2018)

 A decoder is a combinational circuit that converts binary information from n input lines to a maximum

of 2n unique output lines. If the n -bit coded information has unused combinations, the decoder may

have fewer than 2n outputs.

 The purpose of a decoder is to generate the 2n (or fewer) minterms of n input variables, shown below for

two input variables.

2 to 4 decoder:

3 to 8 Decoder:

Design 3 to 8 line decoder with necessary diagram. May -10)

Truth table:

Logic diagram:

Page 35

Design for 3 to 8 decoder with 2 to 4 decoder:

 Not that the two to four decoder design shown earlier, with its enable inputs can be used to build a three

to eight decoder as follows.

Implementation of Boolean function using decoder:

 Since the three to eight decoder provides all the minterms of three variables, the realisation of a

function in terms of the sum of products can be achieved using a decoder and OR gates as follows.

Page 36

Example: Implement full adder using decoder.

Sum is given by ∑m(1, 2, 4, 7) while Carry is given by ∑m(3, 5, 6, 7) as given by the minterms

each of the OR gates are connected to.

Design for 4 to 16 decoder using 3 to 8 decoder: Design 5 to 32 decoder using 3 to 8 and 2 to 4 decoder:

BCD to seven segment decoder

Design a BCD to seven segment code converter. (May-06,10, Nov- 09)

Truth table:

Page 37

K-Map:

Page 38

Logic Diagram:

 The specification above requires that the output be zeroes (none of the segments are lighted up) when

the input is not a BCD digit.

 In practical implementations, this may defer to allow representation of hexadecimal digits using the

seven segments.

Page 39

Encoder:

Explain about encoders. (Nov 2018)

 An encoder is a digital circuit that performs the inverse operation of a decoder. An encoder has 2n (or

fewer) input lines and n output lines. The output lines, as an aggregate, generate the binary code

corresponding to the input value.

Octal to Binary Encoder:

 The encoder can be implemented with OR gates whose inputs are determined directly from the truth

table. Output z is equal to 1 when the input octal digit is 1, 3, 5, or 7.

 Output y is 1 for octal digits 2, 3, 6, or 7, and output x is 1 for digits 4, 5, 6, or 7. These conditions can

be expressed by the following Boolean output functions:

The encoder can be implemented with three OR gates.

Truth table:

 Another ambiguity in the octal-to-binary encoder is that an output with all 0’s is generated when all the

inputs are 0; but this output is the same as when D0 is equal to 1. The discrepancy can be resolved by

providing one more output to indicate whether at least one input is equal to 1.

Logic Diagram:

Page 40

Priority Encoder:

Design a priority encoder with logic diagram.(or) Explain the logic diagram of a 4 – input priority

encoder. (Apr – 2019)

A priority encoder is an encoder circuit that includes the priority function. The operationof the

priority encoder is such that if two or more inputs are equal to 1 at the same time,the input having the

highest priority will take precedence.

Truth table:

Modified Truth table:

K-Map:

Page 41

Logic Equations:

Logic diagram:

MULTIPLEXERS AND DEMULTIPLEXERS

Page 42

Multiplexer: (MUX)

Design a 2:1 and 4:1 multiplexer.

 A multiplexer is a combinational circuit that selects binary information from one of many input lines and

directs it to a single output line. The selection of a particular input line is controlled by a set of selection

lines.

 Normally, there are 2n input lines and n selection lines whose bit combinations determine which input is

selected.

2 to 1 MUX:

A 2 to 1 line multiplexer is shown in figure below, each 2 input lines A to B is applied to one input of an

AND gate. Selection lines S are decoded to select a particular AND gate. The truth table for the 2:1 mux

is given in the table below.

 To derive the gate level implementation of 2:1 mux we need to have truth table as shown in figure. And

once we have the truth table, we can draw the K-map as shown in figure for all the cases when Y is

equal to '1'.

Truth table:

Logic Diagram:

4 to 1 MUX:

 A 4 to 1 line multiplexer is shown in figure below, each of 4 input lines I0 to I3 is applied to one input

of an AND gate.

Page 43

 Selection lines S0 and S1 are decoded to select a particular AND gate.

 The truth table for the 4:1 mux is given in the table below.

Truth Table:

SELECT

INPUT

OUTPUT

S1 S0 Y

0 0 I0

0 1 I1

1 0 I2

1 1 I3

Problems :

Example: Implement the Boolean expression using MUX

F(A,B,C,D) = ∑m(0,1,5,6,8,10,12,15) (Apr 2017, Nov 2017)

Example: Implement the boolean function using Multiplexer. [NOV – 2019]

F (x, y, z) = Σm (1, 2, 6, 7)

Logic Diagram:

Page 44

Solution:

Implementation table:

Multiplexer Implementation:

Example: 32:1 Multiplexer using 8:1 Mux (Nov 2018) (Apr – 2019)

DEMULTIPLEXERS:

Explain about demultiplexers.

 The de-multiplexer performs the inverse function of a multiplexer, that is it receives information on one

line and transmits its onto one of 2n possible output lines.

Page 45

 The selection is by n input select lines. Example: 1-to-4 De-multiplexer

Logic Diagram: Truth Table:

Example:

1. Implement full adder using De-multiplexer.

INPUT OUTPUT

E D S0 S1 Y0 Y1 Y2 Y3

1 1 0 0 1 0 0 0

1 1 0 1 0 1 0 0

1 1 1 0 0 0 1 0

1 1 1 1 0 0 0 1

Page 46

2. Implement the following functions using de-multiplexer.

f1 (A,B,C) = ∑m(1,5,7), f2 (A,B,C) = ∑m(3,6,7)

Solution:

Parity Checker / Generator:

Page 47

 A parity bit is an extra bit included with a binary message to make the number of 1’s either odd or

even. The message, including the parity bit, is transmitted and then checked at the receiving end for

errors. An error is detected if the checked parity does not correspond with the one transmitted.

 The circuit that generates the parity bit in the transmitter is called a parity generator. The circuit that

checks the parity in the receiver is called a parity checker.

 In even parity system, the parity bit is ‘0’ if there are even number of 1s in the data and the parity bit

is ‘1’ if there are odd number of 1s in the data.

 In odd parity system, the parity bit is ‘1’ if there are even number of 1s in the data and the parity bit is

‘0’ if there are odd number of 1s in the data.

3- bit Even Parity generator:

Truth Table:

Logic Diagram:

4- bit Even parity checker:

Truth Table:

Page 48

Logic Diagram:

INTRODUCTION TO HDL

 In electronics, a hardware description language or HDL is any language from a class of computer

languages and/or programming languages for formal description of digital logic and electronic circuits.

 HDLs are used to write executable specifications of some piece of hardware.

 A simulation program, designed to implement the underlying semantics of the language statements,

coupled with simulating the progress of time, provides the hardware designer with the ability to model a

piece of hardware before it is created physically.

 Logic synthesis is the process of deriving a list of components and their interconnection (called net list)

from the model of a digital system.

 Logic Simulation is the representation of the structure and behavior of a digital logic synthesis through

the use of a computer.

 The standard HDLs that supported by IEEE.

 VHDL (very High Speed Integrated Circuit HDL)

 Verilog HDL

Page 49

HDL MODELS OF COMBINATIONAL CIRCUITS

The Verilog HDL model of a combinational circuit can be described in any one of the following

modeling styles,

 Gate level modeling-using instantiations of predefined and user defined primitive gates.

 Dataflow modeling using continuous assignment with the keyword assign.

 Behavioral modeling using procedural assignment statements with the keyword always.

Gate level modeling

In this type, a circuit is specified by its logic gates and their interconnections. Gate level modeling

provides a textual description of a schematic diagram. The verilog HDL includes 12basic gates as

predefined primitives. They are and, nand, or, nor, xor, xnor, not &buf.

Data flow modeling

Data flow modeling of combinational logic uses a number of operators that act on operands to produce

desired results. Verilog HDL provides about 30 different operators. Data flow modeling uses continuous

assignments and the keyword assign. A continuous assignment is a statement that assigns a value to a

net. The data type family net is used to represent a physical connection between circuit elements.

HDL for2-to-4 line decoder

Page 50

Behavioral modeling

 Behavioral modeling represents digital circuits at a functional and algorithmic level. It is used mostly to

describe sequential circuits, but can also be used to describe combinational circuits.

 Behavioral descriptions use the keyword always, followed by an optional event control expression and a

list of procedural assignment statements.

UNIT II

COMBINATIONAL LOGIC

Page 51

TWO MARK QUESTIONS & ANSWERS

1) Define combinational logic. (May 2008, 2016)

A combinational circuit consists of logic gates whose outputs at any time are determined from

only the

present combination of inputs. A combinational circuit performs an operation that canbe specified

logically by a set of Boolean functions.

2) What are sequential circuits?

Sequential circuits employ storage elements in addition to logic gates. Their outputs are a function

of the inputs and the state of the storage elements. Because the state of the storage elements is a function

of previous inputs, the outputs of a sequential circuit depend not only on present values of inputs, but also

on past inputs, and the circuit behavior must be specified by a time sequence of inputs and internal states.

3) Write the design procedure for combinational circuits?

The procedure involves the following steps:

1. From the specifications of the circuit, determine the required number of inputs and outputs and assign

a symbol to each.

2. Derive the truth table that defines the required relationship between inputs and outputs.

3. Obtain the simplified Boolean functions for each output as a function of the input variables.

4. Draw the logic diagram and verify the correctness of the design (manually or by simulation).

4) What is Half adder?

A half-adder is an arithmetic circuit block that can be used to add two bits and produce two

outputs SUM and CARRY.

The Boolean expressions for the SUM and CARRY outputs are given by the equations

Truth Table:

5) Draw the logic diagram of half adder using NAND gate. (May 2006,13)

Page 52

Logic Diagram: Half adder using NAND gate:

6) What is Full adder? Draw the truth table of full adder. (Apr 2018)

A Full-adder is an arithmetic circuit block that can be used to add three bits and produce two

outputs SUM and CARRY.

The Boolean expressions for the SUM and CARRY outputs are given by the equations

7) Draw the Logic diagram of full adder.

8) What is Half subtractor? (May 2005)

A half-subtractor is a combinational circuit that can be used to subtract one binary digit from

another to produce a DIFFERENCE output and a BORROW output. The BORROW output here specifies

whether a ‘1’ has been borrowed to perform the subtraction. The Boolean expression for difference and

borrow is:

Page 53

Logic diagram:

9) Draw Full adder using Two half adder. (Apr – 2019)

10) What is Full subtractor? Write the truth table of full subtractor. (Nov 2017)

A full subtractor performs subtraction operation on two bits, a minuend and a subtrahend, and

also takes into consideration whether a ‘1’ has already been borrowed by the previous adjacent lower

minuend bit or not. As a result, there are three bits to be handled at the input of a full subtractor, namely

the two bits to be subtracted and a borrow bit designated as Bin . There are two outputs, namely the

DIFFERENCE output D and the BORROW output Bo. The BORROW output bit tells whether the

minuend bit needs to borrow a ‘1’ from the next possible higher minuend bit. The Boolean expression for

difference and barrow is:

Page 54

11) Draw Full subtractor using two half subtractor.

12) What is Parallel Binary Adder (Ripple Carry Adder)?

A binary adder is a digital circuit that produces the arithmetic sum of two binary numbers.It can

beconstructed with full adders connected in cascade, with the output carryfrom each full adder connected

to the input carry of the next full adder in the chain.

13) Draw the logic diagram for four bit binary parallel adder.

14) What is 1’s complement of a number?

The 1’s complement of a binary number is formed bychanging 1 to 0 and 0 to 1.

Page 55

Example:

1. The 1’s complement of 1011000 is 0100111.

2. The 1’s complement of 0101101 is 1010010.

15) What is 2’s complement of a number?

The 2’s complement of a binary number is formed by adding 1 with 1’s complement of a binary

number.

Example:

1) The 2’s complement of 1101100 is 0010100

2) The 2’s complement of 0110111 is 1001001

16) How Subtraction of binary numbers perform using 2’s complement addition?

 The subtraction of unsigned binary number can be done by means of complements.

 Subtraction of A-B can be done by taking 2’s complement of B and adding it to A.

 Check the resulting number. If carry present, the number is positive and remove the carry.

 If no carry present, the resulting number is negative, take the 2’s complement of result and put

negative sign.

17) Given the two binary numbers X = 1010100 and Y = 1000011, perform the subtraction

(a) X - Y and (b) Y - X by using 2’s complements.

Solution:

(c) X = 1010100

2’s complement of Y = + 0111101

Sum= 10010001

Discard end carry. Answer: X - Y = 0010001

(d) Y = 1000011

2’s complement of X= + 0101100

Sum= 1101111

There is no end carry. Therefore, the answer is Y - X = -(2’s complement of 1101111) =-0010001.

18) Draw the logic diagram of Parallel Binary Subtractor.

Page 56

19) Draw 1:8 Demux using two 1:4 demux. (Nov 2018)

20) Draw the logic diagram of 2’s complement adder/subtractor. (May 2013)

The mode input M controls the operation. When M = 0, the circuit is an adder, and when M = 1,

the circuit becomes a subtractor.

21) What is Magnitude Comparator? [NOV – 2019]

The comparison of two numbers is an operation that determines whether one number is

greater than, less than, or equal to the other number. A magnitude comparator is a combinational

circuit that compares two numbers A and B and determines their relative magnitudes.

Page 57

The outcome of the comparison is specified by three binary variables that indicate whether A

> B, A = B, or A < B.

22) Design a 1-bit Magnitude Comparator.

Truth table:

Logic Circuits:

23) What is Decoder? What are binary decoders? (Nov 2017)

A decoder is a combinational circuit that converts binary information from n input lines to a

maximum of 2n unique output lines. If the n -bit coded information hasunused combinations, the

decoder may have fewer than 2n outputs.

The purpose of a decoder is to generate the 2n (or fewer) minterms of n input variables, shown below

for two input variables.

24) Design a 3 to 8 decoder with 2 to 4 decoder.

Not that the two to four decoder design shown earlier, with its enable inputs can be used to build a

three to eight decoder as follows.

Page 58

25) What is Encoder? (May 2012)

An encoder is a digital circuit that performs the inverse operation of a decoder. An encoder

has 2n (or fewer) input lines and n output lines. The output lines, as an aggregate, generate the binary

code corresponding to the input value.

26) What is Priority Encoder? (Apr 2017)

A priority encoder is an encoder circuit that includes the priority function. The operation of

the priority encoder is such that if two or more inputs are equal to 1 at the same time, the input having

the highest priority will take precedence.

27) Define Multiplexer (MUX) (or) Data Selector. (Dec 2006, May 2011) [NOV – 2019]

A multiplexer is a combinational circuit that selects binary information from one of many

input lines and directs it to a single output line. The selection of a particular input line is controlled by

a set of selection lines. Normally, there are 2n input lines and n selection lines whose bit combinations

determine which input is selected.

28) What is De-multiplexer?

The de-multiplexer performs the inverse function of a multiplexer, that is it receives information on

one line and transmits its onto one of 2n possible output lines. The selection is by n input select

lines.

29) What is Parity?

A parity bit is an extra bit included with a binary message to make the number of 1’s either

odd or even. The message, including the parity bit, is transmitted and then checked at the receiving

Page 59

end for errors. An error is detected if the checked parity does not correspond with the one

transmitted.

30) What is Parity Checker / Generator:

The circuit that generates the parity bit in the transmitter is called a parity generator. The

circuit that checks the parity in the receiver is called a parity checker.

31) What is even parity and odd parity?

In even parity system, the parity bit is ‘0’ if there are even number of 1s in the data and the

parity bit is ‘1’ if there are odd number of 1s in the data.

In odd parity system, the parity bit is ‘1’ if there are even number of 1s in the data and the

parity bit is ‘0’ if there are odd number of 1s in the data.

31) Give the applications of Demultiplexer.

i) It finds its application in Data transmission system with error detection.

ii) One simple application is binary to Decimal decoder.

32) Mention the uses of Demultiplexer.

Demultiplexer is used in computers when a same message has to be sent to different receivers. Not only

in computers, but any time information from one source can be fed to several places.

33) Give other name for Multiplexer and Demultiplexer.

Multiplexer is otherwise called as Data selector.

Demultiplexer is otherwise called as Data distributor.

34) What is the function of the enable input in a Multiplexer?

The function of the enable input in a MUX is to control the operation of the unit.

35) List out the applications of decoder? (Dec 2006)

a. Decoders are used in counter system.

b. They are used in analog to digital converter.

c. Decoder outputs can be used to drive a display system.

36) What is the Application of Mux?

1. They are used as a data selector to select one output of many data inputs.

2. They can be used to implement combinational logic circuits

3. They are used in time multiplexing systems.

4. They are used in frequency multiplexing systems.

5. They are used in A/D & D/A Converter.

6. They are used in data acquisition system.

Page 60

37) List out the applications of comparators?

a. Comparators are used as a part of the address decoding circuitry in computers to select a

specific input/output device for the storage of data.

b. They are used to actuate circuitry to drive the physical variable towards the

reference value.

c. They are used in control applications.

38) What is carry look-ahead addition?

The speed with which an addition is performed limited by the time required forthe carries to

propagate or ripple through all of the stage of the adder. One method ofspeeding up the process is by

eliminating the ripple carry delay.

39) What is the Difference between Decoder & Demux.?

S.No Decoder Demux

1 Decoder is a many inputs to many

Outputs

Demux is a single input to many outputs

2 There are no selection lines. The selection of specific output line is

controlled by the value of selection lines.

40) How Binary to Gray Code Conversion done?

Consider b1, b2, b3, b4 and b5 is the Binary Number and it is need be converted into Grey Code.

1. Write Most Significant Bit (MSB) is same as the MSB in Binary Number.

2. The second bit of the Grey code can be found by performing the Exclusive-OR (EX-OR)

operation between the First and second bits of the Binary Number.

3. The Third bit of the Grey code can be found by performing the Exclusive-OR (EX-OR) operation

between the Third and Second bits of the given Binary Number; and so on

EX-OR Operation:

1. Both the bits are 0 or 1 then the output of EX-OR gate will be 0.

2. Any one of the bit in two bits is 1 then the output of EX-OR gate will be 1.

41) How Gray Code to Binary Conversion done?

Consider g0, g1, g2 and g3 is the Gray Code and it is need be converted into Binary Number. The

steps for Binary to Gray Code Conversion needs to be reversed to find out the equivalent Binary

Number

1. The Most Significant Bit (MSB) of the Binary is same as the First MSB of the Gray Code.

2. If the second Gray Bit is 0 then the second bit of the Binary is bit will be same as that of the First

Binary bit; if the Second Gray Bit is 1 then the Second Bit of the Binary will be inverse of its

previous binary bit. Refer the below image for easy understanding of Gray to Binary Conversion

32) Draw the circuit for 4 to 1 line multiplexer. (Apr 2017) [NOV – 2019]

Logic Diagram:

Page 58

Page 59

Truth Table:

SELECT

INPUT

OUTPUT

S1 S0 Y

0 0 I0

0 1 I1

1 0 I2

1 1 I3

42) What do you meant by HDL?

Hardware description language (HDL)- hardware description language or HDL is any

language from a class of computer languages and/or programming languages for formal

description of digital logic and electronic circuits.

43) List the Verilog HDL model of a combinational circuits.

 Gate level modeling-using instantiations of predefined and user defined primitive gates.

 Dataflow modeling using continuous assignment with the keyword assign.

 Behavioral modeling using procedural assignment statements with the keyword always.

44) What is meant by Gate level modeling?

In this type, a circuit is specified by its logic gates and their interconnections. Gate level

modeling provides a textual description of a schematic diagram.

45) What is meant by data flow modeling?

Data flow modeling of combinational logic uses a number of operators that act on

operands to produce desired results. Verilog HDL provides about 30 different operators.

46) What is meant by Behavioral modeling?

Behavioral modeling represents digital circuits at a functional and algorithmic level. It is

used mostly to describe sequential circuits, but can also be used to describe combinational

circuits.

47) What is Verilog?

Verilog is a general purpose hardware descriptor language. It has similar in syntax to the C

programming language. It can be used to model a digital system at many levels of abstraction

ranging from the algorithmic level to the switch level.

48) Define logic synthesis and simulation.

Logic synthesis is the process of deriving a list of components and their interconnection (called

netlist) from the model of a digital system.

Logic Simulation is the representation of the structure and behavior of a digital logic synthesis

through the use of a computer.

49) List the standard HDLs that supported by IEEE.

Page 60

 VHDL (very High Speed Integrated Circuit HDL)

 Verilog HDL

50) Write the truth table of 2 to 4 line decoder and draw its logic diagram. (Apr – 2019)

2 to 4 decoder:

51) State the different modeling techniques used in HDL. (Apr 2018)

 Gate level modeling

 Data flow modeling

 Behavioral modeling

Page 1

UNIT III

SYNCHRONOUS SEQUENTIAL LOGIC

SEQUENTIAL CIRCUITS

Sequential circuits:

 Sequential circuits employ storage elements in addition to logic gates. Their outputs are a function of

the inputs and the state of the storage elements.

 Because the state of the storage elements is a function of previous inputs, the outputs of a sequential

circuit depend not only on present values of inputs, but also on past inputs, and the circuit behavior

must be specified by a time sequence of inputs and internal states.

Types of sequential circuits:

There are two main types of sequential circuits, and their classification is a function ofthe timing

of their signals.

1. Synchronous sequential circuit:

It is a system whose behaviorcan be defined from the knowledge of its signals at discrete

instants of time.

2. Asynchronous sequential circuits:

The behaviorof an asynchronous sequential circuit depends upon the input signals at any

instant of timeand the order in which the inputs change. The storage elements commonly used

in asynchronoussequential circuits are time-delay devices.

LATCHES AND FLIP FLOPS

Flip-Flop:

 The storage elements (memory) used in clocked sequential circuits are called flipflops. A flip-flop is

a binary storage device capable of storing one bit of information. In a stable state, the output of a flip-

flop is either 0 or 1.

 A sequential circuit may use many flip-flops to store as many bits as necessary. The block diagram of

a synchronous clocked sequential circuit is shown in Fig.

Sequential Circuits - Storage Elements: Latches , Flip-Flops - Analysis of Clocked Sequential Circuits - State

Reduction and Assignment - Design Procedure - Registers and Counters - HDL Models of Sequential

Circuits

Page 2

 A storage element in a digital circuit can maintain a binary state indefinitely (as long as power is

delivered to the circuit), until directed by an input signal to switch states.

 The major differences among various types of storage elements are in the number of inputs they

possess and in the manner in which the inputs affect the binary state.

Latch:

 The storage elements that operate with signal levels (rather than signal transitions) are referred to as

latches; those controlled by a clock transition are flip-flops.Latches are said to be level sensitive

devices; flip-flops are edge-sensitive devices.

SR Latch: Using NOR gate

Realize SR Latch using NOR and NAND gates and explain its operation.

 The SR latch is a circuit with two cross-coupled NOR gates or two cross-coupled NAND gates, and

two inputs labeled S for set and R for reset.

 The SR latch constructed with two cross-coupled NOR gates is shown in Fig.

 The latch has two useful states. When output Q = 1 and Q’= 0, the latch is said to be in the set state .

When Q = 0 and Q’ = 1, it is in the reset state . Outputs Q and Q’ are normally the complement of

each other.

 However, when both inputs are equal to 1 at the same time, a condition in which both outputs are

equal to 0 (rather than be mutually complementary) occurs.

 If both inputs are then switched to 0 simultaneously, the device will enter an unpredictable or

undefined state or a metastable state. Consequently, in practical applications, setting both inputs to 1

is forbidden.

Page 3

FLIP FLOPS

Triggering of Flip Flops:

Explain about triggering of flip flops in detail.

 The state of a latch or flip-flop is switched by a change in the control input. This momentary change

is called a trigger, and the transition it causes is said to trigger the flip-flop.

Level Triggering:

 SR, D, JK and T latches are having enable input.

 Latches are controlled by enable signal, and they are level triggered, either positive level triggered or

negative level triggered as shown in figure (a).

 The output is free to change according to the input values, when active level is maintained at the

enable input.

Edge Triggering:

 A clock pulse goes through two transitions: from 0 to 1 and the return from 1 to 0.

 As shown in above Fig (b) and (c)., the positive transition is defined as the positive edge and the

negative transition as the negative edge.

Explain the operation of flipflops.(Nov 2017)

FLIP FLOP CONVERSIONS

The purpose is to convert a given type A FF to a desired type B FF using some conversion logic.

Page 4

The key here is to use the excitation table, which shows the necessary triggering signal (S,R, J,K, D and

T) for a desired flipflop state transition :

Excitation table for all flip flops:

1. SR Flip Flop to JK Flip Flop

The truth tables for the flip flop conversion are given below. The present state is represented by

Qp and Qp+1 is the next state to be obtained when the J and K inputs are applied.

For two inputs J and K, there will be eight possible combinations. For each combination of J, K and Qp,

the corresponding Qp+1 states are found. Qp+1 simply suggests the future values to be obtained by the

JK flip flop after the value of Qp.

The table is then completed by writing the values of S and R required to get each Qp+1 from the

corresponding Qp. That is, the values of S and R that are required to change the state of the flip flop from

Qp to Qp+1 are written.

http://www.circuitstoday.com/flip-flop-conversion

Page 5

2.JK Flip Flop to SR Flip Flop

This will be the reverse process of the above explained conversion. S and R will be the external

inputs to J and K. As shown in the logic diagram below, J and K will be the outputs of the combinational

circuit. Thus, the values of J and K have to be obtained in terms of S, R and Qp. The logic diagram is

shown below.

A conversion table is to be written using S, R, Qp, Qp+1, J and K. For two inputs, S and R, eight

combinations are made. For each combination, the corresponding Qp+1 outputs are found. The outputs

for the combinations of S=1 and R=1 are not permitted for an SR flip flop. Thus the outputs are

considered invalid and the J and K values are taken as “don’t cares”.

Page 6

3.SR Flip Flop to D Flip Flop

As shown in the figure, S and R are the actual inputs of the flip flop and D is the external input of

the flip flop. The four combinations, the logic diagram, conversion table, and the K-map for S and R in

terms of D and Qp are shown below.

4.D Flip Flop to SR Flip Flop

D is the actual input of the flip flop and S and R are the external inputs. Eight possible

combinations are achieved from the external inputs S, R and Qp. But, since the combination of S=1 and

R=1 are invalid, the values of Qp+1 and D are considered as “don’t cares”. The logic diagram showing

the conversion from D to SR, and the K-map for D in terms of S, R and Qp are shown below.

http://www.circuitstoday.com/flip-flop-conversion

Page 7

5.JK Flip Flop to T Flip Flop

J and K are the actual inputs of the flip flop and T is taken as the external input for conversion.

Four combinations are produced with T and Qp. J and K are expressed in terms of T and Qp. The

conversion table, K-maps, and the logic diagram are given below.

6.JK Flip Flop to D Flip Flop

D is the external input and J and K are the actual inputs of the flip flop. D and Qp make four

combinations. J and K are expressed in terms of D and Qp. The four combination conversion table, the

K-maps for J and K in terms of D and Qp, and the logic diagram showing the conversion from JK to

D are given below.

7.D Flip Flop to JK Flip Flop

AUQ: How will you convert a D flip-flop into JK flip-flop? (AUQ: Dec 2009,11,Apr 2017)

In this conversion, D is the actual input to the flip flop and J and K are the external inputs. J, K

and Qp make eight possible combinations, as shown in the conversion table below. D is expressed in

terms of J, K and Qp.The conversion table, the K-map for D in terms of J, K and Qp and the logic

diagram showing the conversion from D to JK are given in the figure below.

http://www.circuitstoday.com/flip-flop-conversion
http://www.circuitstoday.com/flip-flop-conversion

Page 8

MEALY AND MOORE MODELS

Write short notes on Mealy and Moore models in sequential circuits.

 In synchronous sequential circuit the outputs depend upon the order in which its input variables

change and can be affected at discrete instances of time.

General Models:

 There are two models in sequential circuits. They are:

1. Mealy model

2. Moore model

Moore machine:

 In the Moore model, the outputs are a function of present state only.

Mealy machine:

 In the Mealy model, the outputs are a function of present state and external inputs.

Page 9

Difference between Moore model and Mealy model.

Example:

A sequential circuit with two ‘D’ Flip-Flops A and B, one input (x) and one output (y).

The Flip-Flop input functions are:

DA= Ax+ Bx

DB= A’x and

the circuit output function is, Y= (A+ B) x’.

(a) Draw the logic diagram of the circuit, (b) Tabulate the state table, (c) Draw the state diagram.

Solution:

Page 10

State table:

State diagram:

1. Difference between Combinational & Sequential Circuits.

S .no Combinational Circuits Sequential Circuits

1 The output at all times depends only on

the present combination of input

variables.

The output not only depends on the present

input but also depends on the past history input

variables.

2 Memory unit is not Required Memory unit is required to store the past

history of input variable

3 Clock input is not needed. Clock input is needed.

TWO MARKS

Page 11

4 Faster in Speed Speed is Slower

5 Easy to design.

Eg:Mux, Demux, Encoder, Decoder,

Adders, Subtractors.

Difficult

Counters.

to design. Eg: Shift Register,

2. What are the classifications of sequential circuits?

The sequential circuits are classified on the basis of timing of their signals in to two types. They are

1) Synchronous sequential circuit.2) Asynchronous sequential circuit.

3. Define Latch.

The basic unit for storage is Latch. A Latch maintain its output state either at 1or 0 until directed by

an input signal to change its state.

4. Define a flip flop.

A flip-flop is a storage device capable of storing one bit of information. It has two states either 0 or 1.

It is also called bistable multivibrator.

5. What are the different types of flip-flop?

The various types of flip flops are 1). SR flip-flop 2). D flip-flop 3). JK flip-flop 4). T flip-flop

6. What is the main difference between a latch and flip flop?

 The output of latch changes immediately when its input changes.

 The output of a flip-flop changes only when its clock pulse is active and its input changes.

Input changes do not affect output if its clock is not activated.

7. State few application of Flip-Flop.

 Used as a memory element.

 Used as delay elements.

 Data transfer

 Used as a building block in sequential circuits such as counters and registers.

8. What is the operation of D flip-flop?

In D flip-flop during the occurrence of clock pulse if D=1, the output Q is set and if D=0, the output

is reset. Set – 1, Reset – 0.

9. What is the operation of JK flip-flop?

When K input is low and J input is high the Q output of flip-flop is set.

When K input is high and J input is low the Q output of flip-flop is reset.

When both the inputs K and J are low the output does not change

When both the inputs K and J are high it is possible to set or reset the flip-flop(ie) the output toggle

onthe next positive clock edge.

10. What is the operation of T flip-flop? (Nov 2018)

Page 12

T flip-flop is also known as Toggle flip-flop. 1). When T=0 there is no change in the output. 2). When

T=1 the output switch to the complement state (ie) the output toggles.

11. Define race around condition.

In JK flip-flop output is fed back to the input. Therefore change in the output results change in

the input. Due to this in the positive half of the clock pulse if both J and K are high then output

toggles continuously. This condition is called ‘race around condition’.

12. What is triggering? What is the need for trigger in flip-flop?

A flip-flop is made to change its state by application of a clock pulse after giving inputs. This is

called triggering. The clock (triggering input) is given to synchronize the change in the output with it.

13. What is meant by level and edge-triggering? (Nov 2017) (Apr – 2019)

 If flip-flop changes its state when the clock is positive (high) or negative (low) then, that flip-

flop is said to be level triggering flip-flop.

 If the flip-flop changes its state at the positive edge (rising edge) or negative edge (falling

edge) of the clock is sensitive to its inputs only at this transition of the clock then flip-flop is

said to be edge triggered flip-flop.

14. How do you eliminate race around condition in JK flip flop. ?

Using master-slave flip-flop which consists of two flip-flops where one circuit serves as a master and

the other as a slave race around condition in JK flip flop is eliminated .

15. Define rise time.

The time required to change the voltage level from 10% to 90% is known as rise time (tr).

16. Define fall time.

The time required to change the voltage level from 90% to 10% is known as falltime (tf).

17. Define skew and clock skew.

The phase shift between the rectangular clock waveforms is referred to as skew and the time

delay between the two clock pulses is called clock skew.

18. Define setup time.

The setup time is the minimum time required to maintain a constant voltage levels at the excitation inputs of the

flip-flop device prior to the triggering edge of the clock pulse in order for the levels to be reliably clocked into

the flip flop.

19. Draw the logic diagram and write the function table of D Latch. (Apr 2019)

Page 13

20. Define hold time.

The hold time is the minimum time for which the voltage levels at the excitation inputs must remain

constant after the triggering edge of the clock pulse in order for the levels to be reliably clocked into the flip flop.

21. Define propagation delay.

A propagation delay is the time required to change the output after the application of the input

22. Explain the flip-flop excitation tables for RS FF.

In RS flip-flop there are four possible transitions from the present state to theNext state. They are

1). 0→0 transition: This can happen either when R=S=0 or when R=1 and S=0.

2). 0→ 1 transition: This can happen only when S=1 and R=0.

3). 1→0 transition: This can happen only when S=0 and R=1.

4). 1→1 transition: This can happen either when S=1 and R=0 or S=0 and R=0.

23. Give some applications of clocked RS Flip-flop.

Clocked RS flip flops are used in Calculators & Computers.

It is widely used in modern electronic products.

24. What is the drawback of SR Flipflop? How is this minimized? (Apr 2018)

In SR flipflop when both S and R inputs are one it will generate a Undetermined state.This is

Minimized by providing feedback path or by using JK flip flop.

25. How many flip flops are required to build a Binary counter that counts from 0 to 1023?

210= 1024 hence 10 flipflops are required.

26. State the difference between latches and flipflops. (Apr 2019)

Page 14

27. What is mealy and Moore circuit? Or what are the models used to represent clocked sequential

circuits?

 Mealy circuit is a network where the output is a function of both present state and input.

 Moore circuit is a network where the output is function of only present state

Counter:

COUNTERS

 A counter is a register (group of Flip-Flop) capable of counting the number of clock pulse

arriving at its clock input.

 A counter that follows the binary number sequence is called a binary counter.

 Counter are classified into two types,

1. Asynchronous (Ripple) counters.

2. Synchronous counters.

 In ripple counter, a flip- flop output transition serves as clock to next flip-flop.

Page 15

o With an asynchronous circuit, all the bits in the count do not all change at the same time.

 In a synchronous counter, all flip-flops receive common clock.

o With a synchronous circuit, all the bits in the count change synchronously with the

assertion of the clock

 A counter may count up or count down or count up and down depending on the input control.

Uses of Counters:

The most typical uses of counters are

 To count the number of times that a certain event takes place; the occurrence of event to be

counted is represented by the input signal to the counter

 To control a fixed sequence of actions in a digital system

 To generate timing signals

 To generate clocks of different frequencies

Modulo 16 ripple /Asynchronous Up Counter

Explain the operation of a 4-bit binary ripple counter.

 The output of up-counter is incremented by one for each clock transition.

 A 4-bit asynchronous up-counter consists of 4JK Flip-Flops.

 The external clock signal is connected to the clock input of the first FlipFlop.

 The clock inputs of the remaining Flip-Flops are triggered by the Q output of the previous stage.

 We know that in JK Flip-Flop, if J=1 , K=1 and clock is triggered the past output will be

complemented.

 Initially, the register is cleared, QDQCQBQA =0000.

 During the first clock pulse, Flip-Flop A triggers, therefore QA=1, QB=QC=QD=0.

QDQCQBQA=0001

 At the second clock pulse FLipFlop A triggers, therefore QA changes from 1 to 0, which triggers

FlipFlop B, therefore QB=1,QA=QC=QD=0

QDQCQBQA=0010

 At the third clock pulse FlipFlop A triggers, therefore QA changes from 0 to 1, This never triggers

FlipFlop B because 0 to 1 transition gives a positive edge triggering,but here the FlipFlops are

triggered only at negative edge(1 to 0 transition) therefore QA=QB=1, QC=QD=0.

QDQCQBQA=0011

 At the fourth clock pulse Flip-Flop A triggers, therefore QA changes from 1 to 0, This triggers

FlipFlop B therefore QB changes from 1 to 0. The change in QB from 1 to 0 triggers C Flip-Flop,

Page 16

 Therefore QC changes from 0 to 1. Therefore QA=QB=QD=0, QC=1.

QDQCQBQA=0100

Truth table:

Page 17

Timing diagram:

Modulo 16 /4 bit Ripple Down counter/ Asynchronous Down counter

Explain about Modulo 16 /4 bit Ripple Down counter.

 The output of down-counter is decremented by one for each clock transition.

 A 4-bit asynchronous down-counter consists of 4JK Flip-Flops.

Page 18

 The external clock signal is connected to the clock input of the first Flip-Flop.

 The clock inputs of the remaining Flip-Flops are triggered by the Q output of the previous stage.

 We know that in JK Flip-Flop, if J=1 , K=1 and clock is triggered the past output will be

complemented.

 Initially, the register is cleared, QDQCQBQA =0000.

 During the first clock pulse, Flip-Flop A triggers, therefore QA changes from 0 to 1 also QA

changes from 1 to 0.This triggers Flip-Flop B, therefore QB changes from 0 to 1, also QB changes

from 1 to 0which triggers Flip-FlopC. Hence QC changes from 0 to 1 and QC changes from 1 to

0, which further triggers, Flip-Flop D.

QDQCQBQA=1111

QD QC QB QA=0000

 During the second clock pulse Flip-Flop A triggers, therefore QA changes from 1 to 0 also QA

changes from 0 to 1 which never triggers B Flip-Flop. Therefore C and D Flip-Flop are not

triggered.

QDQCQBQA =1110

 The same procedure repeats until the counter decrements upto 0000.

Page 19

Page 20

Asynchronous Up/Down Counter:

Explain about Asynchronous Up/Down counter.

 The up-down counter has the capability of counting upwards as well as downwards. It is also

called multimode counter.

 In asynchronous up-counter, each flip-flop is triggered by the normal output Q of the preceding

flip-flop.

 In asynchronous down counter, each flip-flop is triggered by the complement output Q of the

preceding flip-flop.

 In both the counters, the first flip-flop is triggered by the clock output.

 If Up/Down =1, the 3-bit asynchronous up/down counter will perform up-counting. It will count

from 000 to 111. If Up/Down =1 gates G2 and G4 are disabled and gates G1 and G3 are enabled.

So that the circuit behaves as an up-counter circuit.

 If Up/Down =0, the 3-bit asynchronous up/down counter will perform down-counting. It will

count from 111 to 000. If Up/Down =0 gates G2 and G4 are enabled and gates G1 and G3 are

disabled. So that the circuit behaves as an down-counter circuit.

Page 21

4- bitSynchronous up-counter:

Explain about 4-bit Synchronous up-counter.

 In JK Flip-Flop, If J=0, K=0 and clock is triggered, the output never changes. If J=1 and K=1 and

the clock is triggered, the past outpit will be complemented.

Initially the register is cleared QDQCQBQA= 0000.

During the first clock pulse, JA= KA = 1, QA becomes 1, QB, QC, QD remains 0.

QDQCQBQA= 0001.

During second clock pulse, JA= KA = 1, QA=0.

JB= KB = 1, QB =1, QC, QD remains 0.

QDQCQBQA= 0010.

During third clock pulse, JA= KA = 1, QA=1.

JB= KB = 0, QB =1, QC, QD remains 0.

QDQCQBQA= 0011.

During fourth clock pulse, JA= KA = 1, QA=0.

JB= KB = 1, QB =0

JC= KC = 1, QC=1

QD remains 0

QDQCQBQA= 0100.

The same procedure repeats until the counter counts up to 1111.

Page 22

Page 23

4- bit Synchronous down-counter:

Explain about 4-Bit Synchronous down counter.

In JK Flip-Flop, If J=0, K=0 and clock is triggered, the output never changes. If J=1 and K=1 and the

clock is triggered, the past outpit will be complemented.

Initially the register is cleared QDQCQBQA= 0000

QDQCQBQA= 1111

During the first clock pulse, JA= KA = 1, QA=1

JB= KB = 1, QB =1

JC= KC = 1, QC =1

JD= KD = 1, QD =1

QDQCQBQA= 1111

QDQCQBQA= 0000

During the second clock pulse, JA= KA = 1, QA =0

JB= KB = 0, QB =1

JC= KC = 0, QC =1

JD= KD = 0, QD =1

QDQCQBQA= 1110

QDQCQBQA= 0001

Page 24

During the second clock pulse, JA= KA = 1, QA =1

JB= KB = 1, QB =0

JC= KC = 0, QC =1

JD= KD = 0, QD =1

QDQCQBQA= 1101

The process repeats until the counter down-counts up to 0000.

Page 25

Modulo 8 Synchronous Up/Down Counter:

Explain about Modulo 8 Synchronous Up/Down Counter.

In synchronous up-counter the QA output is given to JB, KBand QA. QB is given to JC, KC. But in

synchronous down –counter QAoutput is given toJB, KB and QA. QB is given to JC, KC.

A control input Up/Down is used to select the mode of operation.

If Up/Down =1, the 3-bit asynchronous up/down counter will perform up-counting. It will count from

000 to 111. If Up/Down =1 gates G2 and G4 are disabled and gates G1 and G3 are enabled. So that the

circuit behaves as an up-counter circuit.

If Up/Down =0, the 3-bit asynchronous up/down counter will perform down-counting. It will count from

111 to 000. If Up/Down =0 gates G2 and G4 are enabled and gates G1 and G3 are disabled. So that the

circuit behaves as an down-counter circuit.

Page 26

1. What is counter?

A counter is a register (group of Flip-Flop) capable of counting the number of clock pulse

arriving at its clock input.

2. What is binary counter?

A counter that follows the binary number sequence is called a binary counter.

3. State the applications of counters.

1. Used as a memory Element.

2. Used as a Delay Element.

3. Used as a basic building block in sequential circuits such as counters and registers.

4. Used for Data Transfer, Frequency Division & Counting.

4. List the types of counters.

Counter are classified into two types,

 Asynchronous (Ripple) counters.

 Synchronous counters.

5. Give the comparison between synchronous & Asynchronous counters. (Nov/Dec 2009, Nov

2017)

S.No Asynchronous counters Synchronous counters

1. In this type of counter flip-flops are connected in

such a way that output of 1st flip-flop drives

the clock for the next flip - flop.

In this type there is no connection between

output of first flip-flop and clock input ofthe next

flip – flop

2 All the flip-flops are not clocked

simultaneously

All the flip-flops are clocked simultaneously

3 Logic circuit is very simple even for

more number of states

Design involves complex logic circuit as

number of states increases

4 Counters speed is low. Counters speed is high.

6. State the Steps or Design procedure for Synchronous Counter.

Preparation of 1). State Diagram

2). State Table

3). State Assignment

4). Excitation Table (Consider which Memory Unit Using)

5). K-Map

6). Circuit Diagram

7. What is modulo-N counter?

A modulo–ncounter will count n states. For example a mod-6 counter will count the sequence

000,001,010,011,100,101 and then recycles to 000. Mod -6 counter skips 110 and 111 states and it goes through only

six different states.

**

TWO MARKS

Page 27

DESIGN OF RIPPLE COUNTERS

3- Bit Asynchronous Binary Counter/ modulo -7 ripple counter:

Design a 3-bit binary counter using T-flip flops. [NOV – 2019]

Explain about 3-Bit Asynchronous binary counter. (Nov -2009)

The following is a three-bit asynchronous binary counter and its timingdiagram for one cycle. It

works exactly the same way as a two-bitasynchronous binary counter mentioned above, except it has

eight statesdue to the third flip-flop.

Asynchronous counters are commonly referred to as ripple counters forthe following reason: The

effect of the input clock pulse is first “felt” byFFO. This effect cannot get to FF1 immediately because of

thepropagation delay through FF0. Then there is the propagation delaythrough FF1 before FF2 can be

triggered. Thus, the effect of an inputclock pulse “ripples” through the counter, taking some time, due

topropagation delays, to reach the last flip-flop.

Page 28

ANALYSIS OF CLOCKED SEQUENTIAL CIRCUIT

Design and analyze of clocked sequential circuit with an example.

The analysis of a sequential circuit consists of obtaining a table or a diagram for the time sequence of

inputs, outputs and internal states.

Fig: Example of sequential circuit

Consider the sequential circuit is shown in figure. It consists of two D flip-flops A and B, an input x and

an output y.

A state equation specifies the next state as function of the present state and inputs.

A(n+1)= A(n)x(n)+B(n)x(n)

B(n +1)= A(n)x(n)

They can be written in simplified form as,

A(n+1) = Ax +Bx

B(n +1) = Ax

The present state value of the output can be expressed algebraically as,

y(n)=(A+B) x

Page 29

DESIGN OF SYNCHRONOUS COUNTERS

Design and analyze of clocked sequential circuit with an example.

The procedure for designing synchronous sequential circuit is given below,

1. From the given specification, Draw the state diagram.

2. Plot the state table.

3. Reduce the number of states if possible.

4. Assign binary values to the states and plot the transition table by choosing the type of Flip-Flop.

5. Derive the Flip flop input equations and output equations by using K-map.

6. Draw the logic diagram.

State Diagram:

 State diagram is the graphical representation of the information available in a state table.

 In state diagram, a state is represented by a circle and the transitions between states are indicated by

directed lines connecting the circles.

State Table:

 A state table gives the time sequence of inputs, outputs ad flip flops states. The table consists of

four sections labeled present state, next state, input and output.

 The present state section shows the states of flip flops A and B at any given time ‘n’. The input

section gives a value of x for each possible present state.

 The next state section shows the states of flip flops one clock cycle later, at time n+1.

The state table for the circuit is shown. This is derived using state equations.

The above state table can also be expressed in different forms as follows.

Page 30

The state diagram for the logic circuit in below figure.

Flip-Flop Input Equations:

The part of the circuit that generates the inputs to flip flops is described algebraically by a set of Boolean

functions called flip flop input equations.

The flip flop input equations for the circuit is given by,

DA =Ax +Bx

DB = Ax

1. Define state diagram.

State diagram is the graphical representation of the information available in a state table.

In state diagram, a state is represented by a circle and the transitions between states are indicated

by directed lines connecting the circles.

2. What is the use of state diagram?

i) Behavior of a state machine can be analyzed rapidly.

ii) It can be used to design a machine from a set of specification.

TWO MARKS

Page 31

3. What is state table? (Nov 2018)

A stable table is a table that represents relationship between inputs, outputs and flip-flop

states, is called state table. Generally it consists of four section present state, next state, input and

output.

4. What is a state equation?

A state equation also called, as an application equation is an algebraic expression that specifies the condition

for a flip-flop state transition. The left side of the equation denotes the next state of the flip-flop and the right

side, a Boolean function specifies the present state.

5. Define sequential circuit.

Sequential circuits are circuits in which the output variables dependent not only on the

present input variables but they also depend up on the past output of these input variables.

6. What do you mean by present state?

The information stored in the memory elements at any given time defines the present state

of the sequential circuit.

7. What do you mean by next state?

The present state and the external inputs determine the outputs and the next state of the

sequential circuit.

8. Define synchronous sequential circuit.

SynchronousSequential circuits are circuits in which the signals can affect the memory elements

only atdiscrete instant of time.

9. What are the steps for the design of asynchronous sequential circuit?

i) Construction of primitive flow table

ii) Reduction of flow table

iii) State assignment is made

iv) Realization of primitive flow table

Design of a Synchronous Decade Counter Using JK Flip- Flop (Apr 2018, Nov 2018)

A synchronous decade counter will count from zero to nine and repeat thesequence.

State diagram:

The state diagram of this counter is shown in Fig.

Page 32

Excitation table:

K-Map:

Page 33

Page 34

Logic Diagram:

Design of an Asynchronous Decade Counter Using JK Flip- Flop.

An asynchronous decade counter will count from zero to nine and repeat thesequence. Since the

JK inputs are fed from the output of previous flip-flop,therefore, the design will not be as complicated as

the synchronous version.

At the ninth count, the counter is reset to begin counting at zero. The NAND gateis used to reset

the counter at the ninth count. At the ninth count the outputs offlip-flop Q3 and Q1 will be high

simultaneously. This will cause the output ofNAND to go to logic “0” that would reset the flip-flip. The

logic design of thecounter is shown in Fig.

Page 35

Design of a Synchronous Modulus-Six Counter Using SR Flip-Flop(Nov 2017)

The modulus six counters will count 0, 2, 3, 6, 5, and 1 and repeat the sequence.This modulus six

counter requires three SR flip-flops for the design.

State diagram:

Truth table:

K-Map:

Page 36

Logic Diagram:

SHIFT REGISTERS

Explain various types of shift registers. (or) Explain the operation of a 4-bit bidirectional shift register.

(Or) What are registers? Construct a 4 bit register using D-flip flops and explain the operations on the

register. (or) With diagram explain how two binary numbers are added serially using shift registers.

(Apr – 2019)[NOV – 2019]

 A register is simply a group of Flip-Flops that can be used to store a binary number.

 There must be one Flip-Flop for each bit in the binary number.

 For instance, a register used to store an 8-bit binary number must have 8 Flip-Flops.

 The Flip-Flops must be connected such that the binary number can be entered (shifted) into the

register and possibly shifted out.

 A group of Flip-Flops connected to provide either or both of these functions is called a shift register.

 A register capable of shifting the binary information held in each cell to its neighboring cell in a

selected direction is called a shift register.

Page 37

 There are four types of shift registers namely:

1. Serial In Serial Out Shift Register,

2. Serial In Parallel Out Shift Register

3. Parallel In Serial Out Shift Register

4. Parallel In Parallel Out Shift Register

1. Serial In Serial Out Shift Register

 The block diagram of a serial out shift register is as below.

 As seen, it accepts data serially .i.e., one bit at a time on a single input line. It produces the stored

information on its single output also in serial form.

 Data may be shifted left using shift left register or shifted right using shift right register.

Shift Right Register

The circuit diagram using D flip-fops is shown in figure

 As shown in above figure,the clock pulse is applied to all the flip-flops simultaneously.

 The output of each flip-flop is connected to D input of the flip-flop at its right.

 Each clock pulse shifts the contents of the register one bit position to the right.

 New data is entered into stage A whereas the data presented in stage D are shifted out.

Page 38

 For example, consider that all stages are reset and a steady logical 1 is applied to the serial input

line.

 When the first clock pulse is applied, flip-flop A is set and all other flip-flops are reset.

 When the second clock pulse is applied,the ‘1’ on the data input is shifted into flip-flop A and ‘1’

that was in flip flop A is shifted to flip-flop B.

 This continues till all flip-flop sets.

 The data in each stage after each clock pulse is shown in table below

Shift Left Register

The figure below shows the shift left register using D flip-flops.

 The clock is applied to all the flip-flops simultaneously. The output of each flip-flop is connected

to D input of the flip-flop at its left.

 Each clock pulse shifts the contents of the register one bit position to the left.

 Let us illustrate the entry of the 4-bit binary number 1111 into the register beginning with the

right most bit.

 When the first clock pulse is applied, flip flop A is set and all other flip-flops are reset.

 When second clock pulse is applied, ’1’ on the data input is shifted into flip-flop A and ‘1’ that

was in flip flop A is shifted toflip-flop B. This continues fill all flip-flop are set.

 The data in each stage after each clock pulse is shown in table below.

Page 39

2.

A

 It consists of one serial input and outputs are taken from all the flip-flops simultaneously.

 The output of each flip-flop is connected to D input of the flip-flop at its right. Each clock pulse

shifts the contents of the register one bit position to the right.

 For example, consider that all stages are reset and a steady logical ‘1’ is applied to the serial

input line.

 When the first clock pulse is applied flip flop A is set and all other flip-flops are reset.

 When the second pulse is applied the ‘1’ on the data input is shifted into flip flop A and ‘1’ that

was in flip flop A is shifted into flip-flop B. This continues till all flip-flops are set. The data in

each stage after each clock pulse is shown in table below.

Serial in Parallel out shift register:

4 bit serial in parallel out shift register is shown in figure.

Page 40

3. Parallel In Serial Out Shift register:

 For register with parallel data inputs, register the bits are entered simultaneously into their

respective stages on parallel lines.

 A four bit parallel in serial out shift register is shown in figure. Let A,B,C and D be the four

parallel data input lines and SHIFT/LOAD is a control input that allows the four bits of data to be

entered in parallel or shift the serially.

 When SHIFTS/LOAD is low, gates G1 through G3 are enabled, allowing the data at parallel

inputs to the D input of its respective flip-flop. When the clock pulse is applied the flip-flops with

D=1 will set and those with D=0 will reset, thereby storing all four bits simultaneously.

 When SHIFT/LOADis high. AND gates G1 through G3 are disabled and gates G4 through G6are

enabled, allowing the data bits to shifts right from one stage to next. The OR gates allow either

the normal shifting operation or the parallel data entry operation, depending on which AND gates

are enabled by the level on the SHIFT/LOAD input.

Page 41

Parallel In Parallel OutShift Register:

 In parallel in parallel out shift register, data inputs can be shifted either in or out of the register in

parallel.

 A four bit parallel in parallel out shift register is shown in figure.Let A, B, C, D be the four

parallel data input lines and QA,QB,QC and QD be four parallel data output lines. The

SHIFT/LOAD is the control input that allows the four bits data to enter in parallel or shift the

 When SHIFT/LOAD is low, gates G1 through G3 are enabled, allowing the data at parallel inputs

to the D input of its respective flip-flop. When the clock pulse is applied, the flip-flops with D =1

willset those with D=0 will reset thereby storing all four bits simultaneously. These are

immediately available at the outputs QA,QB,QC and QD.

 When SHIFT/LOAD is high, gates G1, through G3 are disabled and gates G4 through G6 are

enabled allowing the data bits to shift right from one stage to another. The OR gates allow either

the normal shifting operation or the parallel data entry operation, depending on which AND gates

are enabled by the level on the SHIFT/LOAD input.

serially.

Page 42

Universal Shift Register:

Explain about universal shift register.(Apr -2018)

 A register that can shift data to right and left and also has parallel load capabilities is called

universal shift register.

 It has the following capabilities.

1. A clear control to clear the register to 0.

2. A clock input to synchronize the operations.

3. A shift right control to enable the shift right operation and the associated serial input

and output lines.

4. A shift left control to enable the shift left operation and the associated serial input and

output lines.

5. A parallel load control to enable a parallel transfer and the n input lines.

6. n parallel output lines.

7. A control state that leaves the information in the register unchanged in the presence of

the clock.

Page 43

 The diagram of 4-bit universal shift register that has all that capabilities listed above is shown in

figure. It consists of four D flip-flop and four multiplexers.All the multiplexers have two common

selection inputs S1 and S0. Input 0 is selected when S1S0=00, input 1 is selected when S1S0=01

and similarly for other two inputs.

 The selection inputs control the mode of operation of the register. When S1S0=00, the present

value of the register is applied to the D inputs of the flip-flop. The next clock pulse transfers into

each flip-flop the binary value it held previously, and no change of state occurs.

 When S1S0=01,terminal 1 of the multiplexer inputs has a path to be the D inputs of the flip-flops.

This causes a shift right operation, with the serial input transferred into flip-flop A3.

 When S1S0=10, a shift left operation results with the other serial input going into flip-flop A0.

Finally, when S1 S0 = 11, the binary information on the parallel input lines is transferred into the

register simultaneously during the next clock edge. The function table is shown below.

**

SHIFT REGISTER COUNTERS:

Explain about Johnson and Ring counter. (Nov 2018)

Most common shift register counters are Johnson counter and ring counter.

Johnson counter:

 A 4 bit Johnson counter using D flip-flop is shown in figure. It is also called shift counter or

twisted counter.

Page 44

 The output of each flip-flop is connected to D input of the next stage. The inverted output of last

flip-flop QDis connected to the D input of the first flip-flop A.

 Initially, assume that the counter is reset to 0. i.e., QA QB QC QD =0000. The value at DB =

DC=DD=0, whereas DA =1 since QD.

 When the first clock pulse is applied, the first flip-flop A is set and the other flip-flops are reset.

i.e., QA QB QC QD =1000.

 When the second clock pulse is applies, the counter is QA QB QC QD = 1100. This continues and

the counter will fill up with 1’s from left to right and then it will fill up with 0’s again.

 The sequence of states is shown in the table. As observed from the table, a 4-bit shift counter has

8 states. In general, an n-flip-flop Johnson counter will result in 2n states.

The timing diagram of Johnson counter is as follows:

Page 45

Ring Counter:

A 4- bit ring counter using D Flip-Flop is shown in figure.

 As shown in figure, the true output of flip-flop D. i.e., QD is connected back to serial input of flip-

flop A.

 Initially, 1 preset into the first flip-flop and the rest of the flip-flops are cleared i.e.,

QAQBQCQD=1000.

 When the first clock pulse is applied, the second flip-flop is set to 1while the other three flip flops

are reset to 0.

 When the second clock pulse is applied, the ‘1’ in the second flip-flop is shifted to the third flip-

flop and so on.

 The truth table which describes the operation of the ring counter is shown below.

 As seen a 4-bit ring counter has 4 states. In general, an n-bit ring counter has n states. Since a

single ‘1’ in the register is made to circulate around the register, it is called a ring counter. The

timing diagram of the ring counter is shown in figure.

Page 46

**

1. Define registers.

A register is a group of flip-flops. An-bit register has a group of n flip-flops and is capable of storing

any binary information/number containing n-bits.

2. Define shift registers.

A register capable of shifting its binary information in one or both directions is called as a

shift register. It consists of a chain of flip flops in cascade, with the output of one flip flop

connected to the input of the next flip-flop

3. What are the different types of shift registers?[Nov 2010,April 2007,Apr 2018, Nov 2018]

 Serial In Serial Out Shift Register

 Serial In Parallel Out Shift Register

 Parallel In Serial Out Shift Register

 Parallel In Parallel Out Shift Register

 Bidirectional Shift Register

4. State the applications of shift register.

Shift registers are widely used in

 Time delay circuits

 As Serial to parallel converter

 As Parallel to serial converters

 As Counters

TWO MARKS

Page 47

5. Define Shift Register Counter.

A shift register can also be used as a counter. A shift register with the serial output

connection back to the serial input is called Shift register counter

6. What is bi-directional shift register and unidirectional shift register?

A register capable of shifting both right and left is called bi-directional shift register. A register capable of

shifting only one direction is called unidirectional shift register.

7. What are the two types of shift register counters?[April/May 2007,Nov/Dec 2006,2011,2012]

There are 2 types of shift Register counters are:

Ring counter:

A ring counter is a circular shift register with only one flip flop being set, at any particular

time, all others are cleared.

Johnson counters:

The Johnson counter is K-bit switch-tail rings counter2k decodinggates to provide outputs

for 2k t i m i n g s i g n a l s .

8. How can a SIPO shift register is converted in to SISO shift register? (Apr/May 2010)

By taking output only on the Q output of last flip flop SIPO shift register is converted in to

SISO shift register.

9. What is bi-directional shift register and unidirectional shift register?

A register capable of shifting both right and left is called bi-directional shift register. A register capable of

shifting only one direction is called unidirectional shift register.

10. What is sequence generator?

The sequential circuit used to repeat a particular sequence repeatedly is called Sequence

generator.

Page 48

HDL FOR SEQUENTIAL CIRCUITS

Write coding in HDL for various flip-flops.

Page 49

Page 50

Page 51

Page 52

Page 53

Test Bench:

Page 54

Write the VHDL Code for 4-Bit Binary Up Counter and explain. (Apr 2019)

VHDL Code for 4-Bit Binary Up Counter

The clock inputs of all the flip-flops are connected together and are triggered by the input pulses. Thus,

all the flip-flops change state simultaneously (in parallel).

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity vhdl_binary_counter is

port(C, CLR : in std_logic;

Q : out std_logic_vector(3 downto 0));

end vhdl_binary_counter;

architecture bhv of vhdl_binary_counter is

signal tmp: std_logic_vector(3 downto 0);

begin

process (C, CLR)

begin

if (CLR=’1′) then

tmp <= "0000";

elsif (C’event and C=’1′) then

tmp <= tmp + 1;

Page 55

end if;

end process;

Q <= tmp;

end bhv;

**

1. Draw 5-bit Johnson counter.

2. Draw the diagram of 3-bit ripple counter.

3. Give few applications of shift register.

 Serial to parallel converter

 Parallel to serial converter

 As a counter

 To introduce delay in a digital circuit.

TWO MARKS

. Page 1

UNIT III COMPUTER FUNDAMENTALS

1. FUNCTIONAL UNITS OF A DIGITAL COMPUTER

1. Explain in detail about the components of a computer system. (12 or 16)

(Nov/Dec2014)(Nov/Dec2015) (May/June2016) (Nov/Dec 2016) Apr/ May 2018

Components of a computer system:

The five basic components of computer systems are,

 Input unit

 Output unit

 Arithmetic and logic unit

 Memory unit

 Control unit

 These units are interconnected by electrical cables to permit communication between

them. This allows the computer to function as a system.

Input Unit:

 A computer must receive both data and program statements to function properly and

be able to solve problems. The method of feeding data and programs to a computer is

accomplished by an input device.

Functional Units of a Digital Computer: Von Neumann Architecture – Operation and Operands of

Computer Hardware Instruction – Instruction Set Architecture (ISA): Memory Location, Address and

Operation – Instruction and Instruction Sequencing – Addressing Modes, Encoding of Machine

Instruction – Interaction between Assembly and High Level Language.

. Page 2

 Computer input devices read data from a source, such as magnetic disks, and translate that data

into electronic impulses for transfer into the CPU. Some typical input devices are a keyboard, a

mouse or a scanner.

Output Unit

 The output unit is the counterpart of the input unit. Its function is to send processed results to the

outside world.

 The most familiar example of such a device is a printer. Printers employ mechanical impact

heads, inkjet streams, or photocopying techniques, as in laser printers, to perform the printing. It

produces printers capable of printing as many as 10,000 lines per minute.

 This is a tremendous speed for a mechanical device but is still very slow compared to the

electronic speed of a processor unit. Monitors, Speakers, Headphones and projectors are also

some of the output devices.

 Some units, such as graphic displays, provide both an output function and an input function. The

dual role of input and output of such units are referred with single name as I/O unit in many cases.

 Speakers, Headphones and projectors are some of the output devices. Storage devices such

as hard disk, floppy disk, flash drives are also used for input as well as output.

Memory Unit

 The function of the memory unit is to store programs and data. There are two classes of storage,

called primary and secondary. Primary storageis a fast memory that operates at electronic

speeds.

 Programs must be stored in the memory while they are being executed. The memory contains a

large number of semiconductor storage cells, each capable of storing one bit of information.

 These cells are rarely read or written as individual cells but instead are processed in groups of

fixed size called words.

 The memory is organized so that the contents of one word, containing n bits, can be stored or

retrieved in one basic operation.

 To provide easy access to any word in the memory, a distinct address is associated with each

word location. Addresses are numbers that identify successive locations.

 A given word is accessed by specifying its address and issuing a control command that starts the

storage or retrieval process. The number of bits in each word is often referred to as the word

length of the computer.

 Typical word lengths range from 16 to 64 bits. The capacity of the memory is one factor that

characterizes the size of a computer.

. Page 3

 Programs must reside in the memory during execution. Instructions and data can be written into

the memory or read out under the controller of the processor.

 It is essential to be able to access any word location in the memory as quickly as possible.

Memory in which any location can be reached in a short and fixed amount of time after specifying

its address is called random-access Memory (RAM).

 The time required to access one word is called the memory access time. This time is fixed,

independent of the location of the word being accessed. It typically ranges from a few

nanoseconds (ns) to about 100 ns for modem RAM units.

 The memory of a computer is normally implemented as a Memory hierarchy of three or four

levels of semiconductor RAM units with different speeds and sizes.

 The small, fast, RAM units are called caches. They are tightly coupled with the processor and are

often contained on the same integrated circuit chip to achieve high performance.

 The largest and slowest unit is referred to as the main Memory. Although primary storage is

essential, it tends to be expensive.

Thus additional, cheaper, secondary storage is used when large amounts of data and many programs have

to be stored, particularly for information that is access infrequently. A wide selection of secondary

storage deviceis available, including magnetic disks and tapes and optical disks

Arithmetic and Logic Unit(ALU):

 ALU is a digital circuit that performs two types of operationsarithmetic and logical.

 Arithmetic operations are the fundamental mathematical operations consisting of addition,

subtraction, multiplication and division. Logical operations consists of comparisons. (i.e) Two

pieces of data are compared to see whether one is equal to, less than, or greater than the other.

 The ALU is afundamental building block of the central processing unit of a computer. Memory

enables a computer to store, at least temporarily, data and programs.

 Memory also known as the primary storage or main memory - is a part of the microcomputer that

holds data for processing, instructions for processing the data (the program) and information

(processed data).

 Part of the contents of the memory is held only temporarily. (i.e)It is stored only as long as the

microcomputer is turned on. When you turn the machine off, the contents are lost.

 The control unit instructs the arithmetic-logic unit which operation to perform and then sees that

the necessary numbers are supplied. The control and arithmetic & logic units are many times

faster than other devices connected to a computer system.

Control Unit (CU):

. Page 4

 It is the part of a CPU that directs its operation. The control unit instructs the rest of the computer

system how to carry out a program‘s instructions.

 It directs the movement of electronic signals between memories, which temporarily holds data,

instructions & processed information and the ALU.

 It also directs these control signals between the CPU and input/output devices. The control unit is

the circuitry that controls the flow of information through the processor, and coordinates

the activities of the other units within it.

 VON NEUMANN ARCHITECTURE

 Von Neumann Architecture also known as the Von Neumann model, the computer consisted of

a CPU, memory and I/O devices.

 The program is stored in the memory. The CPU fetches an instruction from the memory at a time

and executes it.

 Thus, the instructions are executed sequentially which is a slow process. Neumann m/c are called

control flow computer because instruction are executed sequentially as controlled by a program

counter.

 To increase the speed, parallel processing of computer have been developed in which serial

CPU‘s are connected in parallel to solve a problem. Even in parallel computers, the basic

building blocks are Neumann processors.

 The von Neumann architecture is a design model for a stored-program digital computer that uses

a processing unit and a single separate storage structure to hold both instructions and data.

 It is named after mathematician and early computer scientist John von Neumann.

 Such a computer implements a universal Turing machine, and the common ―referential model‖ of

specifying sequential architectures, in contrast with parallel architectures.

2. OPERATION AND OPERANDS OF COMPUTER HARDWARE INSTRUCTION

https://ecomputernotes.com/fundamental/introduction-to-computer/what-is-computer
https://ecomputernotes.com/fundamental/introduction-to-computer/what-is-cpu
https://ecomputernotes.com/fundamental/input-output-and-memory/memory
https://ecomputernotes.com/fundamental/input-output-and-memory/memory
https://ecomputernotes.com/fundamental/introduction-to-computer/what-is-cpu
https://ecomputernotes.com/fundamental/introduction-to-computer/what-is-computer
https://ecomputernotes.com/fundamental/introduction-to-computer/explain-about-the-evolution-of-digital-computers

. Page 5

2. Explain about operations operands of computer hardware instruction.

Operation of the computer hardware

 Every computer must be able to perform arithmetic. The MIPS assembly language notation

add a, b, c

 Instructs a computer to add the two variables b and c and to put their sum in a. This notation is

rigid in that each MIPS arithmetic instruction performs only one operation and must always have

exactly three variables.

 The following code shows an equivalent MIPS code: ADD $s1, $s2, $s3the sum of b and c is

placed in a.

 Here, the variables a,b and c are assumed to be stored in the register $s1, $s2 and $s3 all

arithmetic immediate value are signed extended.

MIPS Assembly Language

MIPS Operands

. Page 6

 All arithmetic operations have exactly three operands, no more and no less, conforms have this

conforms to the philosophy of keeping the hardware simple. This situation illustrates the first of

four underlying principles of hardware design.

Design Principle 1: Simplicity favors regularity.

Compiling Two C Assignment Statements into MIPS

Example 1:

 This segment of a C program contains the five variables a, b, c, d, and e. Since Java evolved from

C, this example and the next few work for either high-level programming language:

Answer

 The translation from C to MIPS assembly language instructions are performed by the compiler.

Show the MIPS code produced by a compiler.

 A MIPS instruction operates on two source operands and places the result in one destination

operand.

 Hence, the two simple statements above compile directly into these two MIPS assembly language

instructions:

Compiling a complex C Assignment into MIPS

Example 2:

 A somewhat complex statement contains the five variables f, g, h, i, and j:

 What might a C compiler produce?

Answer

 The compiler must break this statement into several assembly instructions, since only one

operation is performed per MIPS instruction.

 The first MIPS instruction calculates the sum of g and h. We must place the result somewhere, so

the compiler creates a temporary variable, called t0:

. Page 7

 Although the next operation is subtract, we need to calculate the sum of i and j before we can

subtract.

 Thus, the second instruction places the sum of i and j in another temporary variable created by the

compiler, called t1:

 Finally, the subtract instruction subtracts the second sum from the first and places the difference

in the variable f, completing the compiled code:

Note : ‘ #’symbol indicate the comment line

Operands of the Computer Hardware

Over View

 Memory operand

 Constant or immediate operands

 Index register

 In MIPS instruction set architecture, operand can either in register or memory. Most of the

arithmetic and logical instructions use register operands.

 Registers are limited number of special location built directly in hardware and they are visible to

the programmer when the computer is completed.

 The size of a register in the MIPS architecture is 32 bits; groups of 32 bits occur so frequently that

they are given the name word in the MIPS architecture.

 Wordthe natural unit of access in a computer, usually a group of 32 bits; corresponds to the size

of a register in the MIPS architecture.

 The reason for the limit of 32 registers may be found in the second of our four underlying design

principles of hardware technology:

Design Principle 2: Smaller is faster.

 A very large number of registers may increase the clock cycle time simply because it takes

electronic signals longer when they must travel farther.

 Use fewer register to conserve energy.

Example:

Compiling a C Assignment Using Registers

 It is the compiler‘s job to associate program variables with registers. Take, for instance, the

assignment statement from our earlier example:

. Page 8

 The variables f, g, h, i, and j are assigned to the registers $s0, $s1, $s2, $s3, and $s4, respectively.

What is the compiled MIPS code?

Answer

 The compiled program is very similar to the prior example, except we replace the variables with

the register names mentioned above plus two temporary registers, $t0 and $t1, which correspond

to the temporary variables above:

Memory Operands

 Programming languages have simple variables that contain single data elements, as in these

examples, but they also have more complex data structures—arrays and structures.

 These complex data structures can contain many more data elements than there are registers in a

computer.

 The processor can keep only a small amount of data in registers, but computer memory contains

billions of data elements.

 Hence, data structures (arrays and structures) are kept in memory.

 As explained above, arithmetic operations occur only on registers in MIPS instructions; thus,

MIPS must include instructions that transfer data between memory and registers. Such

instructions are calleddata transfer instructions.

 To access a word in memory, the instruction must supply the memory address.

 Memory is just a large, single-dimensional array, with the address acting as the index to that

array, starting at 0. For example, in the followingFigure, the address of the third data element is 2,

and the value of Memory[2] is 10

Memory addresses and contents of memory at those locations

 The data transfer instruction that copies data from memory to a register is traditionally called

load.

 The format of the load instruction is the name of the operation followed by the register to be

loaded, then a constant and register used to access memory.

. Page 9

 The sum of the constant portion of the instruction and the contents of the second register forms

the memory address. The actual MIPS name for this instruction is lw, standing for load word.

Actual MIPS memory addresses and contents of memory for those words.

Alignment restriction

 In MIPS, words must start at addresses that are multiples of 4. This requirement is called an

alignment restriction

 alignment restriction A requirement that data be aligned in memory on natural boundaries .many

architecture have alignment restriction

Big endian and little Endian

 8 bit bytes are divided into two parts:

 Address of the left most byte is called ―big endian‖ and right most byte is called ―little endian ―

Compiling an Assignment When an Operand Is in Memory

Example 1:

 Let‘s assume that A is an array of 100 words and that the compiler has associated the variables g

and h with the registers $s1 and $s2 as before.

 Let‘s also assume that the starting address, or base address, of the array is in $s3. Compile this C

assignment statement:

MIPS Code

 In the given statement, there is a single operation. Whereas, one of the operands is in memory, so

we must carry this operation in two steps:

Step 1: load the temporary register($s3) + 8

Step 2: perform addition with h(($s2)), and store result in g($s1)

. Page 10

 The constant in a data transfer instruction (8) is called the offset, and the register added to form

the address ($s3) is called thebase register.

Example 2:

Compiling Using Load and Store

 What is the MIPS assembly code for the C assignment statement below?

 Assume variable h is associated with register $s2 and the base address of the array A is in $s3.

MIPS code

 The final instruction stores the sum into A[12], using 48 (4 × 12) as the offset and register $s3 as

the base register

 Load word and store word are the instructions that copy words between memory and registers in

the MIPS architecture. Other brands of computers use other instructions along with load and store

to transfer data.

Constant or Immediate Operands

 Constant variables are used as one of the operand for many arithmetic operation in MIPS

architecture

 The constants would have been placed in memory whenthe program was loaded.

 To avoid load instruction used in arithmetic instruction we can use one operand is a constant

 This quick add instruction with one constant operand is called add immediate or addi. To add 4 to

register $s3, we just write

Design Principle 3: Make the common case fast.

 Assuming that $s1 + AddrConstant4 is the memory address of the constant 4.

Advantage of constant operands

 It uses less energy

 It performs operation in more fast

Index register

. Page 11

 The register in the data transfer instructions was originally invented to hold an index of an array

with the offset used for the starting address of an array. Thus, the base register is also called the

index register.

3. INSTRUCTION SET ARCHITECTURE (ISA)

3. Discuss about ISA.

 The addressing methods that are commonly used for accessing operands in memory locations and

processor registers are also presented.

 The emphasis here is on basic concepts. We use a generic style to describe machine instructions

and operand addressing methods that are typical of those found in commercial processors.

 A sufficient number of instructions and addressing methods are introduced to enable us to present

complete, realistic programs for simple tasks.

 These generic programs are specified at the assembly-language level, where machine instructions

and operand addressing information are represented by symbolic names.

 A complete instruction set, including operand addressing methods, is often referred to as the

instruction set architecture (ISA) of a processor.

 The vast majority of programs are written in high-level languages such as C, C++, or Java.

 To execute a high-level language program on a processor, the program must be translated into the

machine language for that processor, which is done by a compiler program.

 Assembly language is a readable symbolic representation of machine language.

 Memory Locations and Addresses

 The memory consists of many millions of storage cells, each of which can store a bit of

information having the value 0 or 1.

 Because a single bit represents a very small amount of information, bits are seldom handled

individually.

 The usual approach is to deal with them in groups of fixed size. For this purpose, the memory is

organized so that a group of n bits can be stored or retrieved in a single, basic operation.

 Each group of n bits is referred to as a word of information, and n is called the word length. The

memory of a computer can be schematically represented as a collection of words, Modern

computers have word lengths that typically range from 16 to 64 bits.

 If the word length of a computer is 32 bits, a single word can store a 32-bit signed number or four

ASCII-encoded characters, each occupying 8 bits, as shown in Figure.

 A unit of 8 bits is called a byte. Machine instructions may require one or more words for their

representation.

. Page 12

 We will discuss how machine instructions are encoded into memory words in a later section, after

we have described instructions at the assembly-language level.

 Accessing the memory to store or retrieve a single item of information, either a word or a byte,

requires distinct names or addresses for each location.

 It is customary to use numbers from 0 to 2k − 1, for some suitable value of k, as the addresses of

successive locations in the memory.

 Thus, the memory can have up to 2k addressable locations. The 2k addresses constitute the

address space of the computer. For example, a 24-bit address generates an address space of 224

(16,777,216) locations.

 This number is usually written as 16M (16 mega), where 1M is the number 220 (1,048,576). A

32-bit address creates an address space of 232 or 4G (4 giga) locations, where 1G is 230.

Fig 3.1 Memory words

Figure 3.2 Examples of encoded information in a 32-bit word

 Byte Addressability

. Page 13

 A byte is always 8 bits, but the word length typically ranges from 16 to 64 bits. It is impractical to

assign distinct addresses to individual bit locations in the memory.

 The most practical assignment is to have successive addresses refer to successive byte locations in

the memory. This is the assignment used in most modern computers. The term byte-addressable

memory is used for this assignment. Byte locations have addresses 0, 1, 2,....

 Thus, if the word length of the machine is 32 bits, successive words are located at addresses 0, 4,

8, , with each word consisting of four bytes.

 Big-Endian and Little-Endian Assignments

 The name big-endian is used when lower byte addresses are used for the more significant bytes

(the leftmost bytes) of the word.

 The name little-endian is used for the opposite ordering, where the lower byte addresses are used

for the less significant bytes (the rightmost bytes) of the word.

 The words ―more significant‖ and ―less significant‖ are used in relation to the weights (powers of

2) assigned to bits when the word represents a number.

 Both little-endian and big-endian assignments are used in commercial machines. In both cases,

byte addresses 0, 4, 8,..., are taken as the addresses of successive words in the memory of a

computer with a 32-bit word length.

 These are the addresses used when accessing the memory to store or retrieve a word.

 Word Alignment

 In the case of a 32-bit word length, natural word boundaries occur at addresses 0, 4, 8,..., as

shown in Figure 2.3. We say that the word locations have aligned addresses if they begin at a byte

address that is a multiple of the number of bytes in a word.

 For practical reasons associated with manipulating binary-coded addresses, the number of bytes in

a word is a power of 2. Hence, if the word length is 16 (2 bytes), aligned words begin at byte

. Page 14

addresses 0, 2, 4,..., and for a word length of 64 (23 bytes), aligned words begin at byte addresses

0, 8, 16,....

 There is no fundamental reason why words cannot begin at an arbitrary byte address. In that case,

words are said to have unaligned addresses.

 But, the most common case is to use aligned addresses, which makes accessing of memory

operands more efficient.

 Accessing Numbers and Characters

 A number usually occupies one word, and can be accessed in the memory by specifying its word

address. Similarly, individual characters can be accessed by their byte address.

 For programming convenience it is useful to have different ways of specifying addresses in

program instructions.

 Memory Operations

 Both program instructions and data operands are stored in the memory. To execute an instruction,

the processor control circuits must cause the word (or words) containing the instruction to be

transferred from the memory to the processor.

 Operands and results must also be moved between the memory and the processor. Thus, two basic

operations involving the memory are needed, namely, Read and Write.

 The Read operation transfers a copy of the contents of a specific memory location to the

processor. The memory contents remain unchanged.

 To start a Read operation, the processor sends the address of the desired location to the memory

and requests that its contents be read.

 The memory reads the data stored at that address and sends them to the processor. The Write

operation transfers an item of information from the processor to a specific memory location,

overwriting the former contents of that location.

 To initiate a Write operation, the processor sends the address of the desired location to the

memory, together with the data to be written into that location.

 The memory then uses the address and data to perform the write.

4. INSTRUCTION AND INSTRUCTION SEQUENCING

4. Discuss about instruction and instruction sequencing.

 The tasks carried out by a computer program consist of a sequence of small steps, such as adding

two numbers, testing for a particular condition, reading a character from the keyboard, or sending

a character to be displayed on a display screen.

. Page 15

 A computer must have instructions capable of performing 4 types of operations:

1) Data transfers between the memory and the registers (MOV, PUSH, POP, XCHG).

2) Arithmetic and logic operations on data (ADD, SUB, MUL, DIV, AND, OR, NOT).

3) Program sequencing and control (CALL.RET, LOOP, INT).

4) I/0 transfers (IN, OUT).

REGISTER TRANSFER NOTATION (RTN)

Here we describe the transfer of information from one location in a computer to another. Possible

locations that may be involved in such transfers are memory locations, processor registers, or

registers in the I/O subsystem.

 Most of the time, we identify such locations symbolically with convenient names.

 The possible locations in which transfer of information occurs are:

1) Memory-location

2) Processor register &

3) Registers in I/O device.

ASSEMBLY LANGUAGE NOTATION

• To represent machine instructions and programs, assembly language format is used.

BASIC INSTRUCTION TYPES

. Page 16

INSTRUCTION EXECUTION & STRAIGHT LINE SEQUENCING

• The program is executed as follows:

1) Initially, the address of the first instruction is loaded into PC.

2) Then, the processor control circuits use the information in the PC to fetch and execute instructions, one

at a time, in the order of increasing addresses. This is called Straight-Line sequencing.

3) During the execution of each instruction, PC is incremented by 4 to point to next instruction.

• There are 2 phases for Instruction Execution:

1) Fetch Phase: The instruction is fetched from the memory-location and placed in the IR.

2) Execute Phase: The contents of IR is examined to determine which operation is to be performed.

The specified-operation is then performed by the processor.

Fig 3.3 A program for C [A] + [B]

Program Explanation

• Consider the program for adding a list of n numbers

• The Address of the memory-locations containing the n numbers are symbolically given as NUM1,

NUM2…..NUMn.

• Separate Add instruction is used to add each number to the contents of register R0.

• After all the numbers have been added, the result is placed in memory-location SUM.

. Page 17

. Page 18

5. ADDRESSING MODES

Addressing Modes

 The different ways in which the location of an operand is specified in instructions are referred to

as addressing modes.

 Different types of addresses involve tradeoffs between instruction length, addressing flexibility

and complexity of address calculation.

Overview

The different types of addressing modes are:

 Immediate addressing mode

 Direct or absolute addressing mode

 Indirect addressing mode

 Register addressing mode

 Indexed addressing mode(Displacement)

 Relative addressing mode

 Auto increment

 Auto decrement

 Implied (Stack, and a few others)

Immediate Addressing and Small Operands

 The operand is given explicitly in the instruction.

Example: MOVE #200, R0

 The above statement places the value 200 in the register R0. A common convention is to use the

sharp sign (#) in front of the value to indicate that this value is to be used as an immediate

operand.

 A great many immediate mode instructions use small operands. (8 bits)

 In 32 or 64 bit machines with variable length instructions space is wasted if immediate operands

are required to be the same as the register size.

 Some instruction formats include a bit that allows small operands to be used in immediate

instructions.

5. What is the need for addressing in a computer system? Explain the different addressing

modes with suitable examples. (16)Apr 2011, Nov 2011, 2012, 2013,May 2013 (Nov/Dec

2014) (Apr/May 2015) (Nov/Dec 2016) (Or) Explain direct, immediate, relative and indexed

addressing modes with examples. Apr/May 2017, 2018, Nov. / Dec. 2018 (Nov/Dec

2019)Nov/Dec 2020.(Or) Identify the addressing mode involved in the instruction XOR r1 r2

+ 100 r1 and determine the resultant stored in register R1 if all of its bit were 1'st initially .

. Page 19

 ALU will zero-extend or sign-extend the operand to the register size.

Instruction

Immediate

Direct Addressing (Absolute addressing mode)

 The operand is in a memory location; the address of this location is given explicitly in the

instruction. (In some assembly languages, this mode is called Direct Mode.

Example: MOVE LOC, R2

 This instruction copies the contents of memory location of LOC to register R2.

 Address field contains address of operand.

 Effective address (EA) = address field (A).

e.g. add ax, count or add ax,[10FC]

 Look in memory at address for operand.

 Single memory reference to access data.

 No additional calculations to work out effective address.

Direct Addressing

Memory-Indirect Addressing

 The effective address of the operand is the contents of a register or memory location whose

address appears in the instruction.

Example Add (R2),R0

 Register R2 is used as a pointer to the numbers in the list, and the operands are accessed indirectly

through R2.

operand op-code

. Page 20

 The initialization section of the program loads the counter value n from memory location N into

Rl and uses the immediate addressing mode to place the address value NUM 1, which is the

address of the first number in the list, into R2.

Memory-Indirect Addressing

Register Direct Addressing

 The operand is the contents of a processor register; the name (address) of the register is given in

the instruction.

Example: MOV R1,R2

 This instruction copies the contents of register R2 to R1.

 Operand(s) is(are) registers EA = R.

 There are a limited number of registers.

 Therefore a very small address field is needed.

 Shorter instructions are used.

 Instruction fetch is faster when compared to other.

 X86: 3 bits used to specify one of 8 registers.

Register Direct Addressing

Register Indirect Addressing

 Similar to memory-indirect addressing; much more common, EA = (R).

 Operand is in memory cell pointed to by contents of register R.

 Large address space (2n).

. Page 21

 One fewer memory access than indirect Addressing.

Register Indirect Addressing

Displacement Addressing(Index addressing mode)

 The effective address of the operand is generated by adding a constant value to the contents of

a register. The register used may be either a special register provided for this purpose, or, more

commonly; it may be anyone of a set of general-purpose registers in the processor.

 In either case, it is referred to as an index register. We indicate the index mode symbolically as

X(Ri).

 Where X denotes the constant value contained in the instruction and Ri is the name of the register

involved. The effective address of the operand is given by EA = X + [Ri].

 The contents of the index registers are not changed in the process of generating the

effectiveaddress.

 EA = A + (R)

 Combines register indirect addressing with direct addressing

 Address field hold two values

 A = base value

 R = register that holds displacement

 or vice versa

Displacement Addressing

Types of Displacement Addressing

 Relative Addressing

. Page 22

 Base-register addressing

 Indexing

Relative Addressing

 We have defined the Index mode using general-purpose processor registers. A useful version of

this mode is obtained if the program counter, PC, is used instead of a general purpose register.

 Then, X(PC) can be used to address a memory location that is X bytes away from the location

presently pointed to by the program counter.

 Since the addressed location is identified ''relative'' to the program counter, which always

identifies the current execution point in a program, the name Relative mode is associated with this

type of addressing.

 EA = X + (PC)

Base-Register Addressing

 A holds displacement.

 R holds pointer to base address.

 R may be explicit or implicit.

 e.g. segment registers in 80x86 are base registers and are involved in all EA computations.

 x86 processors have a wide variety of base addressing formats.

Auto- increment mode

 The effective address of the operand is the contents of a register specified in the instruction. After

accessing the operand, the contents of this registers are automatically incremented to point to the

next item in a list.

 We denote the Auto increment mode by putting the specified register in parentheses, to show that

the contents of the registers are used as the effective address, followed by a plus sign to indicate

that these contents are to be incremented after the operand is accessed.

 Thus, the Auto increment mode is written as,

(Ri) +

 As a companion for the Autoincrement mode, another useful mode accesses the items of a list in

the reverse order:

Auto- decrement mode

 The contents of a register specified in the instructions are first automatically decremented and is

then used as the effective address of the operand.

 We denote the Autodecrement mode by putting the specified register in parentheses, preceded by

a minus sign to indicate that the contents of the registers are to be decremented before being used

as the effective address. Thus, we write

. Page 23

- (Ri)

Stack Addressing

 Operand is (implicitly) on top of stack.

e.g. PUSH, POP

 X87 is a stack machine so it has instructions such as,

FADDP; st(1) <- st(1) + st(0); pop stack; result left in st(0)

FIMUL qword ptr [bx]; st(0) <- st(0) * 64 integer pointed to; by bx

Code from CPI for the instruction class

A B C

CPI 1 2 3

Code from Instruction count for each class

 A B C

Compiler 1 2 1 2

Compiler 2 4 1 1

ANSWER

 Sequence 1 executes 2 + 1 + 2 = 5 instructions. Sequence 2 executes 4 + 1 + 1 = 6 instructions.

Therefore, sequence 1 executes fewer instructions. We can use the equation for CPU clock cycles

based on instruction count and CPI to find the total number of clock cycles for each sequence:

6. Consider the computer with three instruction classes and CPI measurements as given below

and instruction counts for each instruction class for the same program from two different

compilers are given. Assume that the computer’s clock rate is 4 GHZ. Which code sequence

will execute faster according to execution time? (6) (NOV/DEC2014)

. Page 24

 This yields,

 CPU clock cycles1 = (2 × 1) + (1 × 2) + (2 × 3) = 2 + 2 + 6 = 10 cycles

 CPU clock cycles2 = (4 × 1) + (1 × 2) + (1 × 3) = 4 + 2 + 3 = 9 cycles

 So code sequence 2 is faster, even though it executes one extra instruction. Since code sequence 2

takes fewer overall clock cycles but has more instructions, it must have a lower CPI. The CPI

values can be computed by,

6. ENCODING OF MACHINE INSTRUCTION

7. Explain about encoding of machine instruction.

 We have introduced a variety of useful instructions and addressing modes. These instructions

specify the actions that must be performed by the processor circuitry to carry out the desired

tasks.

 We have often referred to them as machine instructions. Actually, the form in which we have

presented the instructions is indicative of the form used in assembly languages, except that we

tried to avoid using acronyms for the various operations, which are awkward to memorize and are

likely to be specific to a particular commercial processor.

 To be executed in a processor, an instruction must be encoded in a compact binary pattern. Such

encoded instructions are properly referred to as machine instructions.

 The instructions that use symbolic names and acronyms are called assembly language

instructions, which are converted into the machine instructions using the assembler program.

 We have seen instructions that perform operations such as add, subtract, move, shift, rotate, and

branch. These instructions may use operands of different sizes, such as 32-bit and 8-bit numbers

or 8-bit ASCII-encoded characters.

 The type of operation that is to be performed and the type of operands used may be specified

using an encoded binary pattern referred to as the OP code for the given instruction.

 Suppose that 8 bits are allocated for this purpose, giving 256 possibilities for specifying different

instructions. This leaves 24 bits to specify the rest of the required information.

 Let us examine some typical cases. The instruction

. Page 25

Add R1, R2

 Has to specify the registers R1 and R2, in addition to the OP code.

 If the processor has 16 registers, then four bits are needed to identify each register. Additional bits

are needed to indicate that the Register addressing mode is used for each operand.

 The instruction

Move 24(R0), R5

 Requires 16 bits to denote the OP code and the two registers, and some bits to express that the

source operand uses the Index addressing mode and that the index value is 24.

 The shift instruction

LShiftR #2, R0

 And the move instruction

Move #$3A, R1

 Have to indicate the immediate values 2 and #$3A, respectively, in addition to the 18 bits used to

specify the OP code, the addressing modes, and the register.

 This limits the size of the immediate operand to what is expressible in 14 bits

 Consider next the branch instruction

Branch >0 LOOP

 Again, 8 bits are used for the OP code, leaving 24 bits to specify the branch offset.

 Since the offset is a 2‘s-complement number, the branch target address must be within 223 bytes

of the location of the branch instruction.

 To branch to an instruction outside this range, a different addressing mode has to be used, such as

Absolute or Register Indirect. Branch instructions that use these modes are usually called Jump

instructions.

 In all these examples, the instructions can be encoded in a 32-bit word. Depicts a possible format.

 There is an 8-bit Op-code field and two 7-bit fields for specifying the source and destination

operands. The 7-bit field identifies the addressing mode and the register involved (if any).

 The ―Other info‖ field allows us to specify the additional information that may be needed, such as

an index value or an immediate operand.

 But, what happens if we want to specify a memory operand using the Absolute addressing mode?

 The instruction Move R2, LOC

. Page 26

 Requires 18 bits to denote the OP code, the addressing modes, and the register.

 This leaves 14 bits to express the address that corresponds to LOC, which is clearly insufficient.

And #$FF000000. R2

 In which case the second word gives a full 32-bit immediate operand. If we want to allow an

instruction in which two operands can be specified using the Absolute addressing mode, for

example

Move LOC1, LOC2

 Then it becomes necessary to use an additional words for the 32-bit addresses of the operands.

This approach results in instructions of variable length, dependent on the number of operands and

the type of addressing modes used.

 Using multiple words, we can implement quite complex instructions, closely resembling

operations in high-level programming languages.

 The term complex instruction set computer (CISC) has been used to refer to processors that use

instruction sets of this type.

 The restriction that an instruction must occupy only one word has led to a style of computers that

have become known as reduced instruction set computer (RISC).

 The RISC approach introduced other restrictions, such as that all manipulation of data must be

done on operands that are already in processor registers.

 This restriction means that the above addition would need a two-instruction sequence

Move (R3), R1 Add R1, R2

 If the Add instruction only has to specify the two registers, it will need just a portion of a 32-bit

word. So, we may provide a more powerful instruction that uses three operands

Add R1, R2, R3

 Which performs the operation R3 -> [R1] + [R2]

 A possible format for such an instruction in shown in fig c. Of course, the processor has to be able

to deal with such three-operand instructions.

 In an instruction set where all arithmetic and logical operations use only register operands, the

only memory references are made to load/store the operands into/from the processor registers.

 RISC-type instruction sets typically have fewer and less complex instructions than CISC-type

sets.

. Page 27

7. INTERACTION BETWEEN ASSEMBLY AND HIGH LEVEL LANGUAGE

8. Explain the concept of interaction between assembly and high level language

 What are ‗high level languages‘? High level languages are called ‗high-level‘ because they are

closer to human languages and are further removed from machine languages than assembly

language.

 There is no one-to-one relationship between the instructions in a high level language and machine

language as there is with assembly language.

 List three examples of a high level language. Basic, C, Fortran, Python, Ada etc.

 List three advantages of assembly language over a high level language.

 It requires less memory and execution time.

 It allows hardware-specific complex jobs in an easier way.

 It is suitable for time-critical jobs.

 It is most suitable for writing interrupt service routines and other memory resident programs.

 List three advantages of using a high level language over assembly language.

 Faster program development – it is less time consuming to write and then test the program.

 It is not necessary to remember the registers of the CPU and mnemonic instructions.

 Portability of a program from one machine to other.

 Each assembly language is specific to a particular type of CPU, but most high-level programming

languages are generally portable across multiple architectures.

 A compiler reads the whole high level code and translates it into a complete machine code

program which is output as a new file and can be saved.

 The biggest advantage of this is that the translation is done once only and as a separate process.

The program that is run is already translated into machine code so is much faster in execution.

 The disadvantage is that you cannot change the program without going back to the original source

code, editing that and recompiling.

 An interpreter reads the source code one instruction or line at a time, converts this line into

machine code and executes it.

 The machine code is then discarded and the next line is read. The advantage of this is it‘s simple

and you can interrupt it while it is running, change the program and either continue or start again.

 The disadvantage is that every line has to be translated every time it is executed, even if it is

executed many times as the program runs. And because of this interpreters tend to be slow.

. Page 28

TWO MARKS

1. What are the five components of computer system? Apr/May 2017, 2019

The five classic components of computers are input unit, output unit, memory unit, arithmetic &

logic unit and control unit.

2. What is cache memory?

The small and fast RAM units are called as caches.

When the execution of an instruction calls for data located in the main memory, the data are

fetched and a copy is placed in the cache.

 Later if the same data are required it reads directly from the cache.

3.What is the function of ALU?

 Most of the computer operations (arithmetic & logic) are performed in ALU. The data required

for the operation is brought by the processor and the operation is performed by the ALU.

4. What is the function of control unit?

 The Control unit is the main part of the computer that coordinates the entire computer operations.

Data transfers between the processor and memory controlled by the control unit through timing

signal.

5. What are basic operations of a computer memory?

 The basic operations of the memory are READ and WRITE.

 READ – read the data from input device to memory.

 WRITE – writes data to the output device.

6. List out the operations of the computer.

The computer accepts the information in the form of programs and data through an input unit and stores

it in the memory.

1. Information stored in the memory is fetched under program control into an arithmetic and logic unit

where it is processed.

2. Processed information leaves the computer through an output unit.

3. All activities inside the machines are directed by the control unit.

7. What are the main elements of a computer?

 Processor: To interpret and execute programs.

 Memory: For storing programs and data.

 Input-output equipment: For transferring information between the computer and outside world.

8. Define Computer design.

 It is concerned with the hardware design of the computer. Once the computer specifications are

formulated, it is the task of the designer to develop hardware for the system.

. Page 29

 Computer design is concerned with the determination of what hardware should be used and how

the parts should be connected. This aspect of computer hardware is sometimes referred to as

computer implementation.

9. What is instruction set architecture?

 An abstract interface between the hardware and the lowest level software that encompasses all the

information necessary to write a machine language program that will run correctly.

 Including instructions, registers, memory access, I/O and so on.

10. State Amdahl’s law. Nov / Dec 2014

 Amdahl‘s Law is used to find the execution time of a program after making the improvement. It

can be represented in an equation as follows:

 Hence, Amdahl‘s Law can be used to estimate performance improvements.

11. Define Stored Programmed Concept.

 Storing program and their data in the same high-speed memory.

 It enables a program to modify its own instructions (such self-modifying Programs have

undesirable aspects, however and are rarely used).

12. What are the registers generally contained in the processor?(Nov/Dec-2019)

 MAR – Memory Address Register.

 MDR – Memory Data Register.

 IR – Instruction Register.

 R0 – Rn – General purpose Register.

 PC – Program Counter.

13. What do you mean by Memory address register (MAR) and Memory dataregister (MDR)?

 The MAR holds the address of the location to be accessed.

 The MDR contains the data to be written into or read out of the addressed location.

14. What is Data path?

 The component of the processor that performs arithmetic operations is called data path.

15. What is elapsed time of computer system?

 The total time to execute the total program is called elapsed time.

 It is affected by the speed of the processor, the disk and the printer.

16. What is processor time of a program?

 The period during which the processor is active is called processor time of a program.

. Page 30

 It depends on the hardware involved in the execution of individual machine instructions.

17. Define clock rate.

 The clock rate is given by,

R=1/P,

 Where P is the length of one clock. It can be measure as cycles per second (Hertz).

18. What is meant by clock cycle?

 Processor circuit is controlled by a timing signal called a clock.

 The clock defines regular time intervals, called clock cycle.

 To execute the machine instruction the processor divides the action to be performed into

sequence of basic steps. Each step can be completed in one clock cycle.

19. Write down the basic performance equation. (Apr/May-2014)(Nov/Dec 2019)

T=N*S/R

Where

T-Processor time

N-Number of machine instructions

S-Number of basic steps needed to execute one machine instruction

R-Clock rate

20. What is meant by addressing mode? List its types. (May/June 2013) Nov/ Dec 2013

The addressing mode is defined as the different ways in which the location or of an operand is specified

in an instruction.

The different types of addressing modes are:

1. Immediate addressing mode

2. Register addressing mode

3. Direct or absolute addressing mode

4. Indirect addressing mode

5. Indexed addressing mode

6. Relative addressing mode

7. Auto increment

8. Auto decrement

21. Define Register addressing mode with an example.

 In register addressing mode, the operand is the content of a processor register. The name (address)

of the register is given in the instruction.

. Page 31

Effective address (EA) = Ri, Where Ri is a processor register.

22. Define absolute addressing mode with an example.

 In absolute addressing mode, the operand is in a memory location. The addresses of this location

are given explicitly in the instruction. This is also called as direct addressing mode.

EA = Loc Where loc is the memory address.

23. What is relative addressing mode with an example? (N/D 2014)

 The Effective address is determined by the index mode using the program counter in place of

general purpose register. This mode is used to access the data operands.

EA = X + [PC]

24. What is indirect addressing mode?

 The Effective address of the operand is the contents of a register or memory location whose

address appears in the instruction.

EA = [Ri] or EA = [Loc]

25. What is indexed addressing mode?

 The Effective address of the operand is generated by adding a constant value to the contents of a

register.

EA = X + [Ri].

26. Define auto increment mode of addressing.

The Effective address of the operand is the contents of a register specified in the instruction. After

accessing the operand, the contents of this registers are automatically incremented to point to the next

item in the list.

EA = (Ri) +

27. Define auto decrement mode of addressing.

The contents of a register specified in the instructions are first automatically decremented and are then

used as the effective address of the operand.

EA = - (Ri)

28. List the basic instruction types. May / June 2013

The various instruction types are,

 Three address instructions

 Two-address instructions

 Single-address instructions

 Zero-address instructions

29. What is register?

. Page 32

 A small set of high-speed storage devices called registers, which serve as implicit storage

locations for operands and results.

30. List the phases, which are included in the each instruction cycle?

 Fetch:Fetches instruction from main memory (M).

 Decode: Decodes the instruction‘s opcode.

 Load: Loads (read) from M any operands needed unless they are already in CPU Registers.

 Execute: Executes the instruction via a register-to-register operation using an appropriate

functional unit of the CPU such as a fixed–point adder.

 Store: Stores (write) the results in M unless they are to be retained in CPU register.

31. What are the types of computer?

 Mini computer

 Micro computers

 Mainframe computers

 Super computers

32. What are the two major steps in processing an instruction? (Or) Write the two steps that

are common to implement any type of instruction. Nov. / Dec. 2018

 Fetch step: During this step a new instruction is read from the external memory M by the CPU.

 Execute step: During this step operations specified by the instructions are executed by

the CPU.

33. What are the speedup techniques available to increase the performance of a computer?

 Cache: It is a fast accessible memory often placed on the same chip as the CPU. It is used to

reduce the average time required to access an instruction or data to a single clock cycle.

 Pipelining: Allows the processing of several instructions to be partially overlapped.

 Super scalar: Allows processing of several instructions in parallel (full overlapping).

34. What are Timing signals?

 Timing signals are signals that determine when a given action is to take place.

 Data transfers between the processor and the memory are also controlled by the control unit

through timing signals.

35. Distinguish between auto increment and auto decrement addressing mode. (May/June 2016)

. Page 33

Auto increment Auto decrement

1.The effective address of the operand is the

contents of the register specified in the instruction.

After accessing the operand, the contents of the

register are incremented to address the next

location.

1.The contents of a register specified in the

instruction are decremented and then are used

as effective address to access a memory

location.

2.Auto increment is symbolically represented as

(Ri)+.Example:move(R2), R0+

2.Auto decrement mode is symbolically

represented as -(Ri).Example: Move R1, -(R0)

36. What is an opcode? How many bits are needed to specify 32 distinct operations? (Apr/May

2011)

 An opcode is the first byte of an instruction in machine language which tells the hardware what

operation needs to be performed with this instruction.

 Every processor/controller has its own set of opcodes defined in its architecture. Opcode is the

operation to be performed on data. An opcode is followed by data like address, values etc if

needed.

 5 bits are needed to specify 32 distinct operations.

37. Define word length. (Nov/Dec 2011)

 In computer architecture, a word is a unit of data of a defined bit length that can be addressed and

moved between storage and the computer processor.

 Address that is divided by 4 is called word.

 The number of bits in the word is called word length.

 In longer architected word length,the computer processor can do more in a single operation.

38. What are the merits and demerits of single address instructions? (Nov/Dec 2011)

Single address instruction,

Eg: Add A

Store A

Add the contents of memory location A to the contents of the accumulator register and place the sum

back into accumulator.

39. Explain the disadvantages of using a single type of instruction.

In practice the codes in an instruction (opcode and condition) may be fairly small e.g. 2. to .8 bits.

However, if the instruction is to be able to reference large quantities of data then the addresses must be

large e.g. 16..32 bits. If the above instruction were to use 6 bits for the opcode, 4 bits for the condition

code and 16 bits for each address then it would have to be 90 bits long.

40. What is relative addressing mode? When is it used? (May/June 2012)

. Page 34

 The effective address is determined by the index mode using program counter in place of the

general purpose registers.

 This address is commonly used to specify the target address in branch instruction.

 Example: JNZ BACK

o This instruction causes program executive to go to the branch target location identified by

the name BACK, if the branch condition is satisfied.

41. Suppose you wish to run a program P with 8.5 * 109 instructions on a 5 Ghz machine with

CPI of 0.8. What is the expected CPU time? (Nov/Dec 2010)

Percentage of elapsed time=(User CPU Time + System CPU Time)/Elapsed Time

Expected CPU time =0.8-0.2*8.5*109=1.36

42. What does the term hertz refer to? (Nov/Dec 2010)

 The hertz abbreviated as Hz.

 It is a unit of frequency.

 It is equal to 1 cycle per second.

43. Mention the registers used for communications between processor and main memory.

(May/June 2010)

1) MAR(Memory Address Register): The Memory Address Register (MAR) is a CPU register

that either stores the memory address from which data will be fetched to the CPU or the address

to which data will be sent and stored.

2) MDR (Memory Data Register):It is the register of a computer's control unit that contains the

data to be stored in the computer storage (e.g. RAM), or the data after a fetch from the computer

storage. It acts like a buffer and holds anything that is copied from the memory ready for the

processor to use it.

44. What is SPEC? Specify the formula for SPEC rating. (May/June 2012)(Apr/May 2014)

 SPEC is a nonprofit consortium of 22 major computer vendors whose common goals are ―to

provide the industry with a realistic yardstick to measure the performance of advanced computer

systems‖ and to educate consumers about the performance of vendors‘ products.

 SPEC creates, maintains, distributes, and endorses a standardized set of application-oriented

programs to be used as benchmarks.

The formula for SPEC rating is as follows:

SPEC rating (ratio) = TR / TC;

where,

TR = Running time of the Reference Computer;

TC = Running time of the Computer under test;

http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Memory_address
http://en.wikipedia.org/wiki/Processor_register
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Control_unit
http://en.wikipedia.org/wiki/Computer_storage

. Page 35

If the SPEC rating = 50 means that the computer under test is 50 times as fast as the ultra sparc 10. This

is repeated for all the programs in the SPEC suit, and the geometric mean of the result is computed.

45. Give an example each of zero-address, one-address, two-address and three-address

instructions. (Or) Classify the instructions based on the operations they perform and give

one example to each category. Apr. / May 2018, Nov. / Dec. 2018

 Zero address- push (Push the value as top of stock)

 One address- INC CL (If carry set, increment CL by one)

 Two address- Add A,B (A A+B)

 Three address- Add A,B,C (A B+C)

46. Which data structures can be best supported using (a) indirect addressing mode (b) indexed

addressing mode?

(a) Indirect addressing mode – Pointer data structure

(b) Indexed addressing mode- Array data structure

47. What are the four basic types of operations that need to be supported by an instructor set?

(i) Data transfer between memory and the processor register.

(ii) Arithmetic and logic operations on Data.

(iii) Program sequencing and control.

(iv) I/O transfer.

48. What are the address-sequencing capabilities required in a control memory?

(i) Incrementing of the control address register.

(ii) Unconditional branch as specified by address field of the micro instruction.

(iii)Conditional branch depending on status bits in registers of computer.

(iv)A facility for sub-routines calls and returns.

49. What are the limitations of assembly language? (M/J 2007)

(i) Assembly language is converted to Machine language using assembler which is time consuming

when compared with machine language.

(ii) It is difficult to solve the complex problems.

(iii) A set of symbolic names (mnemonics) and rules has to be followed.

50. A memory byte location contains the pattern 00101100. What does this pattern represent

when interpreted as a number? What does it represent as an ASCII Code? (Nov/Dec 2007)

 Interpreted number is 44.

 ASCII code is NULL/idle.

51. What is the information conveyed by addressing modes? (Nov/Dec 2007)

. Page 36

 The information conveyed by addressing mode is to specify the location of an operand in an

instruction.

52. Why is the data bus in most microprocessors bi-directional while the address bus is

unidirectional? (Apr/May 2008)

 The data bus is bi-directional bus and is used to fetch instruction from memory and to send a

command to an I/O device or port. Address is unidirectional to carry memory address while

reading from or writing into memory.

53. What is meant by the stored program concept? Discuss. (May/June 2007)

 A set of instruction that performs a task is called a program. Usually the program is stored in the

memory. The processor fetches the instructions that take up the program from the memory, one at

a time and perform the desired operation.

54. What are the two techniques used to increase the clock rate R?

The two techniques used to increase the clock rate R are:

 The Integrated Circuit (IC) technology can be increased which reduces the time needed to

complete a basic step.

 We can reduce the amount of processing done in one basic step.

55. What is Big-Endian and Little-Endian representations? (Nov/Dec 2014)

 The big-endian is used when lower byte addresses are used for the more significant bytes(The

leftmost bytes) of the word.

 The little-endian is used for the opposite ordering, where the lower byte addresses are used for

the less significant bytes (the rightmost bytes) of the word.

56. What is meant by instructions? (May/June 2016)

 Instructions are command that is governed by the transfer of information within the computer as

well as between the computers and its input and output device.

57. What is the use of Instruction register?

 It holds the instructions that are currently being executed.

58. What is the use of MAR?

 It holds the address of the location to be accessed.

59. What is the use of MDR?

 It holds the data to be written into or read out of the addressed location.

60. State the basic performance equation of a computer. (Apr/May 2014)

T= (NxS)/R

Where,

N- Number of instructions

. Page 37

S- Average numbers of steps needed to execute one instruction.

R- Clock rate.

61. What are the two basic operations involving in the memory?

1. Load (Read or fetch)

2. Store (Write)

62. How to measure the performance of the system?

1. Response time

2. Throughput.

63. What is register indirect addressing mode? When is it used? (Nov/Dec 2013)

The effective address of the operand is the contents of a register or memorylocation whose address

appears in the instruction. Example Add (R2),R0

Register R2 is used as a pointer to the numbers in the list, and the operands are accessed indirectly

through R2. The initialization section of the program loads the counter value n from memory location N

into Rl and uses the Immediate addressing mode to place the address value NUM 1, which is the address

of the first number in the list, into R2.

64. List the eight great ideas invented by computer architects. (Nov/Dec-2015)

 Design for Moore‘s Law

 Use abstraction to simplify design

 Make the common case fast

 Performance viaparallelism

 Performance viapipelining

 Performance viaprediction

 Hierarchy of memories

 Dependabilityvia redundancy

65. Distinguish pipelining from parallelism. (N/D2015)

 Parallelism means we are using more hardware for the executing the desired task. In parallel

computing more than one processor are running in parallel. There may be some dedicated

hardware running in parallel for doing the specific task.

 Parallelism increases the performance but the area also increases.

 The pipelining is an implementation technique in which multiple instructions are overlapped in

execution.

 In case of pipelining the performance and throughput increases at the cost of pipelining registers

area.

 In pipelining there are different hazards like data hazards, control hazards etc.

. Page 38

66. Give the formula for CPU execution time for a program.(Nov/Dec 2016)

 A simple formula relates the most basic metrics (clock cycles and clock cycle time) to CPU time:

 Alternatively, because clock rate and clock cycle time are inverses,

 This formula makes it clear that the hardware designer can improve performance by reducing the

number of clock cycles required for a program or the length of the clock cycle.

67. What is an instruction register? (Nov/Dec 2016)

In computing, an instruction register (IR) is the part of a CPU's control unit that holds the instruction

currently being executed or decoded.

68. State the need for indirect addressing mode. Give an example. Apr/May 2017

The register or memory location that contains theaddress of the operand is a pointer. When an execution

takes place in such mode, instruction may be told to go to a specific address. Once it's there, instead of

finding an operand, it finds an address where the operand is located.

In this case the number is usually enclosed with square brackets.

LD Acc, [5];Load the value stored in the memory location pointed to by the operand into the accumulator

Memory location 5 is accessed which contains 3. Memory location 3 is accessed which is 17.

Ax becomes 17.

69. Specify the CPU performance equation. Nov/ Dec 2012

The performance equation analyzes execution time as a product of three factors that are relatively

independent of each other. The three factors are, in order, known as the instruction count (IC), clocks per

instruction (CPI), and clock time (CT). CPI is computed as an effective value.

70. Write the equation for the dynamic power required per transistor. Apr. / May 2018

f represents the frequency of energy-consuming transitions (01)

. Page 39

71. Consider three different processors P1, P2, and P3 executing the same instruction set. P1

has a 3 GHz clock rate and a CPI of 1.5. P2 has a 2.5 GHz clock rate and a CPI of 1.0. P3

has a 4.0 GHz clock rate and has a CPI of 2.2.Which processor has the highest performance

expressed in instructions per second?Nov. / Dec. 2018

Performance = (instructions/sec)

Processor ClockRate CPI Performance

P1 3 x 109 1.5 3 x 109/ 1.5 = 2 x 109

P2 2.5 x 109 1.0 2.5 x 109/ 1.0 = 2.5 x 109

P3 4 x 109 2.2 4 x 109/ 2.2 = 1.8 x 109

P2 has the highest performance

72. Give the MIPS code for the statement f=(g+h)-(i+j). May 2019

Simple arithmetic expression,assignment

int f, g, h, i, j;

f = (g + h) - (i + j);

Assume variables are assigned to $s0, $s1, $s2, $s3, $s4 respectively

add $s0, $s1, $s2 # $s0 = g + h

add $s1, $s3, $s4 # $s1 = i + j

sub $s0, $s0, $s1 # f = (g + h) - (i + j)

73. Define Word Length. Nov/Dec-2019

A word is a unit of data of a defined bit length that can be addressed and moved between storage and

the computer processor. ... Typically, an instruction is a word in length, but some architectures support

halfword and doubleword-length instructions

74. What is Zero address instruction format? Nov/Dec 2020

A zero-address instruction implies that the absolute address of the operand is held in a special

register that is automatically incremented (or decremented) to point to the location of the top of the stack.

. Page 40

75. What is the impact of frequency of clock signal applied to the microprocessor in the

performance of computer? Nov/Dec 2020.

A computer's processor clock speed determines how quickly the central processing unit (CPU)

can retrieve and interpret instructions. This helps your computer complete more tasks by getting them

done faster. Clock speeds are measured in gigahertz (GHz), with a higher number equating to higher

clock speed.

76. List the difference between wall clock time and reponse time.Nov/Dec 2021

Wall clock time is the actual amount of time taken to perform a job. This is equivalent to

timing your job with a stopwatch and the measured time to complete your task can be affected by

anything else that the system happens to be doing at the time.

User time measures the amount of time the CPU spent running your code. This does not

count anything else that might be running, and also does not count CPU time spent in the kernel

(such as for file I/O).

CPU time measures the total amount of time the CPU spent running your code or anything

requested by your code. This includes kernel time.

The "User time" measurement is probably the most appropriate for measuring the

performance of different jobs, since it will be least affected by other things happening on the

system.

77. Find the Cycle time of a 450MHz clock frequency.Nov/Dec 2021

Time=1/frequency

=1/450*106

= 0.00222*10-6

Page 1

PART B

1. Briefly explain about Basic MIPS Implementation. Nov / Dec 2015, 2018

A Basic MIPS Implementation:

We will be examining an implementation that includes a subset of the core MIPS instruction

set:(Micro Instruction per Second)

 The memory-reference instructions load word (lw) and store word (sw)

 The arithmetic-logical instructions add, sub, AND, OR, and slt

 The instructions branch equal (beq) and jump (j), which we add last

 This subset does not include all the integer instructions (for example, shift, multiply, and divide

are issuing), nor does it include any floating-point instructions.

 However, the key principles used in creating a data path and designing the control are illustrated.

 The implementation of the remaining instructions is similar. In examining the implementation,

we will have the opportunity to see how the instruction set architecture determines many aspects

of the implementation, and how the choice of various implementation strategies affects the clock

rate and CPI for the computer.

 In addition, most concepts used to implement the MIPS subset in this chapter are the same basic

ideas that are used to construct a broad spectrum of computers, from high-performance servers to

general-purpose microprocessors to embedded processors.

An Overview of the Implementation

 MIPS instructions, including the integer arithmetic-logical instructions, the memory-reference

instructions, and the branch instructions.

 What needs to be done to implement these instructions is the same, independent of the exact

class of instruction.

For every instruction, the first two steps are identical:

1. Send the program counter (PC) to the memory that contains the code and fetch the instruction

from that memory.

2. Read one or two registers, using fields of the instruction to select the registers to read. For the

load word instruction, we need to read only one register, but most other instructions require that

we read two registers.

UNIT IV PROCESSOR

Instruction Execution – Building a Data Path – Designing a Control Unit – Hardwired Control, Micro

programmed Control – Pipelining – Data Hazard – Control Hazards.

Page 2

 After these two steps, the actions required to complete the instruction depend on the instruction

class. Fortunately, for each of the three instruction classes (memory-reference, arithmetic-

logical, and branches), the actions are largely the same, independent of the exact instruction.

 The simplicity and regularity of the MIPS instruction set simplifies the implementation by

making the execution of many of the instruction classes similar.

For example,

 All instruction classes, except jump, use the arithmetic-logical unit (ALU) after reading the

registers.

 The memory-reference instructions use the ALU for an address calculation, the arithmetic-

logical instructions for the operation execution, and branches for comparison. After using the

ALU, the actions required to complete various instruction classes differ.

 A memory-reference instruction will need to access the memory either to read data for a load or

write data for a store.

 An arithmetic-logical or load instruction must write the data from the ALU or memory back into

a register. Lastly, for a branch instruction, we may need to change the next instruction address

based on the comparison; otherwise, the PC should be incremented by 4 to get the address of the

next instruction.

An abstract view of the implementation of the MIPS subset showing the Major functional units

and the major connections between them

 All instructions start by using the program counter to supply the instruction address to the

instruction memory.

 After the instruction is fetched, the register operands used by an instruction are specified by

fields of that instruction.

Page 3

 Once the register operands have been fetched, they can be operated on to compute a memory

address (for a load or store), to compute an arithmetic result (for an integer arithmetic-logical

instruction), or a compare (for a branch).

 If the instruction is an arithmetic-logical instruction, the result from the ALU must be written to

a register. If the operation is a load or store, the ALU result is used as an address to either store a

value from the registers or load a value from memory into the registers.

 The result from the ALU or memory is written back into the register file. Branches require the

use of the ALU output to determine the next instruction address, which comes either from the

ALU (where the PC and branch offset are summed) or from an added that increments the current

PC by 4.

 The thick lines interconnecting the functional units represent buses, which consist of multiple

signals. The arrows are used to guide the reader in knowing how information flows. Since signal

lines may cross, we explicitly show when crossing lines are connected by the presence of a dot

where the lines cross.

BUILDING A DATA PATH

Data path element: A unit used to operate on or hold data within a processor. In the MIPS

implementation, the data path elements include the instruction and data memories, the register file, the

ALU and adders.

A memory unit to store the instructions of a program and supply instructions given an address. The

program counter (PC), is a register that holds the address of the current instruction. We need an adder to

increment the PC to the address of the next instruction.

Two state elements are needed to store and access instructions, and an adder is needed to compute

the next instruction address.

 The state elements are the instruction memory and the program counter. The instruction memory

need only provide read access because the data path does not write instructions.

2. Give detail description about Building a Data path.(or) Build a suitable Data path for branch

instruction. Explain all the blocks with suitable example. Nov/Dec 2021

Page 4

 Since the instruction memory only reads, we treat it as combinational logic: the output at any

time reflects the contents of the location specified by the address input, and no read control

signal is needed. (We will need to write the instruction memory when we load the program; this

is not hard to add, and we ignore it for simplicity.)

 The program counter is a 32‑bit register that is written at the end of every clock cycle and thus

does not need a write control signal. The adder is an ALU wired to always add its two 32‑bit

inputs and place the sum on its output.

 Simply by wiring the control lines so that the control always specifies an add operation. We will

draw such an ALU with the label Add, to indicate that it has been permanently made an adder

and cannot perform the other ALU functions. To execute any instruction, we must start by

fetching the instruction from memory.

 To prepare for executing the next instruction, we must also increment the program counter so

that it points at the next instruction, 4 bytes later how to combine the three elements to form a

datapath that fetches instructions and increments the PC to obtain the address of the next

sequential instruction.

 Now let’s consider the R-format instructions. They all read two registers, perform an ALU

operation on the contents of the registers, and write the result to a register.

 We call these instructions either R-type instructions or arithmetic-logical instructions(since

they perform arithmetic or logical operations). This instruction class includes add, sub, AND,

OR, and slt, Recall that a typical instance of such an instruction is add $t1,$t2,$t3, which reads

$t2 and $t3 and writes $t1.

 The processor’s 32 general-purpose registers are stored in a structure called a register file. A

register file is a collection of registers in which any register can be read or written by specifying

the number of the register in the file. The register file contains the register state of the computer.

 In addition, we will need an ALU to operate on the values read from the registers.

 R-format instructions have three register operands, so we will need to read two data words from

the register file and write one data word into the register file for each instruction. For each data

word to be read from the registers, input to the register file that specifies the register number to

be read and an output from the register file that will carry the value that has been read from the

registers.

Page 5

A portion of the datapath used for fetching instructions and incrementing the program counter.

The fetched instruction is used by other parts of the datapath.

To write a data word, we will need two inputs:

 One to specify the register numberto be written and one to supply the data to be written into the

register.

 The register file always outputs the contents of whatever register numbers are on the Read

register inputs. Writes, however, are controlled by the write control signal, which must be

asserted for a write to occur at the clock edge. We need a total of four inputs (three for register

numbers and one for data) and two outputs (both for data). The register number inputs are 5 bits

wide to specify one of 32 registers (32 = 25), whereas the data input and two data output buses

are each 32 bits wide.

Register and ALU

 The ALU, which takes two 32‑bit inputs and produces a 32‑bit result, as well as a 1-bit signal if

the result is 0. The 4-bit control signal of the ALU.

 Sign-extendto increase the size of a data item by replicating the high-order sign bit of the

original data item in the high order bits of the larger, destination data item.

 Sign-extend the 16‑bit offset field in the instruction to a 32‑bit signed value, and a data memory

unit to read from or write to. The data memory must be written on store instructions; hence, data

Page 6

memory has read and writes control signals, an address input, and an input for the data to be

written into memory.

The two units needed to implement loads and stores, in addition to the register file and ALU

 The beq instruction has three operands, two registers that are compared for equality, and a 16‑bit

offset used to compute the branch target addressrelative to the branch instruction address. Its

form is beq $t1,$t2,offset. To implement this instruction, we must compute the branch target

address by adding the sign-extended offset field of the instruction to the PC.

There are two details in the definition of branch instructions

 The instruction set architecture specifies that the base for the branch address calculation is the

address of the instruction following the branch. Since we compute PC + 4 (the address of the

next instruction) in the instruction fetch datapath, it is easy to use this value as the base for

computing the branch target address.

 The architecture also states that the offset field is shifted left 2 bits so that it is a word offset; this

shift increases the effective range of the offset field by a factor of 4.

To deal with the later complication, we will need to shift the offset field by 2.

 Branch taken.A branch where the branch condition is satisfied and the program counter (PC)

becomes the branch target.All unconditional branches are taken branches.

 Branch not taken or (untaken branch) .A branch where the branch condition is false and the

program counter (PC) becomes the address of the instruction that sequentially follows the branch

Page 7

The datapath for a branch uses the ALU to evaluate the branch condition and a separate adder to

compute the branch target as the sum of the incremented PC and the sign-extended, lower 16 bits

of the instruction (the branch displacement), shifted left 2 bits.

 The unit labeled Shift left 2is simply a routing of the signals between input and output that adds

00two to the low-order end of the sign-extended offset field; no actual shift hardware is needed,

since the amount of the “shift” is constant.

 Since we know that the offset was sign-extended from 16 bits, the shift will throw away only

“sign bits.” Control logic is used to decide whether the incremented PC or branch target should

replace the PC, based on the Zero output of the ALU.

DESIGNING A CONTROL UNIT

3. Briefly explain about Control Implementation scheme.

Control Implementation scheme:

Over view:

 The ALU Control:

 Designing the Main Control Unit

 Operation of the Datapath

The ALU Control:

The MIPS ALU defines the 6 following combinations of four control inputs:

Page 8

Depending on the instruction class, the ALU will need to perform one of these first five functions.

(NOR is needed for other parts of the MIPS instruction set not found in the subset we are

implementing.)

 For load word and store word instructions, we use the ALU to compute the memory address by

addition.

 For the R-type instructions, the ALU needs to perform one of the five actions (AND, OR,

subtract, add, or set on less than), depending on the value of the 6‑bit funct (or function) field in

the low-order bits of the instruction.

 For branch equal, the ALU must perform a subtraction.

 We can generate the 4‑bit ALU control input using a small control unit that hasinputs the

function field of the instruction and a 2‑bit control field, which we call ALUOp.

 ALUOp indicates whether the operation to be performed should be add (00) for loads and stores,

subtract (01) for beq, or determined by the operation encoded in the funct field (10). The output

of the ALU control unit is a 4‑bit signal that directly controls the ALU by generating one of the

4‑bit combinations shown previously.

 The below table shows how to set the ALU control inputs based on the 2‑bit ALUOp control

and the 6‑bit function code.

How the ALU control bits are set depends on the ALUOp control bits and the different function

codes for the R-type instruction.

 The opcode, listed in the first column, determines the setting of the ALUOp bits. All the

encodings are shown in binary.

 Notice that when the ALUOp code is 00 or 01, the desired ALU action does not depend on the

function code field; in this case, we say that we “don’t care” about the value of the function

code, and the funct field is shown as XXXXXX. When the ALUOp value is 10, then the function

code is used to set the ALU control input.

Page 9

 There are several different ways to implement the mapping from the 2‑bit ALUOp field and the

6‑bit funct field to the four ALU operation control bits.

 Because only a small number of the 64 possible values of the function field are of interest and

the function field is used only when the ALUOp bits equal 10, we can use a small piece of logic

that recognizes the subset of possible values and causes the correct setting of the ALU control

bits.

As a step in designing this logic, it is useful to create a truth table for the interesting combinations of the

function code field and the ALU Op bits.The belowtruth tableshows how the 4‑bit ALU control is set

depending on these two input fields.

The truth table for the 4 ALU control bits (called Operation).

 The inputs are the ALUOp and function code field. Only the entries for which the ALU control

is asserted are shown.

 Some don’t-care entries have been added. For example, the ALUOp does not use the encoding

11, so the truth table can contain entries 1X and X1, rather than 10 and 01.

 Note that when the function field is used, the first 2 bits (F5 and F4) of these instructions are

always 10, so they are don’t-care terms and are replaced with XX in the truth table.

 Don’t-care term:An element of a logical function in which the output does not depend on the

values of all the inputs.

4. Give detail description about the Design of Main Control Unit.

Designing the Main Control Unit

To understand how to connect the fields of an instruction to the data path, it is useful to review the

formats of the three instruction classes:

 The R-type instruction classes,

 Branch instruction classes, and

 Load-store instruction classes

Page 10

The three instruction classes (R-type, load and store, and branch) use two different instruction

formats

The jump instructions use another format, which we will discuss shortly.

(a). Instruction format for R-format instructions, which all have an opcode of 0. These

instructions have three register operands: rs, rt, and rd. Fields rs and rt are sources, and rd is the

destination. The ALU function is in the funct field and is decoded by the ALU control design in the

previous section. The R-type instructions that we implement are add, sub, AND, OR, and slt. The shamt

field is used only for shifts; we will ignore it in this chapter.

(b). Instruction format for load (opcode = 35ten) and store (opcode = 43ten) instructions. The

register rs is the base register that is added to the 16‑bit address field to form the memory address. For

loads, rt is the destination register for the loaded value. For stores, rt is the source register whose value

should be stored into memory.

(c). Instruction format for branch equal (opcode = 4). The registers rs and rt are the source

registers that are compared for equality. The 16‑bit address field is sign-extended, shifted, and added to

the PC+4 to compute the branch target address.

There are several major observations about this instruction format that we will rely on:

 The op field, also called the opcode, is always contained in bits 31:26. We will refer to this field

as Op[5:0].

 The two registers to be read are always specified by the rs and rt fields, at positions 25:21 and

20:16. This is true for the R-type instructions, branch equal, and store.

 The base register for load and store instructions is always in bit positions 25:21 (rs).

 The 16‑bit offset for branch equal, load, and store is always in positions 15:0.

 The destination register is in one of two places. For a load it is in bit positions 20:16 (rt), while

for an R-type instruction it is in bit positions 15:11 (rd). Thus, we will need to add a multiplexor

to select which field of the instruction is used to indicate the register number to be written.

Page 11

 Using this information, we can add the instruction labels and extra multiplexor (the Write

register number input of the register file) to the simple datapath.

 These additions plus the ALU control block, the write signals forstate elements, the read signal

for the data memory, and the control signals for the multiplexors. Since all the multiplexors have

two inputs, they each require a single control line.

 Seven single bit control lines plus the 2‑bit ALUOp controlsignal. We have already defined how

the ALUOp control signal works, and it isuseful to define what the seven other control signals do

informally before we determine how to set these control signals during instruction execution.

The data path of all necessary multiplexors and all control lines identified.

 The control lines are shown in color. The ALU control block has also been added. The PC does

not require a write control, since it is written once at the end of every clock cycle; the branch

control logic determines whether it is written with the incremented PC or the branch target

address.

Page 12

The effect of each of the seven control signals.

 When the 1‑bit control to a two-way multiplexor is asserted, the multiplexor selects the input

corresponding to 1. Otherwise, if the control is disserted, the multiplexor selects the 0 input.

 Remember that the state elements all have the clock as an implicit input and that the clock is

used in controlling writes. Gating the clock externally to a state element can create timing

problems.

Operation of the Data path:

The simple datapath with the control unit.

5. Briefly explain about Operation of the Data path with neat diagram. Apr. / May

2018,Nov/Dec2020. Nov/Dec 2021

Page 13

 The input to the control unit is the 6‑bit opcode field from the instruction.

 The outputs of the control unit consist of three 1‑bit signals that are used to control multiplexers

(RegDst, ALUSrc, and MemtoReg), three signals for controlling reads and writes in the register

file and data memory (RegWrite, MemRead, and MemWrite), a 1‑bit signal used in determining

whether to possibly branch (Branch), and a 2‑bit control signal for the ALU (ALUOp).

 An AND gate is used to combine the branch control signal and the Zero output from the ALU.

 The AND gate output controls the selection of the next PC. Notice that PCSrc is now a derived

signal, rather than one coming directly from the control unit. Thus, we drop the signal name in

subsequent figures.

 The operation of the datapath for an R-type instruction, such as add $t1,$t2,$t3. Although

everything occurs in one clock cycle, we can think of four steps to execute the instruction;

These steps are ordered by the flow of information:

1. The instruction is fetched, and the PC is incremented.

2. Two registers, $t2 and $t3, are read from the register file; also, the main control unit computes the

setting of the control lines during this step.

3. The ALU operates on the data read from the register file, using the function code (bits 5:0, which is

the funct field, of the instruction) to generate the ALU function.

4. The result from the ALU is written into the register file using bits 15:11 of the instruction to select the

destination register ($t1). Similarly, we can illustrate the execution of a load word, such as

The active functional units and asserted control lines for a load. We can think of a load instruction as

operating in

Five steps (similar to the R-type executed in four):

1. An instruction is fetched from the instruction memory, and the PC is incremented.

2. A register ($t2) value is read from the register file.

3. The ALU computes the sum of the value read from the register file and the Sign-extended, lower16

bits of the instruction (offset).

4. The sum from the ALU is used as the address for the data memory.

5. The data from the memory unit is written into the register file; the register destination is givenby bits

20:16 of the instruction ($t1).

The data path in operation for a load instruction:

 The control lines, data path units, and connections that are active are highlighted.

 A store instruction would operate very similarly. The main difference would be that the memory

control would indicate a write rather than a read, the second register value read would be used

Page 14

for the data to store, and the operation of writing the data memory value to the register file would

not occur.

The data path in operation for a branch-on-equal instruction.

 Finally, we can show the operation of the branch-on-equal instruction, such as beq $t1,$t2,offset

in the same fashion.

 It operates much like an R‑format instruction, but the ALU output is used to determine whether

the PC is written with PC + 4 or the branch target address.

The four steps for execution:

1. An instruction is fetched from the instruction memory, and the PC is incremented.

2. Two registers, $t1 and $t2, are read from the register file.

3. The ALU performs subtract operation on the data values read from the register file. The value of

PC+4is added to the sign-extended, lower 16 bits of the instruction (offset) shifted left by two; Result is

inthe branch target address.

4. The Zero result from the ALU is used to decide which adder result to store into the PC.

HARDWIRED CONTROL AND MICRO PROGRAMMED CONTROL

 Hardwired and Micro programmed Control For each instruction, the control unit causes the CPU

to execute a sequence of steps correctly.

 In reality, there must be control signals to assert lines on various digital components to make

things happen.

 For example, when we perform an Add instruction in assembly language, we assume the

addition takes place because the control signals for the ALU are set to "add" and the result is put

into the AC.

 The ALU has various control lines that determine which operation to perform. The question we

need to answer is, "How do these control lines actually become asserted?" We can take one of

two approaches to ensure control lines are set properly.

 The first approach is to physically connect all of the control lines to the actual machine

instructions. The instructions are divided up into fields, and different bits in the instruction are

combined through various digital logic components to drive the control lines.

 This is called hardwired control, and is illustrated in figure

Page 15

 The control unit is implemented using hardware (for example: NAND gates, flip-flops, and

counters).We need a special digital circuit that uses , as inputs, the bits from the Opcode field in

our instructions, bits from the flag (or status) register, signals from the bus, and signals from the

clock.

 It should produce, as outputs, the control signals to drive the various components in the

computer. The advantage of hardwired control is that is very fast.

 The disadvantage is that the instruction set and the control logic are directly tied together by

special circuits that are complex and difficult to design or modify.

 If someone designs a hardwired computer and later decides to extend the instruction set, the

physical components in the computer must be changed.

 This is prohibitively expensive, because not only must new chips be fabricated but also the old

ones must be located and replaced. Microprogramming is a second alternative for designing

control unit of digital computer (uses software for control).

 A control unit whose binary control variables are stored in memory is called a micro

programmed control unit. The control variables at any given time can be represented by a string

of 1's and 0's called a control word (which can be programmed to perform various operations on

the component of the system).

Page 16

 Each word in control memory contains within it a microinstruction. The microinstruction

specifies one or more micro operations for the system. A sequence of microinstructions

constitutes a micro program.

 A memory that is part of a control unit is referred to as a control memory. A more advanced

development known as dynamic microprogramming permits a micro program to be loaded

initially from an auxiliary memory such as a magnetic disk.

 Control units that use dynamic microprogramming employ a writable control memory; this type

of memory can be used for writing (to change the micro program) but is used mostly for reading.

 The general configuration of a micro programmed control unit is demonstrated in the block

diagram of Figure.

 The control memory is assumed to be a ROM, within which all control information is

permanently stored.

 The control memory address register specifies the address of the microinstruction and the control

data register holds the microinstruction read from memory the microinstruction contains a

control word that specifies one or more micro operations for the data processor.

 Once these operations are executed, the control must determine the next address. The location of

the next microinstruction may be the one next in sequence, or it may be locate somewhere else in

the control memory. For this reason it is necessary to use some bits of the present

microinstruction to control the generation of the address of the next microinstruction.

 The next address may also be a function of external input conditions. While the micro operations

are being executed, the next address is computed in the next address generator circuit and then

transferred into the control address register to read the next microinstruction.

 The next address generator is sometimes called a micro program sequencer, as it determines the

address sequence that is read from control memory, the address of the next microinstruction can

be specified several ways, depending on the sequencer inputs.

 Typical functions of a micro program sequencer are incrementing the control address register by

one, loading into the control address register an address from control memory, transferring an

external address or loading an initial address to start the control operations.

Page 17

 The main advantages of the micro programmed control are the fact that once the hardware

configuration is established; there should be no need for further hardware or wiring changes.

 If we want to establish are different control sequence for the system, all we need to do is specify

different set microinstructions for control memory.

 The hardware configuration should not be changed for different operations; the only thing that

must be changed is the micro program residing in control memory.

 Microinstructions are stored in control memory in groups, with each group specifying routine.

Each computer instruction has micro program routine in control memory to generate the micro

operations that execute the instruction.

 The hardware that controls the address sequencing of the control memory must be capable of

sequencing the microinstructions within a routine and be to branch from one routine to another.

The address sequencing capabilities required in a control memory are:

1. Incrementing of the control address register.

2. Unconditional branch or conditional branch, depending on status bit conditions.

3. A mapping process from the bits of the instruction to an address for control memory.

4. A facility for subroutine call and return.

 Figure shows a block diagram of control memory and the associated hardware needed for

selecting the next microinstruction address.

 The microinstruction in control memory contains a set of bits to initiate micro operations in

computer registers and other bits to specify the method by which the address is obtained.

 The diagram shows four different paths from which the control address register (CAR) receives

the address.

 The incrementer increments the content of the control address register by one, to select the next

microinstruction in sequence.

 Branching is achieved by specifying the branch address in one of the fields of the

microinstruction.

 Conditional branching is obtained by using part of the microinstruction to select a specific status

bit in order to determine its condition.

 An external address is transferred into control memory via a mapping logic circuit. The return

address for a subroutine is stored in a special register whose value is then used when the micro

program wishes to return from the subroutine.

Page 18

Selection address for control memory

PIPELINING

OVERVIEW:

 Role of cache memory

 Pipelining Performance

 Pipelining is an implementation technique in which multiple instructions are overlapped in

execution pipelining is key to make processor fast.

 A pipeline can be visualized as a collection of processing segments through which binary

information follows.

 In computer architecture Pipelining means executing machine instructions concurrently. The

pipelining is used in modern computers to achieve high performance. The speed of execution of

programs is influenced by many factors.

 One way to improve performance is to use faster circuit technology to build the processor and

the main memory.

 Another possibility is to arrange the hardware so that more than one operation can be performed

at the same time

6. Explain a 4-stage instruction pipeline. Explain the issues affecting pipeline performance. (Or)

Discus the basic concepts of pipelining. (Apr/May2012) (May/June2013)Nov / Dec 2015,

2016,Nov/Dec 2020.

Page 19

 In this way, the number of operations performed per second is increased even though the elapsed

time needed to perform anyone operation is not changed.

 Pipelining is a particularly effective way of organizing concurrent activity in a computer system.

 The basic idea is very simple. It is frequently encountered in manufacturing plants, where

pipelining is commonly known as an assembly-line operation.

 The processor executes a program by fetching and executing instructions, one after the other. Let

Fi and Ei refer to the fetch and execute steps for instruction Ii.

 An execution of a program consists of a sequence of fetch and execute steps as shown below.

Sequential executions of instructions.

 Now consider a computer that has two separate hardware units, one for fetching instructions and

another for executing them, as shown below. The instruction fetched by the fetch unit is

deposited in an intermediate storage buffer B1.

 This buffer is needed to enable the execution unit to execute the instruction while the fetch unit

is fetching the next instruction.

 The results of execution are deposited in the destination location specified by the instruction.

The data can be operated by the instructions are inside the block labeled "Execution unit".

Hardware organization of pipelining.

 The computer is controlled by a clock whose period is such that the fetch and execute steps of

any instruction can each be completed in one clock cycle.

 In the first clock cycle, the fetch unit fetches an instruction I1 (step F1) and stores it in buffer Bl

at the end of the clock cycle.

 In the second clock cycle, the instruction fetch unit proceeds with the fetch operation for

instruction I2 (step F2). Meanwhile, the execution unit performs the operation specified by

instruction I1, which is available to it in buffer Bl (step E1).

 By the end of the second clock cycle, the execution of instruction I1 is completed and instruction

I2 is available. Instruction I2 is stored in B1, replacing I1, which is no longer needed. Step E2 is

performed by the execution unit during the third clock cycle, while instruction I3 is being

fetched by the fetch unit. In this manner, both the fetch and execute units are kept busy all the

time.

Page 20

Pipelined executions of instructions (Instructions Pipelining)

A pipelined processor may process each instruction in four steps, as follows:

 F Fetch: read the instruction from the memory.

 D Decode: decode the instruction and fetch the source operand(s).

 E Execute: perform the operation specified by the instruction.

 W Write: store the result in the destination location.

The sequence of events for this case is shown below. Four instructions are in progress at any given time.

This means that four distinct hardware units are needed. These units must be capable of performing their

tasks simultaneously and without interfering with one another. Information is passed from one unit to

the next through a storage buffer.

Instruction execution divided into four steps.

Hardware organization of a 4- stage pipeline

For example, during clock cycle 4, the information in the buffers is as follows:

Page 21

 Buffer B1 holds instruction I3, which was fetched in cycle 3 and is being decoded by the

Instruction-decoding unit.

 Buffer B2 holds both the source operands for instruction I2 and the specification of the operation

to be performed.

 Buffer B3 holds the results produced by the execution unit and the destination information for

instruction 11.

ROLE OF CACHE MEMORY:

 Each stage in a pipeline is expected to complete its operation in one clock cycle. Hence, the

clock period should be sufficiently long to complete the task being performed in any stage.

 Pipelining is most effective in improving performance if the tasks being performed in different

stages require about the same amount of time.

 The use of cache memories solves the memory access problem. In particular, when a cache is

included on the same chip as the processor, access time to the cache is usually the same as the

time needed to perform other basic operations inside the processor.

 This makes it possible to divide instruction fetching and processing into steps that are more or

less equal in duration. Each of these steps is performed by a different pipeline stage, and the

clock period is chosen to correspond to the longest one.

PIPELINE PERFORMANCE:

The pipelined processor completes the processing of one instruction in each clock cycle, which means

that the rate of instruction processing is four times that of sequential operation.

 The potential increase in performance resulting from pipelining is proportional to the number of

pipeline stages.

 However, this increase would be achieved only if pipelined operation as depicted could be

sustained without interruption throughout program execution. Unfortunately, this is not the case.

7. Explain about Pipeline Performance. (Or) How to measure the performance of a pipeline?

(Or)List the key aspects in gaining the performance in pipelined systems.(Apr/May2010) or

Explain the difference types of pipeline hazards with suitable examples. (16 Marks) Apr / May

2015, 2016, Nov. / Dec. 2018 (Nov/Dec 2019)Nov/Dec 2020.Nov/Dec 2021

Page 22

Effect of an execution operation taking more than one clock cycle

Performance measures:

The various performance measures of pipelining are

 Throughput

 CPI

 Speedup

 Dependencies

 Hazards

Throughput

 The number of instruction executed per secondCPI(clock cycle per instruction)

 The CPI and MIPS can be related by the equation

CPI=f/MIPS

Where F is the clock frequency in MHz

Speedup

 Speedup is defined by

S(m)=T(1)/T (m)

 Where T (m) is the execution time for some target workload on an m-stage pipeline and T(1) is

the execution time for same target workload on a non-pipelinedProcessor.

Dependencies

 If the output of any stage interferes the execution of other stage then dependencies exists.

There are two types of dependencies. They are

1. Control dependency

2. Data dependency

Pipelined data path and control

Consider the three-bus structure suitable for pipelined execution with a slight modification to support a

4-stage pipeline. Several important changes are

 There are separate instruction and data cachesthat use separate address and data connections to

the processor. This requires two versions of the MAR register, IMAR for accessing tile

instruction cache and DMAR for accessing the data cache.

 The PC is connecteddirectlyto the IMAR, so that the contents of the PC can be transferred to

IMAR at the same time that an independent ALU operation is taking place.

 The data address in DMAR can be obtained directly from the register file or from the ALUto

support the register indirect and indexed addressing modes.

8. Give detail description about Pipelined data path and control. (Nov/Dec2014)(Apr/May2012)

(Or) Discuss the modified data path to accommodate pipelined executions with a diagram.

Apr/May 2016, 2017, 2018Nov/Dec 2021

Page 23

 Separate MDR registers are provided for read and write operations. Data can be transferred

directly between these registers and the register file during load and store operations without the

need to pass through the ALU.

 Buffer registershave been introduced at the inputs and output of the ALU. These are registers

SRCl, SRC2, and RSLT. Forwarding connections may be added if desired.

 The instruction register has been replaced with an instruction queue, which is loaded from the

instruction cache.

 The output of the instruction decoder is connected to thecontrol signal pipeline. This pipeline

holds the control signals in buffers B2 and B3.

The following operations can be performed independently in the process,

 Reading an instruction from the instruction cache

 Incrementing the pc

 Decoding the instruction

 Reading from or writing into the data cache.

 Reading the contents of up to two registers from the register file.

 Writing in to one register in the register file

 Performing an ALU operation.

The structure provides the flexibility required to implement the four-stage pipeline.

For example: I1, I2, I3, I4

Be the sequence of four instructions.

 Write the result of instruction I1 into the register file.

 Read the operands of instruction I2 from the register file.

 Decode instruction I3

 Fetch instruction I4 and increment the PC.

Page 24

MDR/READ MDR/WRITE

Data cache

Memory address
(data
Access)

DMAR

A

R

B

Instructio
n cache

REGISTER
FILE

Incrementer

pc

IMAR

Instructio
n
Decoder

Control signal
Pipeline

ALU

Bus c
Bus b

Bus a

Instruction

Queue

Memory
address
(Instruction

Page 25

INSTRUCTION QUEUE

FLOATING
POINT
UNIT

INTEGER
UNIT

Use of instruction queue in hardware organization

Advantages of Pipelining:

 The cycle time of the processor is reduced; increasing the instruction throughput. Pipelining

doesn't reduce the time it takes to complete an instruction; instead it increases the number of

instructions that can be processed simultaneously ("at once") and reduces the delay between

completed instructions (called 'throughput').

The more pipeline stages a processor has, the more instructions it can process "at once" and the

less of a delay there is between completed instructions. Every predominant general purpose

microprocessor manufactured today uses at least 2 stages of pipeline up to 30 or 40 stages.

 If pipelining is used, the CPU Arithmetic logic unit can be designed faster, but more complex.

 Pipelining in theory increases performance over an un-pipelined core by a factor of the number

of stages (assuming the clock frequency also increases by the same factor) and the code is ideal

for pipeline execution.

 Pipelined CPUs generally work at a higher clock frequency than the RAM clock frequency, (as

of 2008 technologies, RAMs work at a low frequencies compared to CPUs frequencies)

increasing computers overall performance.

Disadvantages of Pipelining:

Pipelining has many disadvantages though there are a lot of techniques used by CPUs and

compilersdesigners to overcome most of them; the following is a list of common drawbacks:

 The design of a non-pipelined processor is simpler and cheaper to manufacture, non-pipelined

processor executes only a single instruction at a time.

 This prevents branch delays (in Pipelining, every branch is delayed) as well as problems when

serial instructions being executed concurrently.

F:
INSTRUCTION
FETCH
UNIT

DISPATCH
UNIT

W: WRITE
RESULTS

https://simple.wikipedia.org/wiki/Arithmetic_logic_unit
https://simple.wikipedia.org/wiki/Design
https://simple.wikipedia.org/wiki/RAM
https://simple.wikipedia.org/wiki/2008
https://simple.wikipedia.org/wiki/Computer
https://simple.wikipedia.org/wiki/Technique
https://simple.wikipedia.org/wiki/Compiler
https://simple.wikipedia.org/wiki/Compiler

Page 26

 In pipelined processor, insertion of flip flops between modules increases the instruction latency

compared to a non-pipelining processor.

 A non-pipelined processor will have a defined instruction throughput. The performance of a

pipelined processor is much harder to predict and may vary widely for different programs.

 Many designs include pipelines as long as 7, 10, 20, 31 and even more stages; a disadvantage of

a long pipeline is when a program branches, the entire pipeline must be flushed (cleared).

 The higher throughput of pipelines falls short when the executed code contains many branches:

the processor cannot know in advance where to read the next instruction, and must wait for the

branch instruction to finish, leaving the pipeline behind it empty.

 This disadvantage can be reduced by predicting whether the conditional branch instruction will

branch based on previous activity.

 After the branch is resolved, the next instruction has to travel all the way through the pipeline

before its result becomes available and the processor resumes "working" again.

 In such extreme cases, the performance of a pipelined processor could be worse than non-

pipelined processor.

 Unfortunately, not all instructions are independent. In a simple pipeline, completing an

instruction may require 5 stages. To operate at full performance, this pipeline will need to run 4

subsequent independent instructions while the first is completing.

 Any of those 4 instructions might depend on the output of the first instruction, causing the

pipeline control logic to wait and insert a stall or wasted clock cycle into the pipeline until the

dependency is resolved.

 Fortunately, techniques such as forwarding can significantly reduce the cases where stalling is

required.

 Self-modifying programs may fail to execute properly on a pipelined architecture when the

instructions being modified are near the instructions being executed.

 This can be caused by the instructions may already being in the Prefetch Input Queue, so the

modification may not take effect for the upcoming execution of instructions. Instruction caches

make the problem even worse.

 Hazards: When a programmer (or compiler) writes assembly code, they generally assume that

each instruction is executed before the next instruction is being executed.

 When this assumption is not validated by pipelining it causes a program to behave incorrectly,

the situation is known as a hazard.

Various techniques for resolving hazards or working around such as forwarding and delaying (by

inserting a stall or a wasted clock cycle) exist.

https://simple.wikipedia.org/wiki/Flip-flop_(electronics)
https://simple.wikipedia.org/w/index.php?title=Self-modifying_code&action=edit&redlink=1
https://simple.wikipedia.org/w/index.php?title=Prefetch_Input_Queue&action=edit&redlink=1
https://simple.wikipedia.org/w/index.php?title=Instruction_cache&action=edit&redlink=1
https://simple.wikipedia.org/wiki/Computer_program
https://simple.wikipedia.org/wiki/Compiler
https://simple.wikipedia.org/wiki/Assembly_language
https://simple.wikipedia.org/w/index.php?title=Assumption&action=edit&redlink=1
https://simple.wikipedia.org/wiki/Technique

Page 27

HAZARD

 Any condition that causes the pipeline to stall is called a hazard.

There are three type of hazard

I. Data Hazards

II. Control/instruction hazards

III. Structural Hazard

 The operation specified in instruction I2 requires three cycles to complete, from cycle 4 through

cycle 6. Thus, in cycles 5 and 6, the Write stage must be told to do nothing, because it has no

data to work with. Meanwhile, the information in buffer B2 must remain intact until the Execute

stage has completed its operation.

 This means that stage 2 and, in turn, stage1 are blocked from accepting new instructions because

the information in B1 cannot be overwritten.

 Thus, steps D4 and F5 must be postponed as shown below. Pipelined operation is said to have

been stalled for two clock cycles. Normal pipelined operation resumes in cycle 7.

Pipeline stall caused by a cache miss in F2

Handling Data hazard

 Operand forwarding

 Handling data hazards by introducing NOP (software method)

9. Briefly explain about how to handle the Data hazard.(Nov/Dec2012, 2014)(Apr/May2015) Or

What is a data hazard? How do you overcome it? Discuss its side effects.(Apr/May 2014) Or

Describe operand forwarding in a pipeline processor with a diagram. (6) Apr/ May 2017 Nov/Dec

2020.

Page 28

 When stalls are required

DATA HAZARD

 When either the source or the destination operands of an instruction are not available at the time

expected in the pipeline and as a result pipeline is stalled, we say such a situation is a data

hazard.

 Consider a program with two instructions I1 followed by I2; when this program is executed in a

pipeline; the execution of these two instructions can be performed concurrently. Such case, the

result of I1 may not be available for the execution of I2. If the result of I2 is dependent on the

result of I1, we may get incorrect result if both are executed concurrently. For example; assume

A=8 in the following two operations.

I1:A<- A + 6

I2:B<- A X 2

 When these two operations are performed in the order given, the result is B=28. But if they are

performed concurrently, the value of A used in computing B would be the original value 8; leads

to an incorrect result. In the case data used in the I2 depend on the result of I1. The hazard due to

such situation is called data hazard or data dependent hazard.

 To avoid incorrect result we have to execute dependent instruction one after the other.

 The data dependency arises when the destination of one instruction is used as a source in the nest

instruction. For example the two instruction

Mul R2, R3, R4

Add R5, R4, R6

 The contents of register R2 are multiplied by the contents of R3 and the result is stored in R4,

which in turn is one of the two source operands of the Add instruction. Assume that the multiply

operation takes one clock cycle to complete; execution would proceed as shown in figure below.

Clock cycles time

1 2 3 4 5 6 7 8 9

I1(Mul)

I2(Add)

I3

I4

Pipeline stalled by data dependency between D2 and w1

 In the above figure the decode unit decodes the Add instruction in cycle 3, it realizes that R4 is

used as a source operand.

 Hence, the D step of that instruction cannot be completed until the step W of multiply

instruction has been completed.

F2

F1 D1 E1 W1

F2 D2 D2 E2 W2

D3 E3 W3

F4 D4 E4 W4

Page 29

 Step D2 must be delayed to clock cycle 5, and is shown as step D2A in the figure. Instruction I3 is

fetched in cycle 3, but its decoding must be delayed because step D3 cannot precede D2.

 Hence, pipelined execution is stalled for two cycles.

Operand Forwarding:

 Consider instruction A and B as illustrated in the figure, B tries to read a register before A has

written if and gets the old value.

TIME

Writes
Reads

 This is quite common and called read after write data hazard. This situation is solved with a

simple hardware technique called operand forwarding.

Example:

Add $ s0, $ t0, $ t1
Sub $ t2, $ s0, $ t3 (A) Forwarding Datapath

Operand forwarding in a pipeline processor

Figure shows a part of the processor data path involving the ALU and the register file. This arrangement

is similar to the three bus structure except that registers SRC1, SRC2 and RSLT have been added.

Instruction A Instruction B

Page 30

 These registers constitute inter stage buffers needed for pipelined operation. The two

multiplexers connected at the inputs to the ALU allow the data on the destination bus to be

selected instead of the contents of either the SRC1 or SRC2 register.

 After decoding instruction I2 and detecting the data depending, a decision is made to use data

forwarding. Register R2 is read and loaded in register. SRC1 in clock cycle 3.

 In the next cycle, the product produced by instruction I, is available in register RSLT and

because of the forwarding connection it can be used in steep E2. Hence execution of I2 proceeds

without interruption.

Handling Data Hazard in Software:

 Another way to avoid data dependencies is to use software.

 In the software approach compiler can introduce two cycle delay needed between instruction I4

and I2 in figure by NOP(no operation) instruction as follows:

I1: Mul

NOP

NOP

R2,R3,R4

I2: Add R5,R4,R6

 In the responsibility for detecting such dependencies is left entirely to the software the compiler

must insert NOP instruction to obtain a correct result. This possibility illustrates the close link

between the compiler and the hardware.

Side Effects:

 When a location other one explicitly named in an instruction as a destination operand is

affected, the instruction is said to have a side effect.

 An instruction that uses an auto increment or auto decrement addressing mode is an example.

 In addition to storing a new data in its destination location, the instruction changes the contents

of a source register used to access one of its operands.

 For example, a stack instructions, such as push and pop, produce similar side effects because

they implicitly use the auto increment and auto decrement addressing modes

 Another possible side effect involves the condition code flags, which are used by

instructions such as conditional branches and add with carry.

Add R1,R3

Add with carry R2,R4.

 An implicit dependency exists between these two instructions through the carry flag.

This flag is set by the first instruction and used in the second instruction, which performs

the operation.

R4<-[R2] + [R4] + carry.

Page 31

10. Explain How to handle Instruction Hazards or control hazards.

(Nov/Dec2014)(Apr/May2015)Or Describe the techniques for handling control hazards in

pipelining. (May/June2013) Or Explain the hazards caused by unconditional branching

statements. (7 Marks) Apr / May 2017

 Instructions that have side effects give rise to multiple data dependencies, which lead to

a substantial increase in the complexity of the hardware or software needed to resolve

them. For this reason, instructions designed for execution on pipelined hardware should

have few side effects.

 Ideally, only the content of the destination location, either a register or a memory

location, should be affected by any given instruction. Side effects, such as setting the

condition code flags or updating the contents of an address pointer, should be kept to a

minimum.

Over View:

 Unconditional Branch

 Conditional Branch

 Branch Prediction

 This type of hazard arises from pipeline of branch and other instructions that change the contents

of PC. (i.e) Trying to make a decision based on the results of instruction while others are

executing.

Unconditional Branch:

The belowfigure shows a sequence of instructions being executed in a two-stage pipeline instruction I1

to I3 are stored at consecutive memory address and instruction I2 is a branch instruction.

An idle cycle caused by a branch instruction

 If branch is taken as shown in figure, then the PC value is not known till the end of I2. Next three

instructions are fetched even though they are not required. Hence they have to be flushed after

branch is taken and new set of instructions have to be fetched from the branch address.

Page 32

 In figure, clock cycle 3, the fetch operation for instruction I3 is in progress at the same

time the branch instruction is being decoded. In clock cycle 4, the processor must discard

I3,which has been incorrectly fetched, and fetch instruction Ik. Thus the pipeline is stalled

for one clock cycle.

 The time lost as a result of branch instruction is often referred to as the branchpenalty.

 The branch penalties can be reduced by proper scheduling through compiler technique.

The basic idea behind these techniques is to fill the 'delay slot' with some useful

instruction which in most cases will be executed.

 For longer pipeline, the branch penalty may be higher. Reducing the branch penalty

requires the branch address to be computed earlier in the pipeline.

 The instruction fetch unit has dedicated hardware to identify a branch instruction and

compute branch target address as quickly as possible after an instruction is fetched.

 With these additional hardware both these tasks can be performed in step D2, leading to

the sequence of events shown in figure. In this case the branch penalty is only one clock

cycle.

Branch address computed in execute stage

Branch address computed in decode stage

Page 33

Instruction Queue and Pre fetching:

 The Fetch unit may contain instruction queue to store the instruction before they are needed to

avoid interruption.

 Another unit called dispatch unit takes instruction from the front of the queue and sends them to

the section unit. The dispatch unit also performs the decoding function.

Hardware organization of instruction queue

Branch timing in the presence of an instruction queue. Branch target address in computed D stage

 The fetch unit must have sufficient decoding and processing capability to recognize and execute

branch instruction.

 The fetch unit always keeps the instruction queue filled at all times.

 Fetch unit continues to fetch instructions and add them to the queue.

 Similarly if there is a delay in fetching instructions, the dispatch unit continues to issue

instruction from the instruction queue.

 Every fetch operation adds one instruction to the queue and each dispatch operation reduces

queue length by one. Hence queue length remains same for first four clock cycle.

Page 34

 Instruction I5 is a branch instruction Its target instruction, Ik , is fetched in cycle 7, and

instruction I6 is discarded. The branch instruction would normally cause a stall in cycle 7 as a

result of discarding instruction I6. Instead, instruction I4 is dispatched from queue to the

decoding stage. After discarding I6, the queue length drops to 1 in cycle 8. The queue length will

be at this value until another stall is encountered.

 The sequence of instruction completions instruction I1,I2,I3,I4 and Ik complete execution in

successive clock cycle. Hence the branch instruction does not increase the overall execution

time.

 This is because the instruction fetch unit has executed branch instruction concurrently with the

execution of other instruction. This technique is referred to as branch folding.

 Branch folding occurs only if at the time a branch instruction encountered, at least one

instruction is available in the queue other than the branch instruction.

Conditional Branches:

 The conditional branching is a major factor that affects the performance of instruction pipelining.

When a conditional branch is executed if may or may not change the PC.

 If a branch changes the PC to its target address, it is a taken branch, if it falls through, it is not

taken. The decision to branch cannot be taken until the execution of that instruction has been

completed.

Delayed Branch:

 The location following the branch instruction is called branch delay slot. There may be more

than one branch delay slot depending on the time it takes to execute the branch instruction.

 The instruction in the delay slot is always fetched at least partially executed before the branch

decision is made and the branch target address is completed.

 A technique called delayed branching can minimize the penalty caused by conditional branch

instruction.

 The instruction in the delay slot is always fetched. Therefore, arrange the instructions which are

fully executed, whether or not the branch is taken. Place the useful instructions in the delay

slot.If no useful instructions available; fill the slot with NOP instructions.

EXAMPLE:

LOOP shift-Left R1

 Decrement R2

NEXT
Branch = 0

Add

LOOP
R1, R2

(a). Original program loop

LOOP Decrement R2

11. Explain about Conditional Branches: (Apr/May2014)

Page 35

Branch = 0 LOOP
shift-Left R1

NEXT Add R1, R2

(b). Reordering instructions

Reordering of instructions for a delayed branch

 Register R2 is used as counter to determine the number of times contents of R1 are shifted left.

For a processor with one delay slot, the instructions can be recorded a above. For a processor

with one delay slot, the instructions can be reordered as shown in above figure(b).

 The shift instruction is fetched while branch instruction is being executed.

 After evaluating the branch condition, the processor fetches the instruction at LOOP or at NEXT,

depending on whether the branch condition is true or false respectively. In either case, it

completes the execution of the shift instructions.

The sequence of events during the last two passes in the loop is illustrated in figure.

Execution timing showing the delay slot being filled during two passes through the loop

 Pipelined operation is not interrupted at any time, and there are no idle cycles. Branching takes

place one instruction later than where branch instruction appears in the sequence, hence named

"delayed branch".

Branch prediction:

Over view:

 Speculative execution

 Static prediction

 Dynamic Branch Prediction

Branch prediction

12. Explain about Branch prediction Algorithm. Nov / Dec 2016

Page 36

 Prediction techniques can be used to check whether a branch will be valid or not valid. The

simplest form of branch prediction is to assume that the branch will not take place and to

continue to fetch instructions in sequential address order. Until the branch condition is evaluated,

instruction execution along the predicted path must be done on a speculative basis.

Speculative execution means that instructions are executed before the processor is certain that they are

in the correct execution sequence.

The below figure illustrate the incorrectly predicted branch.

 Figure shows a compare instruction followed by Branch > 0 instruction. In cycle 3 the branch

prediction takes; the fetch unit predicts that branch will not be taken and it continues to fetch

instruction I4 as I3 enters the Decode Stage.

 The result of compare operation is available at the ends of cycle 3. The branch condition is

evaluated in cycle 4. At this point, the instruction fetch unit realizes that the prediction was

incorrect and the two instructions in the execution pipe are purged.

 A new instruction Ik is fetched from the branch target address in clock cycle 5. We will examine

prediction schemes static and dynamic prediction.

Timing when branch decision has been incorrectly predicted as not taken

Static prediction

 Static prediction is usually carried out by the compiler and it is static because the prediction is

already known even before the program is executed.

Dynamic Branch Prediction: (May/June2013)

 Dynamic prediction in which the prediction may change depending on execution history.

Algorithm:

 If the branch taken recently, the next time if the same branch is executed, it is likely that the

branch is take.

State 1:LT: Branch is likely to be take.

State 2:LNT:Branch is likely not to be take.

The algorithm is stated in state LNT when the branch is executed.

 If the branch is taken, the machine moves to LT. Otherwise it remains in state LNT.

Page 37

 The branch is predicted as taken if the corresponding state machine is in state LT, otherwise it is

predicted as not take.

 The branch is predicted as taken if the corresponding state machine is in state LT, otherwise it is

predicted as not take.

A 2-State machine representation of branch-prediction

A 4-State machine representation of branch-prediction

Algorithm:

 An algorithm that uses 4 states, thus requiring two bits of history information for each branch

instruction is shown in figure. The four states are:

ST : Strongly likely to be taken

LT : Likely to be taken.

LNT : Likely not to be taken

SNT : Strongly likely not to be taken.

STEP 1: Assume that the state of algorithm is initially set to LNT.

STEP 2: If the branch is actually taken change to ST, otherwise it is changed to SNT

STEP 3: When a branch instruction is encountered, the branch will be taken if the state is either LT or

ST and it begins to fetch instructions at the branch target address. Otherwise, it continues to fetch

instructions in sequential address order.

 When in state SNR, the instruction fetch unit predicts that the branch will not be taken.

 If the branch is actually taken, that is if the prediction is incorrect, the state changes to LNT.

The state information used in dynamic branch prediction algorithm requires 2 bits for 4 states and may

be kept by the processes in a variety of ways,

 Use look-up table, which is accessed using low-order part of the branch of instruction address.

 Store as tag bits associated with branch instruction in the instruction cache.

Page 38

PART-A

1. What is MIPS and write its instruction set?

MIPS is a reduced instruction set computer (RISC) instruction set architecture (ISA) developed

by MIPS Technologies (formerly MIPS Computer Systems). The early MIPS architectures were 32-

bit, with 64-bit versions added later.

MIPS instruction set:(Micro Instruction per Second)

 The memory-reference instructions load word (lw) and store word (sw)

 The arithmetic-logical instructions add, sub, AND, OR, and slt

 The instructions-branchequal (beq) and jump (j), which we add last.

2. What are R-type instructions? (Apr/May 2015)Nov/Dec 2020

Here is the meaning of each name of the fields in MIPS instructions:

 op:Basic operation of the instruction, traditionally called the opcode.

 rs:The first register source operand.

 rt:The second register source operand.

 rd:The register destination operand. It gets the result of the operation.

 shamt:Shift amount.

 funct: Function. This field, often called the function code, selects the specific variant of the
operation in the op field.

3. Define Branch target address.

 The address specified in a branch, which becomes the new program counter (PC) if the branch is

taken. In the MIPS architecture the branch target is given by the sum of the offset field of the

instruction and the address of the instruction following the branch.

4. Define the terms Data path element, CPU Data path and Data path cycle? Nov / Dec 2016, Apr.

/ May 2018 Nov/Dec 2020.

 A unit used to operate on or hold data within a processor. In the MIPS implementation, the data

path elements include the instruction and data memories, the register file, the ALU and adders.

 The path that data follows within the CPU, along buses from registers to ALU and back is called

the CPU Datapath.

 Everything a computer does, whether playing an MPEG file, or a video game, is, in the end,

essentially a sequence of very primitive operations whereby data is moved from registers to the

ALU, operations are performed on that data, and then the result is returned to the registers. A

single round of Registers -> ALU -> Registers is called a CPU Datapath Cycle.

Page 39

5. When will the instruction have die effect?

 Sometime an instruction changes the contents of a register other than the destination. An

instruction that uses an auto increment or auto decrement addressing mode is an example.

 Add with Carry R2, R4

 This instruction will take the carry value present in the condition code register. So it refers the

register which is not represented in the instruction

6. Define branch penalty.

 The time lost as a result of a branch instruction is often referred to as the branch penalty. This

will cause the pipeline to stall. So we can reduce branch penalty by calculating the branch

address in early stage.

7. What is the use of instruction queue in pipeline?

 Many processors can fetch the instruction before they are needed and put them in queue is called

instruction queue. This instruction queue can store several instructions.

8. Define dispatch unit.

 It is mainly used in pipeline concept. It takes the instruction from the front of the instruction

queue and sends them to the execute unit for execution.

9. What is meant by branch folding and what is the condition to implement it?

 The instruction fetch unit has executed the branch instruction concurrently with in the execution

of other instructions is called branch folding.

 This occurs only if at the time of branch is encountered at least one instruction is available in the

queue than the branch instruction.

10. What is meant by delay branch slot?

 A location following branch instruction is called as branch delay slot. There may be more than

one branch delay slot, depending on the execution time.

 The instruction in the delay slot is always fetched and at least partially executes before the

branch decision is made.

11. Define delayed branching.

 It is a technique by using it we can handle the delay branch slot instructions. We can place some

useful instruction in the branch delay slot and execute these instruction s when the processor is

executing the branch instruction.

 If there is no useful instruction in the program we can simply place NOP instruction in delay

slot. This technique will minimize the branch penalty.

12. Define branch prediction.Nov / Dec 2015

It is a technique used for reducing branch penalty associated with the condition branches. Assume that

the branch will not take place and to continue the fetch instructions in sequential address order until the

branch condition is evaluated.

Page 40

13. What are the two types of branch prediction technique available? (May/June 2009)

The two types of branch prediction techniques are

 Static branch prediction

 Dynamic branch prediction

14. Define static and dynamic branch prediction.

 The branch prediction decision is always the same for every time a given instruction is

executed.This is known as static branch prediction.

 Another approach in which the prediction may change depending on execution history is called

dynamic branch prediction.

15. List the two states in the dynamic branch prediction.

 LT : Branch is likely to be taken.

 LNT : Branch is likely not to be taken.

16. List out the four stages in the branch prediction algorithm.

 ST :Strongly likely to be taken

 LT :Likely to be taken

 LNT :Likely not to be taken

 SNT :Strongly not to be taken

17. Define Register renaming. (Nov/Dec 2009)

 When temporary register holds the contents of the permanent register, the name of permanent

register is given to that temporary register is called as register renaming.

 For example, if I2 uses R4 as a destination register, then the temporary register used in step

TW2 is also referred as R4 during cycles 6 and 7 that temporary register used only for

instructions that follow I2 in program order.

 For example, if I1 needs to read R4 in cycle 6 or 7, it has to access R4 though it contains

unmodified data be I2.

18. What is pipelining and what are the advantages of pipelining? (Apr/May 2010) Nov / Dec 2013

 Pipelining is process of handling the instruction concurrently.

 The pipelining processor executes a program by one after another.

Advantages: May / June 2016

 Pipelining improves the overall throughput of an instruction set processor.

 It is applied to design of complex data path units such as multiplexers and floating points

adders.

19. Draw the hardware organization of two-stage pipeline.

Inter stage buffer

Instruction Fetch
Unit Execution Unit

Page 41

20. Name the four stages of pipelining. (Or)What are the steps in pipelining processor?Nov/Dec

2020.

Fetch : Read the instruction from the memory.

Decode : Decode the instruction and fetch the source operands.

Execute : Perform the operation specified by the instruction

Write : Store the result in the destination location.

21. Write short notes on instruction pipelining.

 The various cycles involved in the instruction cycle.

 These fetch, decode and execute cycles for several instructions are performed simultaneously to

reduce overall processing time.

 This process is referred as instruction pipelining.

22. What is the role of cache in pipelining? (Or) What is the need to use the cache memory in

pipelining concept?(Nov/Dec 2011)

 Each stage in a pipeline is expected to complete its operation in one clock cycle. But the

accessing time of the main memory is high.

 So it will take more than one clock cycle to complete its operation. So we are using cache

memory for pipelining concept.

 The accessing speed of the cache memory is very high.

23. What is meant by bubbles in pipeline? Or what is meant by pipeline bubble? Nov / Dec 2016

 Any condition that causes the pipeline to be idle is known as pipeline stall. This is also known as

bubble in the pipeline. Once the bubble is created as a result of a delay, a bubble moves down

stream until it reaches the last unit.

24. What are the major characteristics of pipeline?

 Pipelining cannot be implemented on a single task, as it works of splitting multiple tasks into a

number of subtasks and operating on them simultaneously.

 The speedup or efficiency is achieved by using a pipeline depends on the number of pipe stages

and the number of available tasks that can be subdivided.

25. Give the features of the addressing mode suitable for pipelining. (Apr/May 2014)

 They access operand from memory in only one cycle.

 Only load and store instruction are provided to access memory.

 The addressing modes used do not have side effects.(When a location other than one explicitly

named in an instruction as the destination operand is a affected, the instruction is said to have a

side effect).

 Three basic addressing modes used do not have these features are register, register indirect and

index. The first two require bus address computation. In the index mode, the address can be

computed in one cycle, whether the index value is given in the instruction or in registration.

Page 42

26. What are the disadvantages of increasing the number of stages in pipelined

processing?(Apr/May 2011) (Or) What would be the effect,if we increase the number of pipelining

stages? (Nov/Dec 2011)

Speedup:

Speedup is defined by

S(m)=T(1)/T (m)

 Where T (m) is the execution time for some target workload on an m-stage pipeline and T(1) is

the execution time for same target workload on a non-pipelined Processor.

27. What is the ideal CPI of a pipelined processor?

The ideal CPI on a pipelined processor is almost always 1. Hence, we can compute the pipelined

CPI:

CPI pipelined = Ideal CPI + Pipeline stall clock cycles per instruction = 1 + Pipeline stall clock

cycles per instruction

28. How can memory access be made faster in a pipelined operation? Which hazards can be

reduced by faster memory access? (Apr/May 2010)

The goal in controlling a pipelined CPU is maximize its performance with respect to the target

workloads.

Performance measures:

The various performance measures of pipelining are,

 Throughput

 CPI

 Speedup

 Dependencies

 Hazards

The following Hazards can be reduced by faster memory access:

 Structural hazards

 Data or Data dependent hazards

 Instruction or control hazards

29. Write down the expression for speedup factor in a pipelined architecture. May 2013

 The speedup for pipeline computer is

S=(K+n-1)tp

Where,

k-number of segments in a pipeline.

n-number of instruction to be executed.

tp- cycle time.

Page 43

30. Define Hazard and State different types of hazards that occur in pipeline.Nov / Dec 2015, Apr /

May 2017, May 2019 Nov/Dec 2020.

In the domain of central processing unit (CPU) design, hazards are problems with the instruction

pipeline in CPU microarchitectures when the next instruction cannot execute in the following clock

cycle, and can potentially lead to incorrect computation results.

The various pipeline hazards are:

 Structural hazards

 Data or Data dependent hazards

 Instruction or control hazards

31. What is structural hazard?(Nov/Dec 2008) (Apr /May 2014)

 When two instructions require the use of a given hardware resource at the same time this hazard

will occur. The most common case of this hazard is memory access.

32. What is data hazard in pipelining? (Nov/Dec 2007, 2008)

 A data hazard is any condition in which either the source or the destination operands of an

instruction are not available at the time expected in pipeline. As a result some operation has be

delayed and the pipeline stalls.

 Arise when an instruction depends on the results of a previous instruction in a way that is

exposed by overlapping of instruction in pipeline

33. What are instruction hazards (or) control hazards?

 They arise while pipelining branch and other instructions that change the contents of program

counter.

 The simplest way to handle these hazards is to stall the pipeline stalling of the pipeline allows

few instructions to proceed on completion while stopping the execution of those which results

in hazards.

34. How can we eliminate the delay in data hazard?

 In pipelining the data can be executed after the completion of the fetch operation. The data are

available at the output of the ALU once the execute stage completes.

 Hence the delay can be reduced if we arrange for the result of fetch instruction to be forwarded

directly for use in next step. This is known as operand forwarding.

35. How can we eliminate data hazard using software?

 The data dependencies can be handled with the software. The compiler can be used for this

purpose. The compiler can introduce the two cycle delays needed between instruction I1 and I2

by inserting NOP (no operation)

I1: MUL R2, R3, R4

NOP

NOP

I2: ADD R5, R4, R6

36. List the techniques used for overcoming hazard.

 Data forwarding

 Adding sufficient hardware

 Stalling instructions

 Document to find instruction in wrong order.

Page 44

37. What are the techniques used to present control hazard?

 Scheduling instruction in delay slots

 Loop unrolling

 Conditional execution

 Speculation (by both compiler and CPU).

38. List the types of data hazards.

i. RAW (Read After Write)

ii. WAW (Write After Write)

iii. WAR (Write After Read)

iv. RAR (Read After Read)

39. Define stall.

Idle periods are called stalls. They are also often referred to as bubbles in the pipeline.

40. Give 2 examples for instruction hazard.

 Cache miss

 Hazard in pipeline.

41. A =5 A<-3+A A<-4+A What hazard does the above two instructions create when

executed concurrently? (Apr/May 2011)

If these operations are performed in the order given, the result is 32. But, if they were performed

concurrently, the value is 5. So output is wrong.

42. What is meant by speculative execution? (Apr/May 2012) Or what is the need for speculation?

(Nov/Dec 2014), May 2019

 A technique allows a superscalar processor to keep its functional units as busy as possible by

executing instructions before it is known that they will be needed.

 The Intel P6 uses speculative execution.

43. What is meant by hazard in pipelining? Define data and control hazards. (May/June 2013)

(Apr/May 2012)

 The idle periods in any of the pipeline stage due to the various dependency relationships among

instructions are said to be stalls.

 A data hazard is any condition in which either the source or the destination operands of an

instruction are not available at the time expected in pipeline.

 As a result some operation has be delayed and the pipeline stalls arise when an instruction

depends on the results of a previous instruction in a way that is exposed by overlapping of

instruction in pipeline.

Types

1. RAW 2. WAW 3. WAR

 Control hazards arise while pipelining branch and other instructions that change the contents of

program counter. The simplest way to handle these hazards is to stall the pipeline

stalling of the pipeline allows few instructions to proceed to completion while stopping

the execution of those which results in hazards

44. Why is branch prediction algorithm needed? Distinguish between static and dynamic branch

prediction. (May/June 2009) Or Differentiate between the static and dynamic techniques.

(May/June 2013)

Branch Prediction has become essential to getting good performance from scalar instruction streams.

– Underlying algorithm has regularities.

Page 45

– Data that is being operated on has regularities.

– Instruction sequence has redundancies that are artifacts of way that humans/compilers

think about problems.

S.NO. STATIC BRANCH PREDICTION DYNAMIC BRANCH PREDICTION

1. Branch can be predicted based on branch

codes type statistically.

It used recent branch history during program

execution,information is stored in buffer

called branch target buffer(BTB).

2. It may not produce accurate result every time. Processing of conditional branches with

zero delay.

45. What is Branch Target Buffer?

Branch Target Buffer (BTB): A hardware mechanism that aims at reducing the stall cycles resulting

from correctly predicted taken branches to zero cycles.

46. Define program counter (PC).

 The register containing the address of the instruction in the program being executed.

47. What are Sign-extend?

 To increase the size of a data item by replicating the high-order sign bit of the original data item

in the high order bits of the larger, destination data item.

48. Define Register file.

 A state element that consists of a set of registers that can be read and written by supplying a

register number to be accessed.

49. What is a Don’t-care term?

 An element of a logical function in which then output does not depend on the values of all the

inputs.

50. Define Forwarding.

A method of resolving a data hazard by retrieving the missing data element from internal buffers rather

than waiting for it to arrive from programmer visible registers or memory.Also called bypassing.

51. What is a branch prediction buffer? (Apr/May 2015)

A small memory that is indexed by the lower portion of the address of the branch instruction and that

contains one or more bits indicating whether the branch was recently taken or not. It is also called

branch history table.

52. What is an Exception? Nov / Dec 2014, May / June 2016, Apr. / May 2018, Nov. / Dec. 2018

Exceptions and interrupts are unexpected events that disrupt the normal flow of instruction execution.

An exception is an unexpected event from within the processor. An interrupt is an unexpected event

from outside the processor. We have to implement exception and interrupt handling in our multi cycle

CPU design.

53. Give one example for MIPS exception. Apr. / May 2018, Nov. / Dec. 2018

Exceptions in MIPS

Page 46

stage Problem exceptions occurring

IF Page fault on IF, misaligned memory access,
memory protection violation

ID Undefined or illegal opcode

EX Arithmetic exception

MEM Page fault on data fetch, misaligned memory

access, memory protection violation

WB None

54. What is precise and imprecise exception? (Apr/May 2009)(Nov/Dec 2019)

 A precise exception is one in which all instruction prior to the faulting instruction are complete

and instruction following the instruction, including the faulting instruction do not change the

state of the machine. (Or)

 If the execution occurs during an instruction, all subsequent instructions that may have been

executed are discarded. This is called precise exception.

 If one instruction causes an exception and succeeding instructions are permitted to complete

execution, then the processor is said to have imprecise exception.

55. Define edge triggered clocking. May 2019(Nov/Dec 2019)

A falling edge is the high to low transition. It is also known as the negative edge. When a circuit is

falling edge-triggered, it becomes active when the clock signal goes from high to low, and ignores the

low-to-high transition. A leading edge is an event that is triggered on the front edge of a pulse.

56. What is Instruction Level Parallelism? (Dec 2012, Dec 2013, May 2015, May 2016)

 The technique which is used to overlap the execution of instructions and improve performance is

called ILP.

57. What are the approaches to exploit ILP? (Dec 2012, Dec 2015)

The two separable approaches to exploit ILP are,

 Dynamic or Hardware Intensive Approach

 Static or Compiler Intensive Approach.

58. What is Loop Level Parallelism?

 Loop level parallelism is a way to increase the amount of parallelism available among

instructions is to exploit parallelism among iterations of loop.

59. Give the methods to enhance performance of ILP.

To obtain substantial performance enhancements, the ILP across multiple basic blocks are exploited

using

Page 47

 Loop Level Parallelism

 Vector Instructions

60. Define Dynamic Scheduling. (May 2013) (Or) Explain the idea behind dynamic scheduling.

(Nov/Dec 2016)

 Dynamic scheduling is a technique in which the hardware rearranges the instruction execution to

reduce the stalls while maintaining data flow and exception behavior.

61. List the drawbacks of Dynamic Scheduling.

 The complexity of the tomasulo scheme.

 Each reservation station must contain an associative buffer.

 The performance can be limited by the single CDB.

62. List the advantages of Dynamic Scheduling. (May 2012)

 It handles dependences that are unknown at compile time.

 It simplifies the compiler.

 It allows code compiled for one pipeline to run efficiently on a different pipeline

 Uses speculation techniques to improve the performance.

63. Differentiate Static and Dynamic Scheduling.

Static Scheduling Dynamic Scheduling

 The data hazard that prevents a new instruction

issue in the next cycle was resolved using a

technique called data forwarding

 And also by compiler scheduling that separated

the dependent instruction this is called as static

scheduling.

 The CPU rearranges the instructions to reduce

stalls while preserving dependences.

 It uses hardware based mechanism to rearrange

instruction execution order to reduce stalls at

runtime.

 It enables handling cases where dependences

are unknown at compile time.

64. Define Dynamic Scheduling using Tomasulo's algorithm.

 Tomasulo's algorithm is a computer architecture hardware algorithm for dynamic

scheduling of instructions that allows out-of-order execution and enables more efficient use of

multiple execution units.

65. What is Branch Prediction?

 In computer architecture, a branch predictor is a digital circuit that tries to guess which way

a branch (e.g. an if–then–else structure) will go before this is known definitively.

 The purpose of the branch predictor is to improve the flow in the instruction pipeline.

66. What are the types of branch prediction?

There are two types of branch prediction. They are,

 Dynamic Branch Prediction & Static Branch Prediction

67. What is meant by dynamic branch prediction? [May 2019]

 Branch prediction is used to overcome the fetch limitation imposed by control hazards in order

to expose instruction-level parallelism (ILP).

Page 48

 It is the key ingredient to pipelined and superscalar architectures that mask instruction execution

latencies by exploiting (ILP).

68. What is Branch Prediction Buffer? (May 2014)

 Branch prediction buffer is a small memory indexed by the lower portion of the address of the

branch instruction.

 The memory contains a bit that says whether the branch was recently taken or not.

69. What are the things present in Dynamic Branch Prediction?

It uses two things they are,

 Branch Prediction Buffer &Branch History Table

70. Define Correlating Branch Prediction.

 Branch prediction that uses the behavior of other branches to make a prediction is called

correlating branch prediction.

71. List the five levels of branch prediction. (May 2013)

 Perfect

 Tournament Based Branch Predictor

 Standard Two Bit Branch Predictor with 512 - 2 Bit Entries

 Profile Based

 None

72. What is Reservation Station?

 In Tomasulo’s scheme, register renaming is provided by reservation station.

 The basic idea is that the reservation station fetches and buffers an operand as soon as it is

available, eliminating the need to get the operand from a register.

73. What is ROB?

 ROB stands for Reorder Buffer.

 It supplies operands in the interval between completion of instruction execution and instruction

commit. ROB is similar to the store buffer in Tomasulo’s algorithm.

74. What are the four fields involved in ROB?

ROB contains four fields,

 Instruction Type

 Destination Field

 Value Field

 Ready Field

75. What is Imprecise Exception?

 An exception is imprecise if the processor state when an exception is raised does not look

exactly as if the instructions were executed sequentially in strict program order.

76. What are the two possibilities of imprecise exceptions?

 If the pipeline has already completed instructions that are later in program order then that

instruction will cause exception.

Page 49

 If the pipeline has not yet completed instructions that are earlier in program order then that

instructions will cause exception.

77. What is Register Renaming?

 Renaming of register operand is called register renaming.

 It can be either done statically by the compiler or dynamically by the hardware.

78. Difference between Static and Dynamic Branch Prediction? (May 2011)

Static Branch Prediction Dynamic Branch Prediction

 Static branch prediction is usually

carried out by the complier.

 It is static because the prediction is

already known even before the

program is executed.

 It uses the run time behavior of branch to make

more accurate prediction.

 Information about the outcome of previous

occurrences of a given branch is used to predict

the current occurrences.

79. In a datapath diagram, what is the size of ALUop Control signal. Nov/Dec 2021

80. How PCSrc Signal generated in a datapath diagram? Nov/Dec 2021

Page | 1

MEMORY CONCEPTS AND HIERARCHY

1. Explain about the memory concepts and hierarchy.

What is Memory?

Computer memory is just like the human brain. It is used to store data/information and instructions. It is a

data storage unit or a data storage device where data is to be processed and instructions required for

processing are stored. It can store both the input and output can be stored here.

Characteristics of Main Memory:

 It is faster computer memory as compare to secondary memory.

 It is semiconductor memories.

 It is usually a volatile memory.

 It is the main memory of the computer.

 A computer system cannot run without primary memory.

Memory Hierarchy

In the Computer System Design, Memory Hierarchy is an enhancement to organize the memory such that

it can minimize the access time. The Memory Hierarchy was developed based on a program behavior

known as locality of references. The figure below clearly demonstrates the different levels of memory

hierarchy :

UNIT V MEMORY AND I/O

Memory Concepts and Hierarchy – Memory Management – Cache Memories: Mapping and Replacement

Techniques – Virtual Memory – DMA – I/O – Accessing I/O: Parallel and Serial Interface – Interrupt I/O –

Interconnection Standards: USB, SATA

Page | 2

This Memory Hierarchy Design is divided into 2 main types:

1. External Memory or Secondary Memory – Comprising of Magnetic Disk, Optical Disk, Magnetic

Tape i.e. peripheral storage devices which are accessible by the processor via I/O Module.

2. Internal Memory or Primary Memory – Comprising of Main Memory, Cache Memory & CPU

registers. This is directly accessible by the processor.

We can infer the following characteristics of Memory Hierarchy Design from above figure:

1. Capacity:

It is the global volume of information the mehmory can store. As we move from top to bottom in the

Hierarchy, the capacity increases.

2. Access Time: It is the time interval between the read/write request and the availability of the data. As

we move from top to bottom in the Hierarchy, the access time increases.

3. Performance:

Earlier when the computer system was designed without Memory Hierarchy design, the speed gap

increases between the CPU registers and Main Memory due to large difference in access time. This

results in lower performance of the system and thus, enhancement was required. This enhancement

was made in the form of Memory Hierarchy Design because of which the performance of the system

increases. One of the most significant ways to increase system performance is minimizing how far

down the memory hierarchy one has to go to manipulate data.

4. Cost per bit: As we move from bottom to top in the Hierarchy, the cost per bit increases i.e. Internal

Memory is costlier than External Memory.

In general, memory is of three types:

 Primary memory

 Secondary memory

 Cache memory

Now we discuss each type of memory one by one in detail:

1. Primary Memory: It is also known as the main memory of the computer system. It is used to store data

and programs or instructions during computer operations. It uses semiconductor technology and hence is

commonly called semiconductor memory. Primary memory is of two types:

(i) RAM (Random Access Memory): It is a volatile memory. Volatile memory stores information based

on the power supply. If the power supply fails/ interrupted/stopped, all the data & information on this

memory will be lost. RAM is used for booting up or start the computer. It temporarily stores programs/

data which has to be executed by the processor. RAM is of two types:

 S RAM (Static RAM): It uses transistors and the circuits of this memory are capable of retaining their

state as long as the power is applied. This memory consists of the number of flip flops with each flip

flop storing 1 bit. It has less access time and hence, it is faster.

Page | 3

 D RAM (Dynamic RAM): It uses capacitors and transistors and stores the data as a charge on the

capacitors. They contain thousands of memory cells. It needs refreshing of charge on capacitor after a

few milliseconds. This memory is slower than S RAM.

(ii) ROM (Read Only Memory): It is a non-volatile memory. Non-volatile memory stores information

even when there is a power supply failed/ interrupted/stopped. ROM is used to store information that is

used to operate the system. As its name refers to read-only memory, we can only read the programs and

data that is stored on it. It contains some electronic fuses that can be programmed for a piece of specific

information. The information stored in the ROM in binary format. It is also known as permanent memory.

ROM is of four types:

 MROM (Masked ROM): Hard-wired devices with a pre-programmed collection of data or

instructions were the first ROMs. Masked ROMs are a type of low-cost ROM that works in this way.

 PROM (Programmable Read Only Memory): This read-only memory is modifiable once by the

user. The user purchases a blank PROM and uses a PROM program to put the required contents into

the PROM. Its content can‘t be erased once written.

 EPROM (Erasable Programmable Read Only Memory): It is an extension to PROM where you

can erase the content of ROM by exposing it to Ultraviolet rays for nearly 40 minutes.

 EEPROM (Electrically Erasable Programmable Read Only Memory): Here the written contents

can be erased electrically. You can delete and re-programme EEPROM up to 10,000 times. Erasing

and programming take very little time, i.e., nearly 4 -10 ms (milliseconds). Any area in an EEPROM

can be wiped and programmed selectively.

2. Secondary Memory: It is also known as auxiliary memory and backup memory. It is a non-volatile

memory and used to store a large amount of data or information. The data or information stored in

secondary memory is permanent, and it is slower than primary memory. A CPU cannot access secondary

memory directly. The data/information from the auxiliary memory is first transferred to the main memory,

and then the CPU can access it.

Characteristics of Secondary Memory:

 It is a slow memory but reusable.

 It is a reliable and non-volatile memory.

 It is cheaper than primary memory.

 The storage capacity of secondary memory is large.

 A computer system can run without secondary memory.

 In secondary memory, data is stored permanently even when the power is off.

Types of secondary memory:

(i) Magnetic Tapes: Magnetic tape is a long, narrow strip of plastic film with a thin, magnetic coating on

it that is used for magnetic recording. Bits are recorded on tape as magnetic patches called RECORDS that

run along many tracks. Typically, 7 or 9 bits are recorded concurrently. Each track has one read/write

Page | 4

head, which allows data to be recorded and read as a sequence of characters. It can be stopped, started

moving forward or backward, or rewound.

(ii) Magnetic Disks: A magnetic disc is a circular metal or a plastic plate and these plates are coated with

magnetic material. The disc is used on both sides. Bits are stored in magnetized surfaces in locations

called tracks that run in concentric rings. Sectors are typically used to break tracks into pieces.

Hard discs are discs that are permanently attached and cannot be removed by a single user.

(iii) Optical Disks: It‘s a laser-based storage medium that can be written to and read. It is reasonably

priced and has a long lifespan. The optical disc can be taken out of the computer by occasional users.

Types of Optical Disks :

(a) CD – ROM:

 It‘s called Compact Disk. Only read from memory.

 Information is written to the disc by using a controlled laser beam to burn pits on the disc surface.

 It has a highly reflecting surface, which is usually aluminum.

 The diameter of the disc is 5.25 inches.

 16000 tracks per inch is the track density.

 The capacity of a CD-ROM is 600 MB, with each sector storing 2048 bytes of data.

 The data transfer rate is about 4800KB/sec. & the new access time is around 80 milliseconds.

(b) WORM-(WRITE ONCE READ MANY):

 A user can only write data once.

 The information is written on the disc using a laser beam.

 It is possible to read the written data as many times as desired.

 They keep lasting records of information but access time is high.

 It is possible to rewrite updated or new data to another part of the disc.

 Data that has already been written cannot be changed.

 Usual size – 5.25 inch or 3.5 inch diameter.

 The usual capacity of 5.25 inch disk is 650 MB,5.2GB etc.

(c) DVDs:

Page | 5

 The term ―DVD‖ stands for ―Digital Versatile/Video Disc,‖ and there are two sorts of DVDs:

(i)DVDR (writable) and (ii) DVDRW (Re-Writable)

 DVD-ROMS (Digital Versatile Discs): These are read-only memory (ROM) discs that can be used in a

variety of ways. When compared to CD-ROMs, they can store a lot more data. It has a thick

polycarbonate plastic layer that serves as a foundation for the other layers. It‘s an optical memory that

can read and write data.

 DVD-R: It is a writable optical disc that can be used just once. It‘s a DVD that can be recorded. It‘s a

lot like WORM. DVD-ROMs have capacities ranging from 4.7 to 17 GB. The capacity of 3.5 inch

disk is 1.3 GB.

3. Cache Memory: It is a type of high-speed semiconductor memory that can help the CPU run faster.

Between the CPU and the main memory, it serves as a buffer. It is used to store the data and programs that

the CPU uses the most frequently.

Advantages of cache memory:

 It is faster than the main memory.

 When compared to the main memory, it takes less time to access it.

 It keeps the programs that can be run in a short amount of time.

 It stores data in temporary use.

Disadvantages of cache memory:

 Because of the semiconductors used, it is very expensive.

 The size of the cache (amount of data it can store) is usually small.

Memory unit:

 Memories are made up of registers.

 Each register in the memory is one storage location.

 The storage location is also called a memory location. Memory locations are identified using Address.

 The total number of bits a memory can store is its capacity.

 A storage element is called a Cell.

 Each register is made up of a storage element in which one bit of data is stored.

 The data in a memory are stored and retrieved by the process called writing and reading respectively.

Page | 6

 A word is a group of bits where a memory unit stores binary information.

 A word with a group of 8 bits is called a byte.

 A memory unit consists of data lines, address selection lines, and control lines that specify the

direction of transfer. The block diagram of a memory unit is shown below:

 Data lines provide the information to be stored in memory.

 The control inputs specify the direct transfer.

 The k-address lines specify the word chosen.

When there are k address lines, 2k memory words can be accessed.

Following are some important memory units:

 Bit (Binary Units): bit is a logical representation of the electric state. It can be 1 or 0.

 Nibble: it means the group of 4 bits.

 Byte: a byte is a group of 8 bits.

 Word: it is a fixed number of bits; it is different from computer to computer, but the same for each

device. Compute store information in the form of words.

Following are conversations of units:

 Kilobyte (kb): 1kb = 1024 byte

 Megabyte (mb): 1mb = 1024 kb

 Gigabyte (gb): 1gb = 1024 mb

 Terabyte (tb): 1tb = 1024 gb

 Petabyte (pb): 1pb = 1024 tb

MEMORY MANAGEMENT

2. What do you mean by memory management?

Memory is the important part of the computer that is used to store the data. Its management is critical to the

computer system because the amount of main memory available in a computer system is very limited. At

any time, many processes are competing for it. Moreover, to increase performance, several processes are

executed simultaneously. For this, we must keep several processes in the main memory, so it is even more

important to manage them effectively.

Page | 7

Following are the important roles in a computer system:

o Memory manager is used to keep track of the status of memory locations, whether it is free or

allocated. It addresses primary memory by providing abstractions so that software perceives a large

memory is allocated to it.

o Memory manager permits computers with a small amount of main memory to execute programs

larger than the size or amount of available memory. It does this by moving information back and

forth between primary memory and secondary memory by using the concept of swapping.

o The memory manager is responsible for protecting the memory allocated to each process from being

corrupted by another process. If this is not ensured, then the system may exhibit unpredictable

behavior.

o Memory managers should enable sharing of memory space between processes. Thus, two programs

can reside at the same memory location although at different times.

Memory management Techniques:

The Memory management Techniques can be classified into following main categories:

o Contiguous memory management schemes

o Non-Contiguous memory management schemes

Page | 8

Contiguous memory management schemes:

In a Contiguous memory management scheme, each program occupies a single contiguous block of storage

locations, i.e., a set of memory locations with consecutive addresses.

Single contiguous memory management schemes:

The Single contiguous memory management scheme is the simplest memory management scheme used in

the earliest generation of computer systems. In this scheme, the main memory is divided into two contiguous

areas or partitions. The operating systems reside permanently in one partition, generally at the lower

memory, and the user process is loaded into the other partition.

Advantages of Single contiguous memory management schemes:

o Simple to implement.

o Easy to manage and design.

o In a Single contiguous memory management scheme, once a process is loaded, it is given full

processor's time, and no other processor will interrupt it.

Disadvantages of Single contiguous memory management schemes:

o Wastage of memory space due to unused memory as the process is unlikely to use all the available

memory space.

o The CPU remains idle, waiting for the disk to load the binary image into the main memory.

o It can not be executed if the program is too large to fit the entire available main memory space.

o It does not support multiprogramming, i.e., it cannot handle multiple programs simultaneously.

Multiple Partitioning:

The single Contiguous memory management scheme is inefficient as it limits computers to execute only one

program at a time resulting in wastage in memory space and CPU time. The problem of inefficient CPU use

can be overcome using multiprogramming that allows more than one program to run concurrently. To switch

between two processes, the operating systems need to load both processes into the main memory. The

Page | 9

operating system needs to divide the available main memory into multiple parts to load multiple processes

into the main memory. Thus multiple processes can reside in the main memory simultaneously.

o Fixed Partitioning

o Dynamic Partitioning

Fixed Partitioning

The main memory is divided into several fixed-sized partitions in a fixed partition memory management

scheme or static partitioning. These partitions can be of the same size or different sizes. Each partition can

hold a single process. The number of partitions determines the degree of multiprogramming, i.e., the

maximum number of processes in memory. These partitions are made at the time of system generation and

remain fixed after that.

Advantages of Fixed Partitioning memory management schemes:

o Simple to implement.

o Easy to manage and design.

Disadvantages of Fixed Partitioning memory management schemes:

o This scheme suffers from internal fragmentation.

o The number of partitions is specified at the time of system

generation. Dynamic Partitioning

The dynamic partitioning was designed to overcome the problems of a fixed partitioning scheme. In a

dynamic partitioning scheme, each process occupies only as much memory as they require when loaded for

processing. Requested processes are allocated memory until the entire physical memory is exhausted or the

remaining space is insufficient to hold the requesting process. In this scheme the partitions used are of

variable size, and the number of partitions is not defined at the system generation time.

Advantages of Dynamic Partitioning memory management schemes:

o Simple to implement.

o Easy to manage and design.

Disadvantages of Dynamic Partitioning memory management schemes:

o This scheme also suffers from internal fragmentation.

o The number of partitions is specified at the time of system segmentation.

Non-Contiguous memory management schemes:

In a Non-Contiguous memory management scheme, the program is divided into different blocks and loaded

at different portions of the memory that need not necessarily be adjacent to one another. This scheme can be

classified depending upon the size of blocks and whether the blocks reside in the main memory or not.

Cache memory

Page | 10

Cache Memory is a special very high-speed memory. It is used to speed up and synchronizing with high-

speed CPU. Cache memory is costlier than main memory or disk memory but economical than CPU

registers. Cache memory is an extremely fast memory type that acts as a buffer between RAM and the

CPU. It holds frequently requested data and instructions so that they are immediately available to the CPU

when needed.

Cache memory is used to reduce the average time to access data from the Main memory. The cache is a

smaller and faster memory which stores copies of the data from frequently used main memory locations.

There are various different independent caches in a CPU, which store instructions and data.

Levels of memory:

 Level 1 or Register –

It is a type of memory in which data is stored and accepted that are immediately stored in CPU. Most

commonly used register is accumulator, Program counter, address register etc.

 Level 2 or Cache memory –

It is the fastest memory which has faster access time where data is temporarily stored for faster access.

 Level 3 or Main Memory –

It is memory on which computer works currently. It is small in size and once power is off data no

longer stays in this memory.

 Level 4 or Secondary Memory –

It is external memory which is not as fast as main memory but data stays permanently in this memory.

Cache Performance:

When the processor needs to read or write a location in main memory, it first checks for a corresponding

entry in the cache.

 If the processor finds that the memory location is in the cache, a cache hit has occurred and data is

read from cache

 If the processor does not find the memory location in the cache, a cache miss has occurred. For a

cache miss, the cache allocates a new entry and copies in data from main memory, then the request is

fulfilled from the contents of the cache.

The performance of cache memory is frequently measured in terms of a quantity called Hit ratio.

Page | 11

Hit ratio = hit / (hit + miss) = no. of hits/total accesses

We can improve Cache performance using higher cache block size, higher associativity, reduce miss rate,

reduce miss penalty, and reduce the time to hit in the cache.

Cache Measures

 Cache: Cache is small, fast storage used to improve average access time to slow memory. It applied

whenever buffering is employed to reuse commonly occurring items, i.e. file caches, name caches,

and so on.

 Cache Hit: CPU finds a requested data item in the cache.

 Cache Miss: The item in not in the cache at access.

 Block is a fixed size collection of data, retrieved from memory and placed into the cache.

 Advantage of Temporal Locality: If access data from slower memory, move it to faster memory. If

data in faster memory is unused recently, move it to slower memory.

 Advantage of Spatial Locality: If need to move a word from slower to faster memory, move

adjacent words at same time.

 Hit Rate (Hit Ratio): Fraction of accesses that are hits at a given level of the hierarchy.

 Hit Time: Time required accessing a level of the hierarchy, including time to determine whether

access is a hit or miss.

 Miss Rate (Miss Ratio): Fraction of accesses that are misses at a given level.

 Miss Penalty: Extra time required to fetch a block into some level from the next level down.

 The address space is usually broken into fixed size blocks, called pages. At each time, each page

resides either in main memory or on disk.

 Average memory access time is a useful measure to evaluate the performance of a memory-hierarchy

configuration.

Average Memory Access Time = Memory Hit Time + Memory Miss Rate x Miss Penalty

Cache Mapping

3. Discuss in detail about various cache mapping techniques.

 When the processor needs to read or write a location in main memory, it first checks for a

corresponding entry in the cache.

 If the processor finds that the memory location is in the cache, a cache hit has occurred and

data is read from cache

 If the processor does not find the memory location in the cache, a cache miss has occurred.

For a cache miss, the cache allocates a new entry and copies in data from main memory, and

then the request is fulfilled from the contents of the cache.

 The performance of cache memory is frequently measured in terms of a quantity called Hit ratio.

Hit Ratio = Hit / (Hit + Miss) = No. of Hits / Total Accesses

Page | 12

 We can improve Cache performance using higher cache block size, higher associativity, reduce miss

rate, reduce miss penalty and reduce the time to hit in the cache.

Cache Mapping

 Cache memory mapping is the way in which we map or organize data in cache memory, this is done

for efficiently storing the data which then helps in easy retrieval of the same.

 The three different types of mapping used for the purpose of cache memory are as follow,

 Direct Mapping

 Associative Mapping

 Set-Associative Mapping

Direct Mapping:

 In direct mapping, assigned each memory block to a specific line in the cache.

 If a line is previously taken up by a memory block when a new block needs to be loaded, the old

block is trashed.

 An address space is split into two parts index field and tag field.

 The cache is used to store the tag field whereas the rest is stored in the main memory.

 Direct mapping`s performance is directly proportional to the Hit ratio.

Associative Mapping:

 In this type of mapping, the associative memory is used to store content and addresses both of the

memory word. Any block can go into any line of the cache.

 This means that the word id bits are used to identify which word in the block is needed, but the tag

becomes all of the remaining bits.

 This enables the placement of the any word at any place in the cache memory.

 It is considered to be the fastest and the most flexible mapping form.

Page | 13

Set-Associative Mapping:

 This form of mapping is an enhanced form of the direct mapping where the drawbacks of direct

mapping are removed.

 Set associative addresses the problem of possible thrashing in the direct mapping method.

 It does this by saying that instead of having exactly one line that a block can map to in the cache; we

will group a few lines together creating a set.

 Then a block in memory can map to any one of the lines of a specific set.

 Set-associative mapping allows that each word that is present in the cache can have two or more

words in the main memory for the same index address.

 Set associative cache mapping combines the best of direct and associative cache mapping techniques.

Uses of Cache

 Usually, the cache memory can store a reasonable number of blocks at any given time, but this

number is small compared to the total number of blocks in the main memory.

Page | 14

 The correspondence between the main memory blocks and those in the cache is specified by a

mapping function.

Types of Cache

 Primary Cache – A primary cache is always located on the processor chip. This cache is small and

its access time is comparable to that of processor registers.

 Secondary Cache – secondary cache is placed between the primary cache and the rest of the

memory. It is referred to as the level 2 (L2) cache. Often, the Level 2 cache is also housed on the

processor chip.

Locality of Reference

 Since size of cache memory is less as compared to main memory.

 So to check which part of main memory should be given priority and loaded in cache is decided

based on locality of reference.

Types of Locality of Reference

 Spatial Locality of reference – this says that there is chance that element will be present in the close

proximity to the reference point and next time if again searched then more close proximity to the

point of reference.

 Temporal Locality of reference – In this Least recently used algorithm will be used. Whenever

there is page fault occurs within word will not only load word in main memory but complete page

fault will be loaded because spatial locality of reference rule says that if you are referring any word

next word will be referred in its register that‘s why we load complete page table so complete block

will be loaded.

Cache replacement Techniques:

In an operating system that uses paging for memory management, a page replacement algorithm is needed

to decide which page needs to be replaced when a new page comes in.

Page Fault: A page fault happens when a running program accesses a memory page that is mapped into

the virtual address space but not loaded in physical memory. Since actual physical memory is much

smaller than virtual memory, page faults happen. In case of a page fault, Operating System might have to

replace one of the existing pages with the newly needed page. Different page replacement algorithms

suggest different ways to decide which page to replace. The target for all algorithms is to reduce the

number of page faults.

Page Replacement Algorithms:

1. First In First Out (FIFO): This is the simplest page replacement algorithm. In this algorithm, the

operating system keeps track of all pages in the memory in a queue, the oldest page is in the front of the

queue. When a page needs to be replaced page in the front of the queue is selected for removal.

Example 1: Consider page reference string 1, 3, 0, 3, 5, 6, 3 with 3 page frames. Find the number of page

faults.

Page | 15

Initially, all slots are empty, so when 1, 3, 0 came they are allocated to the empty slots —> 3 Page

Faults. when 3 comes, it is already in memory so —> 0 Page Faults. Then 5 comes, it is not available in

memory so it replaces the oldest page slot i.e 1. —>1 Page Fault. 6 comes, it is also not available in

memory so it replaces the oldest page slot i.e 3 —>1 Page Fault. Finally, when 3 come it is not available

so it replaces 0 1 page fault.

Belady’s anomaly proves that it is possible to have more page faults when increasing the number of page

frames while using the First in First Out (FIFO) page replacement algorithm. For example, if we consider

reference strings 3, 2, 1, 0, 3, 2, 4, 3, 2, 1, 0, 4, and 3 slots, we get 9 total page faults, but if we increase

slots to 4, we get 10-page faults.

2. Optimal Page replacement: In this algorithm, pages are replaced which would not be used for the

longest duration of time in the future.

Example-2: Consider the page references 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 3 with 4 page frame. Find

number of page fault.

https://www.geeksforgeeks.org/operating-system-beladys-anomaly/

Page | 16

Initially, all slots are empty, so when 7 0 1 2 are allocated to the empty slots —> 4 Page faults

0 is already there so —> 0 Page fault. when 3 came it will take the place of 7 because it is not used for

the longest duration of time in the future.—>1 Page fault. 0 is already there so —> 0 Page fault. 4 will

takes place of 1 —> 1 Page Fault.

Now for the further page reference string —> 0 Page fault because they are already available in the

memory.

Optimal page replacement is perfect, but not possible in practice as the operating system cannot know

future requests. The use of Optimal Page replacement is to set up a benchmark so that other replacement

algorithms can be analyzed against it.

3. Least Recently Used: In this algorithm, page will be replaced which is least recently used.

Example-3: Consider the page reference string 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 3 with 4 page frames.

Find number of page faults.

Initially, all slots are empty, so when 7 0 1 2 are allocated to the empty slots —> 4 Page faults

0 is already their so —> 0 Page fault. when 3 came it will take the place of 7 because it is least recently

Page | 17

used —> 1 Page fault 0 is already in memory so —> 0 Page fault. 4 will takes place of 1 —> 1 Page

Fault Now for the further page reference string —> 0 Page fault because they are already available in

the memory.

4. Most Recently Used (MRU): In this algorithm, page will be replaced which has been used recently.

Belady‘s anomaly can occur in this algorithm.

4. Explain in detail about virtual memory with an example.(Nov/Dec 2019) (Nov/Dec 2021) or

Discuss the concept of virtual memory and explain how a virtual memory system is implemented, pointing

out the hardware and software support. (Nov/Dec 2017)Nov/Dec 2020.

VIRTUAL MEMORY

 Virtual memory divides physical memory into blocks (called page or segment) and allocates them to

different processes.

 With virtual memory, the CPU produces virtual addresses that are translated by a combination of

HW and SW to physical addresses, which accesses main memory.

 The process is called memory mapping or address translation.

 Today, the two memory-hierarchy levels controlled by virtual memory are DRAMs and magnetic

disks.

 Virtual Memory manages the two levels of the memory hierarchy represented by main memory and

secondary storage.

 Figure below shows the mapping of virtual memory to physical memory for a program with four

pages.

Figure: Virtual Memory Space

 Virtual memory is the separation of logical memory from physical memory.

Page | 18

 This separation provides large virtual memory for programmers when only small physical memory is

available.

 Virtual memory is a memory management capability of an OS that uses hardware and software to

allow a computer to compensate for physical memory shortages by temporarily transferring data

from random access memory (RAM) to disk storage.

 Virtual address space is increased using active memory in RAM and inactive memory in hard disk

drives (HDDs) to form contiguous addresses that hold both the application and its data.

 Computers have a finite amount of RAM so memory can run out, especially when

multiple programs run at the same time.

 A system using virtual memory can load larger programs or multiple programs running at the same

time, allowing each one to operate as if it has infinite memory and without having to purchase more

RAM.

 As part of the process of copying virtual memory into physical memory, the OS divides memory into

page files or swap files that contain a fixed number of addresses.

 Each page is stored on a disk and when the page is needed, the OS copies it from the disk to main

memory and translates the virtual addresses into real addresses.

Pros and Cons of using Virtual Memory

 Among the primary benefits of virtual memory is its ability to handle twice as many addresses as

main memory.

 It uses software to consume more memory by using the HDD as temporary storage while memory

management units translate virtual memory addresses to physical addresses via the central processing

unit.

 Programs use virtual addresses to store instructions and data; when a program is executed, the virtual

addresses are converted into actual memory addresses.

https://whatis.techtarget.com/definition/memory-management
https://searchstorage.techtarget.com/definition/RAM-random-access-memory
https://searchstorage.techtarget.com/definition/hard-disk
https://whatis.techtarget.com/definition/virtual-address
https://searchstorage.techtarget.com/definition/hard-disk-drive
https://searchsqlserver.techtarget.com/definition/contiguous
https://searchsqlserver.techtarget.com/definition/contiguous
https://searchsoftwarequality.techtarget.com/definition/application
https://searchsoftwarequality.techtarget.com/definition/program
https://searchwindowsserver.techtarget.com/definition/system
https://searchwindowsserver.techtarget.com/definition/swap-file-swap-space-or-pagefile
https://whatis.techtarget.com/definition/memory-management-unit-MMU
https://whatis.techtarget.com/definition/memory-management-unit-MMU
https://whatis.techtarget.com/definition/processor
https://whatis.techtarget.com/definition/processor
https://whatis.techtarget.com/definition/instruction
https://searchsecurity.techtarget.com/definition/executable

Page | 19

Programmed I/O

 If I/O operations are completely controlled by the CPU, the computer is said to be using

programmed I/O. In this case, the CPU executes programs that initiate, direct and terminate the I/O

operations.

 If a part of the main memory address space is assigned to I/O ports, then such systems are called as

Memory-Mapped I/O systems.

 In I/O-mapped I/O systems, the memory and I/O address space are separate. Similarly the control

lines used for activating memory and I/O devices are also different. Two sets of control lines are

available. READ M and WRITE M are related with memory and READ I/O and WRITE I/O are

related with I/O devices.

S.No. Parameter Memory-mapped I/O I/O-mapped I/O

1. Address space Memory and I/O devices share the

entire address space

Memory and I/O devices have

separate address space

2. Hardware No additional hardware required Additional hardware required

3. Implementation Easy to implement Difficult to implement

4. Address Same address cannot be used to refer

both memory and I/O device.

Same address can be used to refer

both memory and I/O device.

5. Control lines Memory control lines are used to

control I/O devices.

Different set of control lines are used

to control memory and I/O.

6. Control lines used The control lines are: READ, WRITE The control lines are: READ M,

WRITE M, READ I/O, WRITE I/O

I/O instructions

Two I/O instructions are used to implement programmed I/O.

 IN: The instruction IN X causes a word to be transferred from I/O port X to the accumulator register

A.

 OUT: The instruction OUT X transfer a word from the accumulator register A to the I/O port X.

Limitations of programmed I/O

The programmed I/O method has two limitations:

 The speed of the CPU is reduced due to low speed I/O devices.

 Most of the CPU time is wasted

5. Discuss the concept of Programmed I/O. Discuss about Programmed I/Os associated with

computers. (Apr/May 2018)

6. Describe the DMA controller in a computer system with a neat block diagram. Explain

mechanism Direct Memory Access. (Nov/Dec2012, 2013, 2015, 2016) (Apr / May 2016, 2017,

Nov /Dec 2011) (Nov/Dec 2018).With a neat sketch explain the working principle of DMA.

(Apr/May 2019)

Page | 20

DIRECT MEMORY ACCESS

 A special control unit may be provided to allow the transfer of large block of data at high speed

directly between the external device and main memory, without continuous intervention by the

processor. This approach is called DMA.

 DMA transfers are performed by a control circuit called the DMA Controller.

To initiate the transfer of a block of words, the processor sends,

i) Starting address

ii) Number of words in the block

iii) Direction of transfer.

 When a block of data is transferred , the DMA controller increment the memory address for

successive words and keep track of number of words and it also informs the processor by raising an

interrupt signal.

 While DMA control is taking place, the program requested the transfer cannot continue and the

processor can be used to execute another program.

 After DMA transfer is completed, the processor returns to the program that requested the transfer.

R/W->Determines the direction of transfer

 When R/W =1, DMA controller read data from memory to I/O device.

 R/W =0, DMA controller perform write operation.

 Done Flag=1, the controller has completed transferring a block of data and is ready to receive

another command.

 IE=1, it causes the controller to raise an interrupt (interrupt Enabled) after it has completed

transferring the block of data.

 IRQ=1, it indicates that the controller has requested an interrupt.

Page | 21

 A DMA controller connects a high speed network to the computer bus, and the disk controller for

two disks also has DMA capability and it provides two DMA channels.

 To start a DMA transfer of a block of data from main memory to one of the disks, the program

write‘s the address and the word count information into the registers of the corresponding channel of

the disk controller.

 When DMA transfer is completed, it will be recorded in status and control registers of the DMA

channel (ie) Done bit=IRQ=IE=1.

DMA Operations: May 2009

A lot of different operating modes exist for DMACs. The simplest one is the single block transfer copying a

block of data from a device to memory. For the more complex operations please refer to the literature.

Here, only a short list of operating modes is given:

 Single block transfer

 Chained block transfers

 Linked block transfers

 Fly-by transfers

All these operations normally access the block of data in a linear sequence. Nevertheless, there are more

usefull access functions possible, as there are: constant stride, constant stride with offset, incremental stride.

Page | 22

Execution of a DMA-operation (single block transfer)

 The CPU prepares the DMA-operation by the construction of a descriptor (1), containing all

necessary information for the DMAC to independently perform the DMA-operation (offload engine

for data transfer).

 It initializes the operation by writing a command to a register in the DMAC (2a) or to a special

assigned memory area (command area), where the DMAC can poll for the command and/or the

descriptor (2b). Then the DMAC addresses the device data register (3) and read the data into a

temporary data register (4).

 In another bus transfer cycle, it addresses the memory block (5) and writes the data from the

temporary data register to the memory block (6).

Cycle Stealing:

 Requests by DMA devices for using the bus are having higher priority than processor requests.

 Top priority is given to high speed peripherals such as, Disk High speed Network Interface and

Graphics display device.

 Since the processor originates most memory access cycles, the DMA controller can be said to steal

the memory cycles from the processor. This interviewing technique is called Cycle stealing.

 Burst Mode: The DMA controller may be given exclusive access to the main memory to transfer a

block of data without interruption. This is known as Burst/Block Mode.

 Bus Master: The device that is allowed to initiate data transfers on the bus at any given time is

called the bus master.

BUS ARBITRATION:

 Bus Arbitration: It is the process by which the next device to become the bus master is selected and

the bus mastership is transferred to it.

7. Explain in detail about the Bus Arbitration techniques in DMA. (Nov 2011, 2012, 2014) Apr /

May 2011, 2017, May 2013

Page | 23

Processor

Types: There are 2 approaches to bus arbitration. They are,

 Centralized arbitration (A single bus arbiter performs arbitration)

 Distributed arbitration (all devices participate in the selection of next bus master).

Centralized Arbitration:

 Here the processor is the bus master and it may grants bus mastership to one of its DMA controller.

 A DMA controller indicates that it needs to become the bus master by activating the Bus Request

line (BR) which is an open drain line.

 The signal on BR is the logical OR of the bus request from all devices connected to it.When BR is

activated the processor activates the Bus Grant Signal (BGI) and indicated the DMA controller that

they may use the bus when it becomes free.

 This signal is connected to all devices using a daisy chain arrangement.

 If DMA requests the bus, it blocks the propagation of Grant Signal to other devices and it indicates

to all devices that it is using the bus by activating open collector line, Bus Busy (BBSY).

 BBS Y

BR

BG1 BG2

DMA

controller

2

DMA

controller

1

Page | 24

BG1 signal propagates

to DMA#2.

Processor asserts

the BG1 signal

 Tim

 e

B R

BG
1

BG

2

B B YS

Bu

mast

er

Processo

r

DMA controller 2

Processo

r

Sequence of signals during transfer of bus mastership for the devices

 The timing diagram shows the sequence of events for the devices connected to the processor is

shown.

 DMA controller 2 requests and acquires bus mastership and later releases the bus.

 During its tenture as bus master, it may perform one or more data transfer.

 After it releases the bus, the processor resources bus mastership.

Distributed Arbitration

 It means that all devices waiting to use the bus have equal responsibility in carrying out the

arbitration process.

Processor relinquishes control

of the bus by setting BBSY to

DMA controller 2

asserts the BR

Page | 25

 Each device on the bus is assigned a 4 bit id. When one or more devices request the bus, they assert

the Start-Arbitration signal & place their 4 bit ID number on four open collector lines, ARB0 to

ARB3.

 A winner is selected as a result of the interaction among the signals transmitted over these lines.

 The net outcome is that the code on the four lines represents the request that has the highest ID

number.

 The drivers are of open collector type. Hence, if the i/p to one driver is equal to 1, the i/p to another

driver connected to the same bus line is equal to ‗0‘ (ie. bus is in low-voltage state).

 Eg: Assume two devices A & B have their ID 5 (0101), 6(0110) and their code is 0111.

 Each device compares the pattern on the arbitration line to its own ID starting from MSB.

 If it detects a difference at any bit position, it disables the drivers at that bit position. It does this by

placing ‗0‘ at the i/p of these drivers.

 ‗A‘ detects a difference in line ARB1; hence it disables the drivers on lines ARB1 & ARB0. This

causes the pattern on the arbitration line to change to 0110 which means that ‗B‘ has won the

contention.

INPUT DEVICES:

8. Explain in detail about input devices with an example.

Input Devices

The Input Devices are the hardware that is used to transfer transfers input to the computer. The data can be

in the form of text, graphics, sound, and text. Output device display data from the memory of the computer.

Output can be text, numeric data, line, polygon, and other objects.

These Devices include:

1. Keyboard

https://www.javatpoint.com/computer-graphics-input-devices#keyboard

Page | 26

2. Mouse

3. Trackball

4. Spaceball

5. Joystick

6. Light Pen

7. Digitizer

8. Touch Panels

9. Voice Recognition

10. Image Scanner

Keyboard:

The most commonly used input device is a keyboard. The data is entered by pressing the set of keys. All

keys are labeled. A keyboard with 101 keys is called a QWERTY keyboard.

The keyboard has alphabetic as well as numeric keys. Some special keys are also available.

1. Numeric Keys: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

2. Alphabetic keys: a to z (lower case), A to Z (upper case)

3. Special Control keys: Ctrl, Shift, Alt

4. Special Symbol Keys: ; , " ? @ ~ ? :

5. Cursor Control Keys: ↑ → ← ↓

6. Function Keys: F1 F2 F3... F9.

7. Numeric Keyboard: It is on the right-hand side of the keyboard and used for fast entry of numeric

data.

Function of Keyboard:

1. Alphanumeric Keyboards are used in CAD. (Computer Aided Drafting)

2. Keyboards are available with special features line screen co-ordinates entry, Menu selection or

graphics functions, etc.

3. Special purpose keyboards are available having buttons, dials, and switches. Dials are used to enter

scalar values. Dials also enter real numbers. Buttons and switches are used to enter predefined

function values.

Advantage:

1. Suitable for entering numeric data.

2. Function keys are a fast and effective method of using commands, with fewer errors.

Disadvantage:

https://www.javatpoint.com/computer-graphics-input-devices#mouse
https://www.javatpoint.com/computer-graphics-trackball
https://www.javatpoint.com/computer-graphics-trackball#spaceball
https://www.javatpoint.com/computer-graphics-trackball#joystick
https://www.javatpoint.com/computer-graphics-light-pen
https://www.javatpoint.com/computer-graphics-light-pen#digitizer
https://www.javatpoint.com/computer-graphics-light-pen#touch-panels
https://www.javatpoint.com/computer-graphics-light-pen#voice-recognition
https://www.javatpoint.com/computer-graphics-image-scanner

Page | 27

1. Keyboard is not suitable for graphics input.

Mouse:

A Mouse is a pointing device and used to position the pointer on the screen. It is a small palm size box.

There are two or three depression switches on the top. The movement of the mouse along the x-axis helps in

the horizontal movement of the cursor and the movement along the y-axis helps in the vertical movement of

the cursor on the screen. The mouse cannot be used to enter text. Therefore, they are used in conjunction

with a keyboard.

Advantage:

1. Easy to use

2. Not very expensive

Trackball

It is a pointing device. It is similar to a mouse. This is mainly used in notebook or laptop computer, instead

of a mouse. This is a ball which is half inserted, and by changing fingers on the ball, the pointer can be

moved.

Advantage:

1. Trackball is stationary, so it does not require much space to use it.

2. Compact Size

Spaceball:

It is similar to trackball, but it can move in six directions where trackball can move in two directions only.

The movement is recorded by the strain gauge. Strain gauge is applied with pressure. It can be pushed and

pulled in various directions. The ball has a diameter around 7.5 cm. The ball is mounted in the base using

rollers. One-third of the ball is an inside box, the rest is outside.

Applications:

1. It is used for three-dimensional positioning of the object.

2. It is used to select various functions in the field of virtual reality.

3. It is applicable in CAD applications.

4. Animation is also done using spaceball.

Page | 28

5. It is used in the area of simulation and modeling.

Joystick:

A Joystick is also a pointing device which is used to change cursor position on a monitor screen. Joystick is

a stick having a spherical ball as its both lower and upper ends as shown in fig. The lower spherical ball

moves in a socket. The joystick can be changed in all four directions. The function of a joystick is similar to

that of the mouse. It is mainly used in Computer Aided Designing (CAD) and playing computer games.

When the wave signals are interrupted by some contact with the screen, that located is recorded. Touch

screens have long been used in military applications.

Light Pen

Light Pen (similar to the pen) is a pointing device which is used to select a displayed menu item or draw

pictures on the monitor screen. It consists of a photocell and an optical system placed in a small tube. When

its tip is moved over the monitor screen, and pen button is pressed, its photocell sensing element detects the

screen location and sends the corresponding signals to the CPU.

Uses:

1. Light Pens can be used as input coordinate positions by providing necessary arrangements.

2. If background color or intensity, a light pen can be used as a locator.

3. It is used as a standard pick device with many graphics system.

4. It can be used as stroke input devices.

5. It can be used as valuators

Digitizers:

The digitizer is an operator input device, which contains a large, smooth board (the appearance is similar to

the mechanical drawing board) & an electronic tracking device, which can be changed over the surface to

follow existing lines. The electronic tracking device contains a switch for the user to record the desire x & y

Page | 29

coordinate positions. The coordinates can be entered into the computer memory or stored or an off-line

storage medium such as magnetic tape.

Advantages:

1. Drawing can easily be changed.

2. It provides the capability of interactive graphics.

Disadvantages:

1. Costly

2. Suitable only for applications which required high-resolution graphics.

Touch Panels:

Touch Panels is a type of display screen that has a touch-sensitive transparent panel covering the screen. A

touch screen registers input when a finger or other object comes in contact with the screen.

When the wave signals are interrupted by some contact with the screen, that located is recorded. Touch

screens have long been used in military applications.

OUTPUT DEVICES:

9. Explain in detail about Output devices with an example.

It is an electromechanical device, which accepts data from a computer and translates them into form

understand by users.

Following are Output Devices:

1. Printers

2. Plotters

Printers:

Printer is the most important output device, which is used to print data on paper.

https://www.javatpoint.com/computer-graphics-output-devices#printers
https://www.javatpoint.com/computer-graphics-plotters

Page | 30

Types of Printers:

1. Impact Printers: The printers that print the characters by striking against the ribbon and onto the

papers are known as Impact Printers.

These Printers are of two types:

1. Character Printers

2. Line Printers

2. Non-Impact Printers: The printers that print the characters without striking against the ribbon and

onto the papers are called Non-Impact Printers. These printers print a complete page at a time, therefore,

also known as Page Printers.

Page Printers are of two types:

1. Laser Printers

2. Inkjet Printers

Laser Printers:

These are non-impact page printers. They use laser lights to produces the dots needed to form the characters

to be printed on a page & hence the name laser printers.

The output is generated in the following steps:

Step1: The bits of data sent by processing unit act as triggers to turn the laser beam on & off.

Step2: The output device has a drum which is cleared & is given a positive electric charge. To print a page

the modulated laser beam passing from the laser scans back & forth the surface of the drum. The positive

electric charge on the drum is stored on just those parts of the drum surface which are exposed to the laser

beam create the difference in electric which charges on the exposed drum surface.

Step3: The laser exposed parts of the drum attract an ink powder known as toner.

Step4: The attracted ink powder is transferred to paper.

Step5: The ink particles are permanently fixed to the paper by using either heat or pressure technique.

Step6: The drum rotates back to the cleaner where a rubber blade cleans off the excess ink & prepares the

drum to print the next page.

Liquid Crystal Displays (LCDs)

Page | 31

LCD Display Monitor

The flat-panel display refers to a class of video devices that have reduced volume, weight and power

requirement in comparison to the CRT. You can hang them on walls or wear them on your wrists. Current

uses of flat-panel displays include calculators, video games, monitors, laptop computer, and graphics

display.

The flat-panel display is divided into two categories −

 Emissive Displays − Emissive displays are devices that convert electrical energy into light. For

example, plasma panel and LED (Light-Emitting Diodes).

 Non-Emissive Displays − Non-emissive displays use optical effects to convert sunlight or light

from some other source into graphics patterns. For example, LCD (Liquid-Crystal Device).

ACCESSING I/O

10. How to accessing I/O devices to a computer?

 A simple arrangement to connect I/O devices to a computer is to use a single bus arrangement. The

bus enables all the devices connected to it to exchange information.

 Typically, it consists of three sets of lines used to carry address, data, and control signals. Each I/O

device is assigned a unique set of addresses.

 When the processor places a particular address on the address line, the device that recognizes this

address responds to the commands issued on the control lines.

 The processor requests either a read or a write operation, and the requested data are transferred over

the data lines, when I/O devices and the memory share the same address space, the arrangement is

called memory-mapped I/O.

 With memory-mapped I/O, any machine instruction that can access memory can be used to transfer

data to or from an I/O device.

 For example, if DATAIN is the address of the input buffer associated with the keyboard, the

instruction Move DATAIN, R0 Reads the data from DATAIN and stores them into processor

register R0.

Page | 32

 Similarly, the instruction Move R0, DATAOUT Sends the contents of register R0 to location

DATAOUT, which may be the output data buffer of a display unit or a printer.

 Most computer systems use memory-mapped I/O. some processors have special In and Out

instructions to perform I/O transfers.

 When building a computer system based on these processors, the designer had the option of

connecting I/O devices to use the special I/O address space or simply incorporating them as part of

the memory address space.

 The I/O devices examine the low-order bits of the address bus to determine whether they should

respond. The hardware required to connect an I/O device to the bus.

 The address decoder enables the device to recognize its address when this address appears on the

address lines.

 The data register holds the data being transferred to or from the processor. The status register

contains information relevant to the operation of the I/O device.

 Both the data and status registers are connected to the data bus and assigned unique addresses.

 The address decoder, the data and status registers, and the control circuitry required to coordinate I/O

transfers constitute the device‘s interface circuit.

 I/O devices operate at speeds that are vastly different from that of the processor. When a human

operator is entering characters at a keyboard, the processor is capable of executing millions of

instructions between successive character entries.

 An instruction that reads a character from the keyboard should be executed only when a character is

available in the input buffer of the keyboard interface.

 Also, we must make sure that an input character is read only once. This example illustrates program-

controlled I/O, in which the processor repeatedly checks a status flag to achieve the required

synchronization between the processor and an input or output device.

 We say that the processor polls the device. There are two other commonly used mechanisms for

implementing I/O operations: interrupts and direct memory access.

 In the case of interrupts, synchronization is achieved by having the I/O device send a special signal

over the bus whenever it is ready for a data transfer operation.

 Direct memory access is a technique used for high-speed I/O devices. It involves having the device

interface transfer data directly to or from the memory, without continuous involvement by the

processor.

 The routine executed in response to an interrupt request is called the interrupt service routine, which

is the PRINT routine in our example.

 Interrupts bear considerable resemblance to subroutine calls. Assume that an interrupt request arrives

during execution of instruction i in figure 1

Page | 33

 The processor first completes execution of instruction i. Then, it loads the program counter with the

address of the first instruction of the interrupt-service routine.

 For the time being, let us assume that this address is hardwired in the processor. After execution of

the interrupt-service routine, the processor has to come back to instruction i +1.

 Therefore, when an interrupt occurs, the current contents of the PC, which point to instruction i+1,

must be put in temporary storage in a known location.

 A Return-from interrupt instruction at the end of the interrupt-service routine reloads the PC from the

temporary storage location, causing execution to resume at instruction i +1.

 In many processors, the return address is saved on the processor stack. We should note that as part of

handling interrupts, the processor must inform the device that its request has been recognized so that

it may remove its interrupt-request signal.

 This may be accomplished by means of a special control signal on the bus. An interrupt-

acknowledge signal.

 The execution of an instruction in the interrupt-service routine that accesses a status or data register

in the device interface implicitly informs that device that its interrupt request has been recognized.

 So far, treatment of an interrupt-service routine is very similar to that of a subroutine. An important

departure from this similarity should be noted.

 A subroutine performs a function required by the program from which it is called. However, the

interrupt-service routine may not have anything in common with the program being executed at the

time the interrupt request is received.

Page | 34

 In fact, the two programs often belong to different users. Therefore, before starting execution of the

interrupt-service routine, any information that may be altered during the execution of that routine

must be saved.

 This information must be restored before execution of the interrupt program is resumed. In this way,

the original program can continue execution without being affected in any way by the interruption,

except for the time delay.

 The information that needs to be saved and restored typically includes the condition code flags and

the contents of any registers used by both the interrupted program and the interrupt-service routine.

 The task of saving and restoring information can be done automatically by the processor or by

program instructions.

 Most modern processors save only the minimum amount of information needed to maintain the

registers involves memory transfers that increase the total execution time, and hence represent

execution overhead.

 Saving registers also increase the delay between the time an interrupt request is received and the start

of execution of the interrupt-service routine. This delay is called interrupt latency.

SERIAL AND PARALLEL INTERFACE

11. Explain about serial and parallel interface.

 An I/O interface consists of the circuitry required to connect an I/O device to a computer bus. On one

side of the interface, we have bus signals.

 On the other side, we have a data path with its associated controls to transfer data between the

interface and the I/O device – port.

 We have two types: Serial port and Parallel port A parallel port transfers data in the form of a

number of bits (8 or 16) simultaneously to or from the device.

 A serial port transmits and receives data one bit at a time. Communication with the bus is the same

for both formats.

 The conversion from the parallel to the serial format, and vice versa, takes place inside the interface

circuit.

 In parallel port, the connection between the device and the computer uses a multiple-pin connector

and a cable with as many wires.

 This arrangement is suitable for devices that are physically close to the computer. In serial port, it is

much more convenient and cost-effective where longer cables are needed.

 Typically, the functions of an I/O interface are:

 Provides a storage buffer for at least one word of data

 Contains status flags that can be accessed by the processor to determine whether the buffer is full

or empty

 Contains address-decoding circuitry to determine when it is being addressed by the processor

 Generates the appropriate timing signals required by the bus control scheme

Page | 35

 Performs any format conversion that may be necessary to transfer data between the bus and the

I/O device, such as parallel-serial conversion in the case of a serial port.

Parallel Port

 The hardware components needed for connecting a keyboard to a processor Consider the circuit of

input interface which encompasses (as shown in below figure): –Status flag, SIN –R/~W –Master-

ready –Address decoder.

 A detailed figure showing the input interface circuit is presented in figure.

 Now, consider the circuit for the status flag (figure 4.30). An edge-triggered D flip-flop is used along

with read-data and master-ready signals

 The hardware components needed for connecting a printer to a processor are: the circuit of output

interface, and –Slave-ready –R/~W –Master-ready –Address decoder –Handshake control.

 The input and output interfaces can be combined into a single interface.

 The general purpose parallel interface circuit that can be configured in a variety of ways.

 For increased flexibility, the circuit makes it possible for some lines to serve as inputs and some lines

to serve as outputs, under program control.

Serial Port

 A serial interface circuit involves – Chip and register select, Status and control, Output shift

register, DATAOUT, DATAIN, Input shift register and Serial input/output

Page | 36

INTERRUPT

INTERRUPTS:

 An interrupt is an event that causes the execution of one program to be suspended and the execution

of another program to begin.

 In program‐controlled I/O, when the processor continuously monitors the status of the device, the

processor will not perform any function.

 An alternate approach would be for the I/O device to alert the processor when it becomes ready. The

Interrupt request line will send a hardware signal called the interrupt signal to the processor. On

receiving this signal, the processor will perform the useful function during the waiting period.

 The routine executed in response to an interrupt request is called Interrupt Service Routine. The

interrupt resembles the subroutine calls.

Program 1 Program 2

1
2

Interrupt
occurs i

here
i + 1

M

 The processor first completes the execution of instruction i. Then it loads the PC(Program Counter)

with the address of the first instruction of the ISR.

 After the execution of ISR, the processor has to come back to instruction i + 1

 Therefore, when an interrupt occurs, the current contents of PC which point to i +1 is put in

temporary storage in a known location.

 A return from interrupt instruction at the end of ISR reloads the PC from that temporary storage

location, causing the execution to resume at instruction i+1.

 When the processor is handling the interrupts, it must inform the device that its request has been

recognized so that it removes its interrupt requests signal.

 This may be accomplished by a special control signal called the interrupt acknowledge signal.

 The task of saving and restoring the information can be done automatically by the processor.

 The processor saves only the contents of program counter & status register (ie) it saves only the

minimal amount of information to maintain the integrity of the program execution.

12. What is an interrupt? Explain the different types of interrupts and the different ways of

handling the interrupts. Explain Interrupt Handling. (Nov/Dec 2016) (Nov/Dec 2018)Nov/Dec

2020.

Page | 37

 Saving registers also increases the delay between the time an interrupt request is received and the

start of the execution of the ISR. This delay is called the Interrupt Latency.

 Generally, the long interrupt latency in unacceptable. The concept of interrupts is used in Operating

System and in Control Applications, where processing of certain routines must be accurately timed

relative to external events. This application is also called as real-time processing.

Interrupt Hardware

 A single interrupt request line may be used to serve ‗n‘ devices.

 All devices are connected to the line via switches to ground. To request an interrupt, a device closes

its associated switch, the voltage on INTR line drops to 0(zero).

 If all the interrupt request signals (INTR1 to INTRn) are inactive, all switches are open and the

voltage on INTR line is equal to Vdd.

 When a device requests an interrupts, the value of INTR is the logical OR of the requests from

individual devices. (ie)INTR = INTR1+ +INTRn.

 INTR->It is used to name the INTR signal on common line it is active in the low voltage state.

 Open collector or Open drain is used to drive INTR line.

 The Output of the Open collector (or) Open drain control is equal to a switch to the ground that is

open when gates input is in ‗0‘ state and closed when the gates input is in ‗1‘ state.

 Resistor ‗R‘ is called a pull-up resistor because it pulls the line voltage up to the high voltage state

when the switches are open.

Enabling and Disabling Interrupts

 The arrival of an interrupt request from an external device causes the processor to suspend the

execution of one program & start the execution of another because the interrupt may alter the

sequence of events to be executed.

 INTR is active during the execution of Interrupt Service Routine.

 There are 3 mechanisms to solve the problem of infinite loop which occurs due to successive

interruptions of active INTR signals.

 The following are the typical scenario.

Page | 38

 The device raises an interrupt request.

 The processor interrupts the program currently being executed.

 Interrupts are disabled by changing the control bits is PS (Processor Status register)

 The device is informed that its request has been recognized & in response, it deactivates the

INTR signal.

 The actions are enabled & execution of the interrupted program is resumed.

Edge-triggered

 The processor has a special interrupt request line for which the interrupt handling circuit responds

only to the leading edge of the signal. Such a line said to be edge-triggered.

Handling Multiple Devices:

 When several devices requests interrupt at the same time, it raises some questions. They are.

 How can the processor recognize the device requesting an interrupt?

 Given that the different devices are likely to require different ISR, how can the processor obtain

the starting address of the appropriate routines in each case?

 Should a device be allowed to interrupt the processor while another interrupt is being serviced?

 How should two or more simultaneous interrupt requests be handled?

Polling Scheme:

 If two devices have activated the interrupt request line, the ISR for the selected device (first device)

will be completed & then the second request can be serviced.

 The simplest way to identify the interrupting device is to have the ISR polls all the encountered with

the IRQ bit set is the device to be serviced.

 IRQ (Interrupt Request) -> when a device raises an interrupt requests, the status register IRQ is set to

1.

Merit:

 It is easy to implement.

Demerit:

 The time spent for interrogating the IRQ bits of all the devices that may not be requesting any

service.

Vectored Interrupt: Nov / Dec 2011, 2012

 Here the device requesting an interrupt may identify itself to the processor by sending a special code

over the bus & then the processor start executing the ISR.

 The code supplied by the processor indicates the starting address of the ISR for the device.

 The code length ranges from 4 to 8 bits. The location pointed to by the interrupting device is used to

store the staring address to ISR.

 The processor reads this address, called the interrupt vector & loads into PC.

 The interrupt vector also includes a new value for the Processor Status Register.

Page | 39

 When the processor is ready to receive the interrupt vector code, it activate the interrupt

acknowledge (INTA) line.

Interrupt Nesting: Multiple Priority Scheme:

 In multiple level priority schemes, we assign a priority level to the processor that can be changed

under program control.

 The priority level of the processor is the priority of the program that is currently being executed.

 The processor accepts interrupts only from devices that have priorities higher than its own.

 At the time the execution of an ISR for some device is started, the priority of the processor is raised

to that of the device.

 The action disables interrupts from devices at the same level of priority or lower.

Privileged Instruction:

 The processor priority is usually encoded in a few bits of the Processor Status word.

 It can also be changed by program instruction & then it is writing into PS. These instructions are

called privileged instruction.

 This can be executed only when the processor is in supervisor mode.

 The processor is in supervisor mode only when executing OS routines. It switches to the user mode

before beginning to execute application program.

Privileged Exception:

 User program cannot accidently or intentionally change the priority of the processor & disrupts the

system operation.

 An attempt to execute a privileged instruction while in user mode, leads to a special type of interrupt

called the privileged exception.

Processor

Priority

arbitration

IN TR 1

Device

1

INTA1

Device

2

I N RT p

Devic p

e

INT p

A

Implementation of Interrupt Priority using individual Interrupt request acknowledge lines

 Each of the interrupt request line is assigned a different priority level.

 Interrupt request received over these lines are sent to a priority arbitration circuit in the processor.

 A request is accepted only if it has a higher priority level than that currently assigned to the

processor.

Simultaneous Requests:

Page | 40

o

Daisy Chain:

 The interrupt request line INTR is common to all devices.

 The interrupt acknowledge line INTA is connected in a daisy chain fashion such that INTA signal

propagates serially through the devices.

 When several devices raise an interrupt request, the INTR is activated & the processor responds by

setting INTA line to 1. This signal is received by device.

 Device1 passes the signal on to device2 only if it does not require any service.

 If devices1 has a pending request for interrupt blocks that INTA signal & proceeds to put its

identification code on the data lines. Therefore, the device that is electrically closest to the processor

has the highest priority.

Merits:

 It requires fewer wires than the individual connections.

Arrangement of Priority Groups:

 Here the devices are organized in groups & each group is connected at a different priority level.

Within a group, devices are connected in a daisy chain.

I NT R 1

INTA1

I NT R p

Device Device

INT p
Priority arbitratioAn

circuit

 At the devices end, an interrupt enable bit in a control register determines whether the device is

allowed to generate an interrupt requests.

 At the processor end, either an interrupt enable bit in the PS (Processor Status) or a priority structure

determines whether a given interrupt requests will be accepted.

Initiating the Interrupt Process:

 Load the starting address of ISR in location INTVEC (vectored interrupt).

Device Device

Process

r

I NT R

Processor

INTA

Devi n
ce

Device

2

Device

1

Page | 41

 Load the address LINE in a memory location PNTR. The ISR will use this location as a pointer to

store i/o characters in the memory.

 Enable the keyboard interrupts by setting bit 2 in register CONTROL to 1.

 Enable interrupts in the processor by setting to 1, the IE bit in the processor status register PS.

Exception of ISR:

 Read the input characters from the keyboard input data register. This will cause the interface circuits

to remove its interrupt requests.

 Store the characters in a memory location pointed to by PNTR & increment PNTR.

 When the end of line is reached, disable keyboard interrupt & inform program main.

 Return from interrupt.

I/OPerformanceMeasures

13. Explain various ways to List and explain various I/O performance measures. (April/May 2017)

(Or)Explain in detail about I/O performance measures with an example. (April/May 2014,2015)

 Measures used to quantify I/O performance attempt to measure a more diverse range of properties

than the case of CPU performance.

 The traditional measures of performance/ namely response time and throughput/ also apply to I/O.

I/O throughput is sometimes called I/O bandwidth/ and response time is sometimes called latency.

 Fig. shows the traditional producer-server model of response time.

 The producer creates tasks to be performed and places them in a buffer; the server takes tasks from

the first-in-first-out buffer and performs them.

 Response time and throughput are non-linear. From a transaction server model:

1.Throughput is maximized when the queue is never empty;

2. Response time is minimized when die queue is empty.

 Figure below shows throughput versus response time for a typical storage system. Consider two

interactive computing environments/ one keyboard driven/ one graphical.

Page | 42

 Computing interaction or transaction time is divided into three components,

1. Entry Time : Time for user to make a request;

2. System Response Time : Time between request and response;

3. Think Time : Time between system response and next request

 The sum of these three parts is called the transaction time. Several studies report that user

productivity is inversely proportional to transaction time; transactions per hour are a measure of the

work completed per hour by the user.

 System response time is naturally the shortest duration. Does this minimize the impact of response

time?

 Effect of system response time on user 'thinking' time.

1. Any reduction to response time has more than a linear reduction on total transaction time.

2. Users need less time to think when given a faster response;

3. Possible to attach an economic benefit to response time and throughput;

4. In order to maintain user interest, response times need to be < 1.0 second.

Problem: [May 2019]

Suppose a processor sends 80 disks I/Os per second, these requests are exponentially distributed,

and the average service time of an older disk is 25 ms.

Answer the following questions:

1. On average, how utilized is the disk?

2. What is the average time spent in the queue?

3.What is the average response time for a disk request, including the queuing time

and disk service time?

Average number of Arriving tasks / second is 80 ms.

Average disk time to service a task is 25ms = (0 .025 sec).

The server utilization is then

Service utilization = Arrival rate x Time Server

= 80 x 0.025 = 2.0

Since the service times are exponentially distributed, we can use the simplifiedformula for the

average time spent waiting in line:

𝑠𝑒𝑟𝑣𝑒𝑟 𝑈𝑡i𝑙i𝑧𝑎𝑡i𝑜𝑛
𝑇i𝑚𝑒 Q𝑢𝑒𝑢𝑒 = 𝑇i𝑚𝑒 𝑆𝑒𝑟𝑣𝑒𝑟 X

(1 − 𝑆𝑒𝑟𝑣𝑒𝑟 𝑈𝑡i𝑙i𝑧𝑎𝑡i𝑜𝑛)

2
= 25 𝑚𝑠 X

1 − 2

= 50 ms (consider +ve value)

The average response time is

Time system = Time queue + Time Server

= 50 ms + 25 ms

Page | 43

= 75 ms

Thus, on average we spend 75% of our time waiting in the queue!

Universal Serial Bus (USB)

14. Explain about USB.

 The universal serial bus (USB) is a standard interface for connecting a wide range of devices to the

computer such as keyboard, mouse, smart phones, speakers, cameras etc.

 The USB was introduced for commercial use in the year 1995 at that time it has a data transfer speed

of 12 megabits/s.

 With some improvement, a modified USB 2 was introduced which is also called a high speed

USB that transfers data at 480 megabits/s.

 With the evolution of I/O devices that require high speed data transfer also leads to the development

of USB 3 which is also referred to as Super speed USB which transfers data at 5 gigabits/s.

 The recent version of USB can transfer data up to 20 gigabits/s.

Content: Universal Serial Bus (USB)

1. Key Objectives

2. USB Architecture

3. Isochronous Traffic on USB

4. Types of USB Connectors

5. Electrical Characteristics of USB

Key Objectives of Universal Serial Bus

 Before getting into the details of the universal serial bus we will discuss some of the key objectives that

are taken into account while designing a USB.

 The developed USB must be simple and a low-cost interconnection system that should be easy to use.

 The developed USB must be compatible with all new I/O devices, their bit rates, internet connections

and audio, video application.

 The USB must support a plug-and-play mode of operation.

 The USB must support low power implementation.

 The USB must also provide support for legacy hardware and software.

USB Architecture

https://binaryterms.com/universal-serial-bus.html#KeyObjectives
https://binaryterms.com/universal-serial-bus.html#USBArchitecture
https://binaryterms.com/universal-serial-bus.html#IsochronousTrafficonUSB
https://binaryterms.com/universal-serial-bus.html#TypesofUSBConnectors
https://binaryterms.com/universal-serial-bus.html#ElectricalCharacteristicsofUSB

Page | 44

 When multiple I/O devices are connected to the computer through USB they all are organized in a

tree structure.

 Each I/O device makes a point-to-point connection and transfers data using the serial transmission

format we have discussed serial transmission in our previous content ‗interface circuit‘.

 As we know a tree structure has a root, nodes and leaves.

 The tree structure connecting I/O devices to the computer using USB has nodes which are also

referred to as a hub.

 Hub is the inter-mediatory connecting point between the I/O devices and the computer.

 Every tree has a root here; it is referred to as the root hub which connects the entire tree to the

hosting computer.

 The leaves of the tree here are nothing but the I/O devices such as a mouse, keyboard, camera, and

speaker.

 The USB works on the principle of polling.

 In polling, the processor keeps on checking whether the I/O device is ready for data transfer or not.

 So, the devices do not have to inform the processor about any of their statuses.

 It is the processor‘s responsibility to keep a check. This makes the USB simple and low cost.

 Whenever a new device is connected to the hub it is addressed as 0.

 Now at a regular interval the host computer polls all the hubs to get their status which lets the host

know of I/O devices that are either detached from the system or are attached to the system.

 When the host becomes aware of the new device it gets to know about the capabilities of the device

by reading the information present in the special memory of the device‘s USB interface.

 So that the host can use the appropriate device driver to communicate with the device.

 The host then assigns an address to this new device, this address is written to the register of the

device interface register.

 With this mechanism, USB serves plug-and-play capability.

https://binaryterms.com/interface-circuit.html

Page | 45

 The plug and play feature let the host recognize the existence of the new I/O device automatically

when the device is plugged in.

 The host software determines the capabilities of the I/O devices and if it has any special requirement.

 The USB is hot-pluggable which means the I/O device can be attached or removed from the host

system without performing any restart or shutdown.

 That means your system can keep running while the I/O device is plugged or removed.

Isochronous Traffic on USB

 USB also supports the isochronous traffic where the data is transferred at a fixed timed interval,

where the intervals are regular and of very short time.

 The isochronous data transmission is comparatively faster than asynchronous and synchronous data

transfer.

 To accommodate the isochronous traffic, the root hub sends a sequence of bits over the USB tree this

indicates the start of isochronous data and after this sequence of bits, the actual data is transmitted.

 As USB support the isochronous data transmission the audio-video signals are transferred in a

precisely timely manner.

Types of USB Connectors

 The USB has different types of ports and connectors.

 Usually, the upstream port and connector are always the USB type A the downstream port and

connector differ depending on the type of device connected.

USB Type A:

 This is the standard connector that can be found at one end of the USB cable and is also known as

upstream.

 It has a flat structure and has four connecting lines as you can see in the image below.

USB Type B:

 This is an older standard cable and was used to connect the peripheral devices also referred to as

downstream.

 It is approximately a square as you can see in the image below.

 This is now been replaced by the newer versions.

Mini USB:

 This type of USB is compatible with mobile devices.

 This type of USB is now superseded your micro-USB still you will get it on some devices.

Page | 46

Micro USB:

 This type of USB is found on newer mobile devices. It has a compact 5 pin design.

USB Type C:

 This type of USB is used for transferring both data and power to the attached peripheral or I/O

device.

 The USB C does not have a fixed orientation as it is reversible i.e. you can plug it upside down or in

reverse.

USB 3.0 Micro B:

 This USB is a super speed USB. This USB is used for a device that requires high-speed data transfer.

 You can find this kind of USB on portable hard drives.

Electrical Characteristics of USB

 The standard USB has four lines of connection among which two carry power (one carry +5 V and

one is for Ground).

 The other two lines of connection are for data transfer.

 USB also supply power to connected I/O device that requires very low power.

 Transferring of data over USB can be divided into two categories i.e., transferring data at low speed

and transferring data at high speed.

 The low-speed transmission uses single-ended signaling where varying high voltage is transmitted

over one of the two data lines to represent the signal bit 0 or 1.

 The other data line is connected to the reference voltage i.e., ground.

 The single-ended signaling is prone to noise.

 The high-speed data transmission uses the approach differential signaling.

 Here, the signal is transmitted over the two data lines that are twisted together.

 Here both the data lines are involved in carrying the signal no ground wire is required.

 The differential signaling is not prone to noise and uses low voltages as compared to single-ended

transmission.

 So, this is all about the universal serial bus which connects the I/O devices to the host computer. We

have seen how it works and how many versions of USB we have.

SATA

15. Explain about SATA.

 Serial ATA is a peripheral interface created in 2003 to replace Parallel ATA, also known as IDE.

Page | 47

 Hard drive speeds were getting faster, and would soon outpace the capabilities of the older

standard—the fastest PATA speed achieved was 133MB/s, while SATA began at 150MB/s and

was designed with future performance in mind.

 Also, newer silicon technologies used lower voltages than PATA's 5V minimum.

 The ribbon cables used for PATA were also a problem; they were wide and blocked air flow, had

a short maximum length restriction, and required many pins and signal lines.

 SATA has a number of features that make it superior to Parallel ATA. The signaling voltages are

low and the cables and connectors are very small.

 SATA has outpaced hard drive performance, so the interface is not a bottleneck in a system.

 It also has a number of new features, including hot-plug support. SATA is a point-to-point

architecture, where each SATA link contains only two devices: a SATA host (typically a

computer) and the storage device.

 If a system requires multiple storage devices, each SATA link is maintained separately. This

simplifies the protocol and allows each storage device to utilize the full capabilities of the bus

simultaneously, unlike in the PATA architecture where the bus is shared.

 To ease the transition to the new standard, SATA maintains backward compatibility with PATA.

 To do this, the Host Bus Adapter (HBA) maintains a set of shadow registers that mimic the

registers used by PATA. The disk also maintains a set of these registers.

 When a register value is changed, the register set is sent across the serial line to keep both sets of

registers synchronized.

 This allows for the software drivers to be agnostic about the interface being used.

 Serial ATA is a peripheral interface created in 2003 to replace Parallel ATA, also known as IDE.

 Hard drive speeds were getting faster, and would soon outpace the capabilities of the older

standard—the fastest PATA speed achieved was 133MB/s, while SATA began at 150MB/s and

was designed with future performance in mind.

 Also, newer silicon technologies used lower voltages than PATA's 5V minimum. The ribbon

cables used for PATA were also a problem; they were wide and blocked air flow, had a short

maximum length restriction, and required many pins and signal lines.

 SATA has a number of features that make it superior to Parallel ATA.

 The signaling voltages are low and the cables and connectors are very small. SATA has outpaced

hard drive performance, so the interface is not a bottleneck in a system. It also has a number of

new features, including hot-plug support.

 SATA is a point-to-point architecture, where each SATA link contains only two devices: a SATA

host (typically a computer) and the storage device.

 If a system requires multiple storage devices, each SATA link is maintained separately. This

simplifies the protocol and allows each storage device to utilize the full capabilities of the bus

simultaneously, unlike in the PATA architecture where the bus is shared.

Page | 48

 To ease the transition to the new standard, SATA maintains backward compatibility with PATA.

 To do this, the Host Bus Adapter (HBA) maintains a set of shadow registers that mimic the

registers used by PATA.

 The disk also maintains a set of these registers. When a register value is changed, the register set

is sent across the serial line to keep both sets of registers synchronized.

 This allows for the software drivers to be agnostic about the interface being used.

Physical Layer:

 The physical layer is the lowest layer of the SATA protocol stack. It handles the electrical signal

being sent across the cable.

 The physical layer also handles some other important aspects, such as resets and speed

negotiation.

 SATA uses low-voltage differential signaling (LVDS). Instead of sending 1's and 0's relative to a

common ground, the data being sent is based on the difference in voltage between two conductors

sending data.

 In other words, there is a TX+ and a TX- signal. A logic 1 corresponds to a high TX+ and a low

TX-; and vice versa for a logic 0. SATA uses a ±125mV voltage swing.

Link Layer

 The link layer is the next layer and is directly above the physical layer. This layer is responsible

for encapsulating data payloads and manages the protocol for sending and receiving them.

 A data payload that is sent is called a Frame Information Structure (FIS). The link layer also

provides some other services for ensuring data integrity, handling flow control, and reducing EMI.

 The host and the disk each have their own transmit pair in a SATA cable, and theoretically data

could be sent in both directions simultaneously.

 However, this does not occur. Instead, the receiver sends ―backchannel‖ information to the

sender that indicates the status of the transfer in progress.

Page | 49

 For instance, if an error were to be detected mid- transmission, such as a disparity error, the

receiver could notify the sender of this.

Transport Layer

 The transport layer is responsible for constructing, delivering, and receiving Frame Information

Structures.

 It defines the format of each FIS and the valid sequence of FISes that can exchanged.

 The first byte of each FIS defines the type. The second byte contains type- dependent control

fields.

 The following table lists some of the types of FISes that are defined, and the value of their type

field.

Page | 50

1. What is Memory?

 Memory is a device used to store the data and instructions required for any operation.

2. What is the secondary memory?

 Secondary memory is where programs and data are kept on a long-term basis.

Common secondary storage devices are the hard disk and optical disks. The hard disk has enormous

storage capacity compared to main memory. The hard disk is usually contained inside the case of a

computer.

3. What are some examples of secondary storage device?

 Some other examples of secondary storage technologies are flash memory (e.g. USB flash drives or

keys), floppy disks, magnetic tape, paper tape, punched cards, standalone RAM disks, and Iomega

Zip drives.

4. What are the characteristics of a secondary storage device?

 Characteristics of a secondary storage devices are,

 Capacity

 Speed

 Portability

 Durability

 Reliability

5. What are the three main categories of secondary storage?

Currently the most common forms of secondary storage device are:

 Floppy disks

 Hard disks

 Optical Disks

 Magnetic Tapes

 Solid State Devices

6. What is Bandwidth?

 The maximum amount of information that can be transferred to or from the memory per unit time is

called bandwidth.

7. Define a Cache.

 It is a small fast intermediate memory between the processor and the main memory.

8. What is Cache Memory?

 Cache memory is a very high speed memory that is placed between the CPU and primary or main

memory.

2 Marks

Question Bank

Page | 51

 It is used to reduce the average time to access data from the main memory.

 The cache is a smaller and faster memory which stores copies of the data from frequently used main

memory locations.

 Most CPUs have different independent caches, including instruction and data.

9. Give the mapping techniques of cache.

The three different types of mapping techniques used for the purpose of cache memory are as follow,

 Direct Mapping

 Associative Mapping

 Set-Associative Mapping

10. What is Write Stall?

 When the processor must wait for writes to complete during write through, the processor caches is

said to write stall.

11. Define Mapping Functions.

 The correspondence of memory blocks in cache with the memory blocks in the main memory is

defined as mapping functions.

12. What is Address Translation?

 The conversion of virtual address to physical address is termed as address translation.

13. What is the transfer time?

 The time it takes to transmit or move data from one place to another.

 It is the time interval between starting the transfer and the completion of the transfer.

(Or)

 Transfer time is the time it takes to transfer a block of bits, typically a sector under the read / write

head.

14. What is latency and seek time?

 Seek Time is measured defines the amount of time it takes a hard drive's read/write head to find the

physical location of a piece of data on the disk.

 Latency is the average time for the sector being accessed to rotate into position under a head, after a

completed seek.

15. What is the clock cycle time?

 The speed of a computer processor, or CPU, is determined by the clock cycle, which is the amount

of time between two pulses of an oscillator.

 Computer processors can execute one or more instructions per clock cycle, depending on the type of

processor.

https://en.wikipedia.org/wiki/Main_memory

Page | 52

16. What is Access Time?

 The time a program or device takes to locate a single piece of information and make it available to

the computer for processing. DRAM (dynamic random access memory) chips for personal

computers have access times of 50 to 150 nanoseconds (billionths of a second).

17. What is meant by disk fragmentation?

 Fragmentation refers to the condition of a disk in which files are divided into pieces scattered around

the disk.

 It occurs naturally when you use a disk frequently, creating, deleting, and modifying files.

 At some point, the operating system needs to store parts of a file in noncontiguous clusters.

18. What is the average access time for a hard disk?

 Disk access times are measured in milliseconds (thousandths of a second), often abbreviated as ms.

 Fast hard disk drivesfor personal computers boast access times of about 9 to 15 milliseconds.

 Note that this is about 200 times slower than average DRAM.

19. What is rotational latency time?

 The amount of time it takes for the desired sector of a disk (i.e., the sector from which data is to be

read or written) to rotate under the read-write heads of the disk drive.

 It is also called as rotational delay.

20. What is meant by disk latency?

 Disk latency refers to the time delay between a request for data and the return of the data. It sounds

like a simple thing, but this time can be critical to the performance of a system.

21. Define Page Fault.

 If the processor access for the particular page in main memory and if the page is not present there

then it is known as page fault.

22. Define a Cache Unit.

 When the CPU refers to memory and finds a required word in cache it is termed as cache hit.

23. Define Hit Ratio.(Nov/Dec 2019)Nov/Dec 2021

 The ratio of the number of hits divided by the total CPU references to memory is the hit ratio.

24. Define a Miss.Nov/Dec 2021

 When the CPU refers to memory and if the required word is not found in cache it is termed as miss.

25. What is meant by memory stall cycles? (M 2016)

 The number of cycles during which the CPU is stalled waiting for a memory access is called memory

stall cycles.

26. What is Miss Penalty?

 The number of stall cycles depends on both the number of misses and the cost per miss, which is

called the miss penalty.

https://www.webopedia.com/TERM/A/access_time.html
https://www.webopedia.com/TERM/P/program.html
https://www.webopedia.com/TERM/D/device.html
https://www.webopedia.com/TERM/C/computer.html
https://www.webopedia.com/TERM/D/DRAM.html
https://www.webopedia.com/TERM/C/chip.html
https://www.webopedia.com/TERM/P/personal_computer.html
https://www.webopedia.com/TERM/P/personal_computer.html
https://www.webopedia.com/TERM/N/nanosecond.html
https://www.webopedia.com/TERM/D/disk.html
https://www.webopedia.com/TERM/F/file.html

Page | 53

27. Write the formula to calculate average memory access time. (Or) Write the formula to measure

average memory access time for memory hierarchy performance. (Nov / Dec 2018)

 Average memory access time = Hit time + Miss rate x Miss penalty

28. What is a miss in a cache? (Or) What does Cache Miss mean? (Or) Define Cache Miss. (Nov/Dec

2010, April/May 2018)

 Cache miss is a state where the data requested for processing by a component or application is not

found in the cache memory.

 It causes execution delays by requiring the program or application to fetch the data from

other cache levels or the main memory.

29. Define Cache Hit. (Or) What does Cache Hit mean? (April/May 2018)

 A cache hit is a state in which data requested for processing by a component or application is found

in the cache memory.

 It is a faster means of delivering data to the processor, as the cache already contains the requested

data.

30. Differentiate between Cache Miss and Cache Hit.

 The difference between the two is the data requested by a component or application in a cache

memory being found or not.

 In a cache miss, the data is not found so the execution is delayed because the component or

application tries to fetch the data from main memory or other cache levels.

 In a cache hit, the data is found in the cache memory making it faster to process.

 The cache hit is when you look something up in a cache and it was storing the item and is able to

satisfy the query.

31. What is miss penalty for a cache?

 Cache is a small high-speed memory. Stores data from some frequently used addresses (of main

memory). Processor loads data from M and copies intocache.

 This results in extra delay, called miss penalty.

 Hit ratio = percentage of memory accesses satisfied by the cache.

32. What is miss rate in cache?

 The fraction or percentage of accesses that result in a hit is called the hit rate.

 The fraction or percentage of accesses that result in a miss is called the miss rate.

 It follows that hit rate + miss rate = 1.0 (100%).

 The difference between lower level access time and cache access time is called the miss penalty.

33. What is hit time in cache?

 AMAT's three parameters hit time (or hit latency), miss rate, and miss penalty provide a quick

analysis of memory systems.

Page | 54

 Hit latency (H) is the time to hit in thecache. Miss rate (MR) is the frequency of cache misses, while

average miss penalty (AMP) is the cost of a cache miss in terms of time.

34. How is cache memory measured?

 The CPU cache is a piece of hardware which reduces the access time to the data in the memory by

keeping some part of the frequently used data of the main memory in itself.

 It is smaller and faster than the main memory.

35. What is the memory cycle time?

 Cycle time is the time, usually measured in nanosecond s, between the start of one random

access memory (RAM) access to the time when the next access can be started.

 Access time is sometimes used as a synonym (although IBM deprecates it).

36. What is the memory access time?

 Memory access time is how long it takes for a character in memory to be transferred to or from the

CPU.

 In a PC or Mac, fast RAM chips have an access time of 70 nanoseconds (ns) or less.

 SDRAM chips have a burst mode that obtains the second and subsequent characters in 10 ns or less.

37. What is the data transfer rate?

 The speed with which data can be transmitted from one device to another.

 Data rates are often measured in megabits (million bits) or megabytes (million bytes) per second.

 These are usually abbreviated as Mbps and MBps, respectively. Another term for data transfer rate is

throughput.

38. What does access time measure?

 The total time it takes the computer to read data from a storage device such as computer memory,

hard drive, CD-ROM or other mechanism.

 Computer access time is commonly measured in nanoseconds or milliseconds and the lower

the access the time the better.

39. List the method to improve the cache performance.

Improving the cache performance following methods are used:

 Reduce the miss rate.

 Reduce the miss penalty.

 Reduce the time to hit in the cache.

40. What is Split Transactions?

 With multiple masters, a bus can offer higher bandwidth by using packets, as opposed to holding the

bus for the full transaction. This technique is called split transactions.

41. What is Cylinder?

 Cylinder is used to refer to all the tracks under the arms at a given points on all surfaces.

42. What is Synchronous Bus?

Page | 55

 Synchronous bus includes a clock in the control lines and a fixed protocol for sending address and

data relative to the clock.

43. Explain difference between latency and throughput.

 Latency is defined as the time required processing a single instruction, while throughput is defined as

the number of instructions processes per second.

44. What is called Pages?

 The address space is usually broken into fixed-size blocks, called pages. Each page resides either in

main memory or on disk.

45. What are the techniques to reduce hit time?

The techniques to reduce hit time are:

 Small and simple cache: Direct mapped.

 Avoid address translation during indexing of the cache.

 Pipelined cache access.

 Trace cache.

46. What are the categories of cache miss? (April/May 2013) (Or) Point out one simple technique used

to reduce each of the three "C" misses in cache memories. (Nov/Dec 2017)

 Categories of cache misses are,

 Compulsory

 Capacity

 Conflict

47. How the conflicts misses are divided? (Nov/Dec 2016)

Four divisions of conflict misses are:

 Eight way: Conflict misses due to going from fully associative to eight way associative.

 Four way:Conflict misses due to going from eight way associative to four way associative.

 Two way: Conflict misses due to going from four way associative to two way associative.

 One way: Conflict misses due to going from two way associative to one way associative.

48. What is Sequence Recorded?

 The sequence recorded on the magnetic medics is a sector number, a gap, the information for that

sector including error correction cede, a gap, the sector number of the next sector and so on.

49. Write the formula to calculate the CPU execution time.

 CPU execution time = (CPU clock cycles + Memory stall cycles) x Clock cycle time.

50. Write the formula to calculate the CPU time.

 CPU time = (CPU execution clock cycles + Memory stall clock cycles) x Clock cycle time.

51. What is RAID? (Nov/Dec 2011, April/May 2015, 2017)

 RAID stands forRedundant Array of Independent Disks.

 It is also called as redundant array of inexpensive disks.

Page | 56

 It is a way of storing the same data in different places on multiple hard disks.

(Or)

 RAID is a storage technology that combines multiple disk drive components into a logical unit for

the purposes of data redundancy and performance improvement.

 Data is distributed across the drives in one of several ways, referred to as RAID levels, depending on

the specific level of redundancy and performance required.

52. Explain the terms availability and dependability. (Nov/Dec 2017)

 Availability is a measure of the service accomplishment with respect to the alternation between the

two states of accomplishment and interruption.

 Dependability is the quality of delivered service such that reliance can justifiable be placed on this

service.

53. What are the differences and similarities between SCSI and IDE? (April/May 2017)

Parameters IDE SCSI

Cost IDE is a much cheaper solution
SCSI is often more expensive to

implement and support

Expansion It allows 2 two devices per channel.
It is capable of supporting up to 7 or

15 devices.

Ease

IDE is commonly a much easier

product to setup than SCSI.

Configuring SCSI can be more

difficult for most users when

compared to IDE.

CPU

IDE devices cannot communicate

independently from the CPU.

SCSI devices can communicate

independently from the CPU over the

SCSI bus.

54. Why does DRAM generally have much larger capacities than SRAMs constructed in the same

fabrication technology? (Nov/Dec 2016)

 DRAM bit cells require only two devices (capacitor and transistor) while SRAM bit cells typically

requires six transistors.

 This makes the bit cells of the DRAM much smaller than the bit cells of the SRAM, allowing the

DRAM to store more data in the same amount of chip space.

55. What are the measures of I/O performance? (Nov/Dec 2013)

I/O Performance Measures

 Measures used to quantify I/O performance attempt to measure a more diverse range of properties

than the case of CPU performance.

 The traditional measures of performance namely response time and throughput also apply to I/O. I/O

throughput is sometimes called I/O bandwidth and response time is sometimes called latency.

56. What are the types of storage devices? (Nov/Dec 2016, April/May 2017)

Page | 57

 Physical components or materials on which data is stored are called storage media.

 Hardware components that read/write to storage media are called storage devices. A floppy disk

drive is a storage device.

 Two main categories of storage technology used today are magnetic storage and optical storage.

Storage devices hold data, even when the computer is turned off. The physical material that actually

holds data is called storage medium.

57. What do you mean by Memory Interleaving?

 Interleaved memory is a design made to compensate for the relatively slow speed of dynamic

random-access memory (DRAM) or core memory, by spreading memory addresses evenly

across memory banks.

58. What are the factors responsible for the maximum I/O bus performance? (April/May 2005)

Factors to be considered for maximum I/O bus performance are:

 Latency &Bandwidth

59. What are the two major advantages and disadvantages of the bus? (May/June 2007)

Advantages:

 It is easy to set-up and extend bus network.

 Cable length required for this topology is the least compared to other networks. Bus topology costs

very less.

 Bus topology costs very less.

Disadvantages:

 There is a limit on central cable length and number of nodes that can be connected

 Dependency on central cable in this topology has its disadvantages. If the main cable (i.e. bus)

encounters some problem, whole network breaks down.

60. Is the RISC processor is necessary? Why? (May/June 2007)

 Although RISC was indeed able to scale up in performance quite quickly and cheaply and it is

necessary for building block of high performance parallel processors.

61. Define the terms cache miss and cache hit. (Nov/Dec 2011, May/June 2013)

 A cache miss, generally, is when something is looked up in the cache and is not found.

 The cache did not contain the item being looked up. The cache hit is when you look something up in

a cache and it was storing the item and is able to satisfy the query.

62. Compare software and hardware RAID.

Software RAID Hardware RAID

1. A simple way to describe software RAID is that

the RAID task runs on the CPU of your

computer system.

2. It is implemented in Pure Software model –

1. A hardware RAID solution has its own

processor and memory to run the RAID

application. In this implementation, the RAID

system is an independent small computer system

Page | 58

Operating System Software and hybrid model-

Assisted Software RAID.

dedicated to the RAID application, offloading

this task from the host system.

2. Hardware RAID can be implemented in a

variety of ways:

 as a discrete RAID Controller Card, or

 as integrated hardware based on RAID-

on-Chip technology

63. Explain the need to implement memory as a hierarchy. (April/May 2017)

 A "memory hierarchy" in computer storage distinguishes each level in the "hierarchy" by response

time.

 Each level of the hierarchy is of higher speed and lower latency, and is of smaller size, than lower

levels.

 The levels in the memory hierarchy not only differ in speed and cost. They are performing different

roles.

64. What is a register in memory?

 A register is a very small amount of very fast memory that is built into the CPU (central processing

unit) in order to speed up its operations by providing quick access to commonly used values.

 Registers are the top of the memory hierarchy and are the fastest way for the system to manipulate

data.

65. What is the storage hierarchy?

 A storage device hierarchy consists of a group of storage devices that have different costs for storing

data, different amounts of data stored, and different speeds of accessing the data.

 Level 0, including DFSMShsm-managed storage devices at the highest level of the hierarchy,

contains data directly accessible to you.

66. What is Cache Optimization?

 The idea behind this approach is to hide both the low main memory bandwidth and the latency of

main memory accesses which is slow in contrast to the floating-point performance of the CPUs.

67. List the six basic optimization techniques of cache. (Nov/Dec 2016) (Or) List the basic six cache

optimizations for improving cache performance. (Nov / Dec 2018)

 The six basic optimization techniques of cache are,

 Larger block size to reduce miss rate

 Bigger caches to reduce miss rate

 Higher associativity to reduce miss rate

 Multilevel caches to reduce miss penalty

 Giving priority to read misses over writes to reduce miss penalty

 Avoiding address translation during indexing of the cache to reduce hit time

Page | 59

68. Difference between Volatile and Non-volatile Memory. (Or) Outline the difference between volatile

and non-volatile memory. (April/May 2018)

Volatile Memory (RAM) Non-volatile Memory (ROM)

 It is a volatile memory.

 Contents are stored temporarily.

 Cost is very high.

 Small storage capacity.

 Processing speed is high.

 It is a non-volatile memory.

 Contents are stored permanently.

 Cost Effective.

 High storage capacity.

 Processing speed is low.

69. What is a Cache Performance?

 Cache Performance - Average memory access time is a useful measure to evaluate

the performance of a memory-hierarchy configuration.

70. What is hit and miss ratio?

 The hit ratio is the fraction of accesses which are a hit.

 The miss ratio is the fraction of accesses which are a miss. It holds that. miss rate = 1 − hit rate.

 The (hit/miss) latency (AKA access time) is the time it takes to fetch the data in case of a hit/miss.

71. Differentiate between SRAM and DRAM.

 SRAM (Static RAM) and DRAM (Dynamic RAM) holds data but in a different ways.

 DRAM requires the data to be refreshed periodically in order to retain the data.

 SRAM does not need to be refreshed as the transistors inside would continue to hold the data as long

as the power supply is not cut off.

 DRAM memory slower and less desirable than SRAM.

72. Differentiate between throughput and response time. [May 2019]

Throughput Time Response Time

1. This is the time difference between submission of

a request until the response begins to be received.

2.The response time should be as low as possible so

that a large number of interactive users receive an

acceptable response time.

1. The number of processes that are completed per

unit time is called the throughput.

2. It is desirable to maximize CPU utilization and

throughput and to minimize turnaround time and

response time.

73. Suppose a processor sends 80 disk I/Os per second, these requests are exponentially

distributed, and the average service time of an older disk is 25 ms. Nov/Dec 2020.

Answer the following questions:

1. On average, how utilized is the disk?

2. What is the average time spent in the queue?

3.What is the average response time for a disk request, including the queuing time and disk

service time?

Page | 60

Average number of Arriving tasks / second is 80 ms.

Average disk time to service a task is 25ms = (0 .025 sec).

The server utilization is then

Service utilization = Arrival rate x Time Server

= 80 x 0.025 = 2.0

Since the service times are exponentially distributed, we can use the simplifiedformula for the

average time spent waiting in line:

𝑠𝑒𝑟𝑣𝑒𝑟 𝑈𝑡i𝑙i𝑧𝑎𝑡i𝑜𝑛
𝑇i𝑚𝑒 Q𝑢𝑒𝑢𝑒 = 𝑇i𝑚𝑒 𝑆𝑒𝑟𝑣𝑒𝑟 X

(1 − 𝑆𝑒𝑟𝑣𝑒𝑟 𝑈𝑡i𝑙i𝑧𝑎𝑡i𝑜𝑛)

2
= 25 𝑚𝑠 X

1 − 2

= 50 ms (consider +ve value)

The average response time is

Time system = Time queue + Time Server

= 50 ms + 25 ms

= 75 ms

Thus, on average we spend 75% of our time waiting in the queue!

74. What is IO mapped input output?

 A memory reference instruction activated the READ M (or) WRITE M control line anddoes not

affect the IO device. Separate IO instruction is required to activate the READ IO and WRITE IO

lines,which cause a word to be transferred between the address port and the CPU.

 The memory and IO address space are kept separate.

75. Specify the three types of the DMA transfer techniques?

 Single transfer mode (cyclestealing mode)

 Block Transfer Mode (Burst Mode)

 Demand Transfer Mode

 Cascade Mode

76. Name any three of the standard I/O interface.

 SCSI (small computer system interface), bus standards

 Back plane bus standards

 IEEE 796 bus (multibus signals)

 NUBUS & IEEE 488 bus standard

77. What is an I/O channel?

 An I/O channel is actually a special purpose processor; also called peripheral processor.

 The main processor initiates a transfer by passing the required information in the input output

channel. The channel then takes over and controls the actual transfer of data.

Page | 61

78. Why program controlled I/O is unsuitable for high-speed data transfer?

 In program controlled I/O considerable overhead is incurred. Because several program instructions

have to be executed for each data word transferred between the external devices and MM.

 Many high speed peripheral; devices have a synchronous modes of operation. That is data transfer is

controlled by a clock of fixed frequency, independent of the CPU.

79. What is the function of I/O interface?

 The function is to coordinate the transfer of data between the CPU and external devices.

80. Name some of the IO devices.

 Video terminals

 Video displays

 Alphanumeric displays

 Graphics displays

 Flat panel displays

 Printers

 Plotters

81. Define interface.

 The word interface refers to the boundary between two circuits or devices

82. What is programmed I/O?

 Data transfer to and from peripherals may be handled using this mode. Programmed I/O operations

are the result of I/O instructions written in the computer program.

83. What are the limitations of programmed I/O? (Nov / Dec 2011)

The main limitation of programmed I/O and interrupt driven I/O is given below:

Programmed I/O

 It used only in some low-end microcomputers.

 It has single input and single output instruction.

 Each instructions selects one I/O device (by number) and transfers a single character (byte)

 Example: microprocessor controlled video terminal.

 Four registers: input status and character, output status and character.

Interrupt-driven I/O

 Primary disadvantage of programmed I/O is that CPU spends most of its time in a tight loop waiting

for the device to become ready. This is called busy waiting.

 With interrupt-driven I/O, the CPU starts the device and tells it to generate an interrupt when it is

finished.

 Done by setting interrupt-enable bit in status register.

 Still requires an interrupt for every character read or written.

 Interrupting a running process is an expensive business (requires saving context).

Page | 62

 Requires extra hardware (DMA controller chip).

84. Differentiate Programmed I/O and Interrupt I/O. (Nov / Dec 2014)

Programmed I/O Interrupt I/O

In programmed I/O, processor has to check each

I/O device in sequence and in effect ‗ask‘ each one

if it needs communication with the processor. This

checking is achieved by continuous polling cycle

and hence processor cannot execute other

instructions in sequence.

External asynchronous input is used to tell the

processor that I/O device needs its service and

hence processor does not have to check whether

I/O device needs it service or not.

During polling processor is busy and therefore, has

serious and decremental effect on system

throughput.

In Interrupt driven I/O, the processor is allowed to

execute its instructions in sequence and only stop

to service I/O device when it is told to do so by the

device itself. This increases system throughput.

It is implemented without

support.

interrupt hardware It is implemented

support.

using interrupt hardware

It does not depend on interrupt status. Interrupt must be enabled to process Interrupt

driven I/O.

It does not need initialization of stack. It needs initialization of stack.

System throughput decreases as number of I/O

devices connected in the system increases.

System throughput does not depend on number of

I/O devices connected in the system.

85. Differentiate between memory-mapped I/O and I/O mapped I/O. (Apr / May 2011)

S.No. Parameter Memory-mapped I/O I/O-mapped I/O

1. Address space Memory and I/O devices share the

entire address space

Memory and I/O devices have

separate address space

2. Hardware No additional hardware required Additional hardware required

3. Implementation Easy to implement Difficult to implement

4. Address Same address cannot be used to refer

both memory and I/O device.

Same address can be used to refer

both memory and I/O device.

5. Control lines Memory control lines are used to

control I/O devices.

Different set of control lines are used

to control memory and I/O.

6. Control lines used The control lines are: READ, WRITE The control lines are: READ M,

WRITE M, READ I/O, WRITE I/O

86. What is DMA?

 A special control unit may be provided to enable transfer a block of data directly betweenan external

device and memory without contiguous intervention by the CPU. This approach is called DMA.

(OR)

Page | 63

 A direct memory access (DMA) is an operation in which data is copied (transported) from one

resource to another resource in a computer system without the involvement of the CPU.

87. What are MAR and MBR?

 MAR – Memory address register holds the address of the data to be transferred.

 MBR – Memory buffer register contains the data to be transferred to or from the main memory.

88. Define bus arbitration. List out its types. (May / June 2009)

Bus Arbitration: It is the process by which the next device to become the bus master is selected and the bus

mastership is transferred to it.

Types: There are 2 approaches to bus arbitration. They are,

 Centralized arbitration (A single bus arbiter performs arbitration)

 Distributed arbitration (all devices participate in the selection of next bus master).

89. Define memory interleaving. (Apr / May 2017)

Memory interleaving is the technique used to increase the throughput. The core idea is to split the memory

system into independent banks, which can answer read or write requests independents in parallel.

90. What is an interrupt?

 An interrupt is an event that causes the execution of one program to be suspended and another

program to be executed.

91. What are the uses of interrupts?

 Recovery from errors

 Debugging

 Communication between programs

 Use of interrupts in operating system

92. Define vectored interrupts.

 In order to reduce the overhead involved in the polling process, a device requesting an interrupt may

identify itself directly to the CPU. Then, the CPU can immediately start executing the corresponding

interrupt-service routine. The term vectored interrupts refers to all interrupt handling schemes base

on this approach.

93. What are the steps taken when an interrupt occurs?

Source of the interrupt

 The memory address of the required ISP

 The program counter & CPU information saved in subroutine

 Transfer control back to the interrupted program

94. Summarize the sequence of events involved in handling an interrupt request from a single device.

(Apr / May 2017) Write the sequence of operations carried out by a processor when interrupted by a

peripheral device connected to it. (Apr/May 2018)

Let us summarize the sequence of events involved in handling an interrupt request from a single device.

Page | 64

Assuming that interrupts are enabled, the following is a typical scenario.

1. The device raises an interrupt request.

2. The processor interrupts the program currently being executed.

3. Interrupts are disabled by changing the control bits in the PS (except in the case of edge-triggered

interrupts).

4. The device is informed that its request has been recognized, and in response, it deactivates the interrupt-

request signal. 5. The action requested by the interrupt is performed by the interrupt-service routine. 6.

Interrupts are enabled and execution of the interrupted program is resumed.

95. Point out how DMA can improve I/O speed. (May / June 2015)

DMA module controls exchange of data between main memory and the I/O device. Because of DMA device

can transfer data directly to and from memory, rather than using the CPU as an intermediary, and can thus

relieve congestion on the bus. CPU is only involved at the beginning and end of the transfer and interrupted

only after entire block has been transferred. In this case DMA improves the I/O speed of the system.

96. Define IO Processor.

The IOP attaches to the system I/O bus and one or more input/output adapters (IOAs). The IOP processes

instructions from the system and works with the IOAs to control the I/O devices.

97. Draw the Memory hierarchy in a typical computer system. (Nov/Dec 2018)(Or)

Draw the basic structure of a memory hierarchy. (Apr/May 2019)

98. What is meant by Memory-mapped I/O? (Nov/Dec 2018)

Memory mapped I/O is a way to exchange data and instructions between a CPU and peripheral

devices attached to it. Memory mapped IO is one where the processor and the IO device share the

same memorylocation(memory),i.e.,the processor and IO devices aremapped using the memory address.

99. What is the use of DMA Controller? (Apr/May 2018)

 A special control unit may be provided to allow the transfer of large block of data at high speed

directly between the external device and main memory, without continuous intervention by the

processor. This approach is called DMA.

 DMA transfers are performed by a control circuit called the DMA Controller.

Page | 65

100. Define Bus Structures.

In computer architecture, a bus (a contraction of the Latin omnibus) is a communication system that

transfers data between components inside a computer, or between computers. This expression covers all

related hardware components (wire, optical fiber, etc.) and software, including communication protocols.

101. What is the meaning of USB?(Nov/Dec 2019)

A Universal Serial Bus (USB) is a common interface that enables communication between devices

and a host controller such as a personal computer (PC). It connects peripheral devices such as digital

cameras, mice, keyboards, printers, scanners, media devices, external hard drives and flash drives.

102. what is baud rate?Nov/Dec 2020.

The baud rate is the rate at which information is transferred in a communication channel. Baud rate is

commonly used when discussing electronics that use serial communication. In the serial port context, "9600

baud" means that the serial port is capable of transferring a maximum of 9600 bits per second.

At baud rates above 76,800, the cable length will need to be reduced. The higher the baud rate, the

more sensitive the cable becomes to the quality of installation, due to how much of the wire is untwisted

around each device.

103. In memory organization,what is temporal locality? Nov/Dec 2021

Temporal locality means current data or instruction that is being fetched may be needed soon.

When CPU accesses the current main memory location for reading required data or instruction, it

also gets stored in the cache memory which is based on the fact that same data or instruction may be

needed in near future.

104. How many total bits are required for a direct-mapped cache with 16KB of data and 4 word

blocks, assuming a 32-bit address? (Apr/May 2019)

16 KB = 16384 (214) bytes = 4096 (212) words

Block size of 4 (22) words = 16 bytes (24) = 1024

(2
10

) blocks with 4 x 32 = 128 bits of data

So, n = 10

m = 2

= 210x (4 x 32 + (32 –10 –2 - 2) + 1)

= 210x 147

= 18.4 KB

105. Define SATA.

Serial ATA is a peripheral interface created in 2003 to replace Parallel ATA, also known as IDE.

Hard drive speeds were getting faster, and would soon outpace the capabilities of the older standard—the

Page | 66

fastest PATA speed achieved was 133MB/s, while SATA began at 150MB/s and was designed with

future performance in mind.

106. Explain about USB.

 The universal serial bus (USB) is a standard interface for connecting a wide range of devices to the

computer such as keyboard, mouse, smart phones, speakers, cameras etc.

 The USB was introduced for commercial use in the year 1995 at that time it has a data transfer speed

of 12 megabits/s.

	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
	COMMON FOR: DEPARTMENT OF INFORMATION TECHNOLOGY
	CS8451 – DESIGN AND ANALYSIS OF ALGORITHMS
	YEAR / SEM : II / III
	R – 2017
	LECTURE NOTES
	SYLLABUS
	UNIT I INTRODUCTION 9
	UNIT II FORCE AND DIVIDE-AND-CONQUER 9
	UNIT III DYNAMIC PROGRAMMING AND GREEDY TECHNIQUE 9
	UNIT I
	1. What is an algorithm? Or Define an algorithm. (Apr\May- 2017) Or Define algorithm with its properties.(April/May 2021)
	2. Define Program.
	3. What is performance measurement?
	4. Write the For LOOP general format.
	5. What is recursive algorithm?
	6. What is space complexity?
	7. What is time complexity?
	8. Give the two major phases of performance evaluation.
	9. Define input size.
	10. Define best-case step count.
	11. Define worst-case step count.
	12. Define average step count.
	13. Define the asymptotic notation “Big oh” (0)
	14. Define the asymptotic notation “Omega” (Ω). NOV/DEC 2021
	15. Define the asymptotic notation “theta” (Θ)
	16. What is a Computer Algorithm?
	17. What are the features of an algorithm?
	19. What are different problem types?
	20. What are different algorithm design techniques/strategies?
	21. How to measure an algorithm’s running time? Nov/Dec 2017
	22. How time efficiency is analyzed?
	T(n) ≈ cop c(n)
	24. What are basic efficiency classes?
	25. Give an example for basic operations.
	26. What are six steps processes in algorithmic problem solving? Dec 2009
	27. What do you mean by Amortized Analysis?
	28. Define order of an algorithm.
	29. How is the efficiency of the algorithm defined? Or . How do you measure the efficiency of an algorithm? May/June 2019
	30. What are the characteristics of an algorithm?
	31. What are the different criteria used to improve the effectiveness of algorithm?
	32. Analyse the time complexity of the following segment: for(i=0;i<N;i++)
	33. Write general plan for analysing non-recursive algorithms.
	34. How will you measure input size of algorithms?
	35. Write general plan for analysing recursive algorithms.
	36. What do you mean by Combinatorial Problem?
	37. Define Little “oh”.
	38. Define Little Omega.
	39. Write algorithm using iterative function to fine sum of n numbers.
	40. Write an algorithm using Recursive function to fine sum of n numbers.
	41. Describe the recurrence relation for merge sort?
	44. Differentiate time complexity from space complexity. May 2010
	49. Define program proving and program verification. May 2014
	52. Establish the relation between O and Ω Dec 2010
	54. What is best case analysis? Or Best case efficiency.
	55. what do you mean worst case efficiency of algorithm.Nov/Dec 2017
	56. Consider an algorithm that finds the number of binary digits in the binary representation ofa positive decimal integer. (AU april/may 2015)
	57. write doun the properties of asymptotic notations.(AU april/may 2015)
	Theorem
	Proof
	58. Give the Euclid’s algorithm for computing gcd(m, n) (AU nov 2016) or write an algorithm to compute the greatest common divisor of two numbers (Apr/ May-2017)(or)
	return m
	59. Compare the order of growth n(n-1)/2 and n2. (AU nov 2016)
	60. The (log n)th smallest number of n unsorted numbers can be determined in O(n) average- case time
	61. Fibonacci algorithm and its recurrence relation Algorithm for computing Fibonacci numbers
	62. Design an algorithm to compute the area and circumference of a circle
	64. Define algorithm. List the desirable properties of an algorithm.
	65. Define best, worst, average case time complexity.
	66. Prove that the of f(n)=o(g(n)) and g(n)=o(f(n)),then f(n)=θ g(n). OR
	Given function:
	From (3) f(n) = Θ(g(n)) hence proved
	68. List the reasons for choosing an approximate algorithm.
	Synopsis:
	Definition:
	Diagram:
	Writing an algorithm
	Rules for writing an algorithm.
	// Problem Description;
	//Output:
	Write (“this message will be displayed on console “); Read (Val);
	If (condition) then statement
	While (condition)do
	Statement 1
	:
	}
	For variable ← value1 to valuen do
	Statement 1 (1)
	: (1)
	} (1)
	For i ← 1 to n step 1
	Write (i)
	Repeat
	Statement 2
	Statement n Until (condition)
	Example 5:
	Implementation of algorithms
	Order of an algorithm
	Example
	Program
	Difference between program and algorithm:
	Example : Calculating Greatest common Divisor
	Euclid's algorithm to compute Greatest Common Divisor (GCD) of two non negative integers.
	2. Consecutive integer checking algorithm
	Example:
	Consecutive integer checking algorithm for computing gcd(m, n)
	3. Finding GCD using repetitive factors
	Middle School Method
	Algorithm:
	2. Explain the Fundamentals of Algorithmic problem solving. Or explain the steps involved in problem solving May 2014 ,April/May 2019
	1. Understanding the problem:
	2. Ascertaining the capabilities of a computational device Sequential Algorithm:
	Parallel Algorithm:
	3. Choosing between exact and appropriate problem solving
	Reason to choose approximate algorithm
	4. Deciding on appropriate data structures
	Algorithm + Data Structures = Programs.
	5. Algorithm Design Techniques
	Uses
	6. Methods of specifying an algorithm
	Pseudo code
	Flow chart
	7. Proving an Algorithm's correctness
	8. Analysing an algorithm
	Time Efficiency / Time Complexity
	Compilation Time
	Execution Time
	Worst Case Analysis
	Average Case Analysis
	Best Case Analysis
	Space Complexity
	Instruction Space
	Data Space
	Environment Space
	Characteristics of an algorithms
	Simplicity
	9. Coding an Algorithm
	3. Explain the important problem types.
	1. Sorting
	Properties of Sorting Algorithms
	Stable:
	In-place
	Types of Sorting
	Internal Sorting
	External Sorting
	2. Searching
	Searching in dynamic set of elements
	3. String processing
	Pattern Matching or String matching
	4. Graph Problems
	5. Combinatorial Problems
	6. Geometric Problems
	6. Numerical problems
	3. Explain the fundamentals of the analysis framework. Or explain time-space trade off of the algorithm designed. April/May 2019
	Example (1)
	 Drawbacks
	Example (2)
	Cavg(n)= + n(1-p)
	Example: (1)
	4. Explain the Asymptotic Notations and its properties? Or explain briefly Big oh notation
	algorithms? Nov/Dec 2017 Nov/Dec 2018
	Definition
	Example 1:
	Definition (1)
	o Example 1:
	Definition (2)
	Example 1: (1)
	(t(n) Є Θ(g(n)))
	Example (3)
	Theorem (1)
	Proof (1)
	L' Hospital's rule.
	Asymptotic Growth Rate
	Basic Asymptotic Efficiency Classes
	Example 1: Problem for finding the value of the largest element in a list of n numbers
	Mathematical Analysis
	The frequently used two basic rules of sum manipulation are,

	Example 2: Element uniqueness problem-check whether all the element in the list are distinct April/May 2019
	Mathematical analysis
	Worst case investigation
	C worst (n) = Outer loop × Inner loop

	EXAMPLE 3 : Obtaining matrix multiplication
	Given two n × n matrices A and B, find the time efficiency of the definition-based algorithm for computing their product C = AB, where A and B are n by n (n*n) matrices.
	Mathematical analysis
	Running time of the Algorithm T(n)
	Time spend addition CA (n)

	EXAMPLE 4:The following algorithm finds the number of binary digits in the binary representation of a positive decimal integer.
	Mathematical analysis
	6. Explain the Mathematical analysis for recursive algorithm. (Apr/May-2017) or
	Discuss various methods used for mathematical analysis of recursive algorithms.May/June 2018
	Mathematical Analysis:
	F(n) = F(n-1) * n, for n>0
	M(n) = M(n-1) + 1, for n>0
	M(n)=M(n-1) +1, for n>0
	Forward Substitution:
	M(n)=M(n-1)+1,for n<0, M(0)=0
	M(n) = M(n-1) + 1
	M(n) = [M(n-2)+1]+1
	M(n)=[M(n-3)+1] + 2
	Proof

	Example 2:Tower of Hanoi puzzle
	General plan to tower of Hanoi problem
	M(n)=M(n-1)+1+M(n-1),for n>1; M(n)=2M(n-1)+1, for n>1;
	M(n)=2M(n-1)+1,for n>1 M(1)=1
	Backward substitution Method
	M(n-1)=2M(n-2)+1
	M(n-2)=2M(n-3)+1
	M(n)=22[2M(n-3)+1]+2+1 M(n)=23[M(n-3)+22+2+1
	=2iM(n-i)+2i-1
	Solution to recurrence relation is
	=2n-1

	Example 3 :To find the number of binary digits in binary representation
	Backward Substitution Method
	A(2k) = A(1) + k = k

	Example 4: Fibonacci series
	Explicit formula for the nth Fibonacci number
	r2-r-1=0
	Where
	B(0)=0
	F(n)=
	7. Find the time complexity and space complexity of the following problems. Factorial using recursion and compute the nth Fibonacci number using iterative statements. Dec 2012
	T(n)=T(n/2)+1,where n=2k for all k>=0
	1. T(n)= 2T(n/2)+3 n>2
	2. T(n)= 2T(n/2)+cn n>1
	8. Show the following equalities are correct June 2013
	ii. n!=O(nn)
	iv. 2n22n + n log n = Θ(n22n)
	9. Prove that for any two functions f(n) and g(n), we have f(n)-> Θ(g(n)) if and only if f(n) -> O(g(n)) and f(n) ->Ω(g(n)) Nov 2010
	From (3) f(n) = Θ(g(n)) hence proved
	advantage of the fact that the list is known to be sorted? Give separate answers for lists represented as arrays lists represented as linked lists. (AU april/may 2015)
	11. Derive the worst case analysis of merge sort using suitable illustration (AU april/may 2015) Efficiency of Merge Sort
	12. write Insertion sort algorithm and estimate its running time.
	 Average case for a random array: Θ(n2).
	13. Show how to implement a stack using two queues.Analyze the running time of the stack operations.
	15. Derive a loose bound on the following equation: F(x)=35 x8 -22x7+14x5 -2x4 -4x2+x-15
	X(n) =x(n-1) +5 for n > 1 x(1)=0
	If n=2 X(2)=x(2-1)+5
	=0+5
	If n=3 X(3)=x(3-1)+5
	=5+5
	If n=4 X(4)=x(4-1)+5
	=10+5
	17. Use the most appropriate notation to indicate the time efficiency class of sequential search algorithm in the worst case,best case and the average case.
	Central unit of work in sequential search:
	19. Explain briefly about Empirical Analysis of Algorithm.
	General Plan for the Empirical Analysis of Algorithm Time Efficiency
	1. Purpose:
	2. how & What to measure
	Example
	Disadvantages of Measuring the system time
	Advantage of Measuring physical running time
	ALGORITHM
	20. Explain briefly about Algorithm Visualization.
	Applications:
	2. Research - Helps to uncover some unknown features of algorithms.
	OR
	Refer Q. No. 14 OR
	Refer Q. No. 14
	OR (1)
	Refer Q.No.6
	Refere Q.No.35 & 40

	UNIT - I
	INTRODUCTION
	BASICS OF A COMPUTER SYSTEM
	Fig 1.1: Von Neumann Architecture
	Central Processing Unit (CPU)
	Memory Unit
	1. Primary Memory:
	Arithmetic & Logic Unit
	Output Unit
	Control Unit
	Evolution of Computers
	The Mechanical Era (1623-1945)
	First Generation Electronic Computers (1937-1953)
	Second Generation (1954-1962)
	Third Generation (1963-1972)
	functional parallelism.
	Fourth Generation (1972-1984)
	Fifth Generation (1984-1990)
	Sixth Generation (1990 -)
	Great Ideas in Computer Architecture
	1. Moore’s Law
	2. Abstract Design
	3. Performance through parallelism
	4. Performance through Pipelining
	5. Make the Common Case Fast
	6. Performance via prediction
	7. Hierarchy of memories
	8. Dependability via Redundancy
	Technologies
	Manufacturing of IC:
	Fig 1.3: Chip manufacturing process
	Programmable Logic Device (PLD)
	Fig 1.4: Programmable Logic Device
	Performance
	 Instructions x
	Cycles Instruction
	ClockRate
	ClockCycle
	InstructionsPerCycle(IPC)
	CyclesPerInstruction
	Fig 1.6: Types of Benchmark Programs

	Speedup PerformanceofA ExecutionofB
	CPUTime
	 Instructions x (1)
	Cycles Instruction (1)
	OldExecutionTime
	CPUtimeB CPUTimeA
	Powerwall
	Fig 1.7: Clock rate and Power
	From Uniprocessors to Multiprocessors
	Single Instruction, Single Data (SISD):
	Multiple Instruction, Single Data (MISD):
	Single Instruction, Multiple Data (SIMD):
	Multiple Instruction, Multiple Data (MIMD):
	Fig 1.8: Flynns Taxonomy
	Concern for Power
	ADDRESSING AND ADDRESSING MODES
	1. Immediate Addressing:
	Fig 1.9: Immediate Mode
	Fig 1.10: Direct Addressing modes
	Fig 1.11: Indirect Addressing Modes
	Fig 1.12: Register Mode
	 Example:MOV AL, [BX]
	Fig 1.13: Register Indirect Mode
	Fig 1.14 a): Displacement Addressing Modes
	 Relative addressing:
	Example: EA=A+PC
	Fig 1.14 b): Relative addressing
	Fig 1.14 c): Base Register Addressing Mode
	Fig 1.14d): Indexed Addressing
	Additional Modes:
	Auto-increment mode:
	Fig 1.16: Auto-increment Mode
	Auto-decrement mode:
	Fig 1.17: Auto Decrement Addressing Mode
	Operations
	Operands
	Memory Operands
	spilling registers.
	Name
	Example
	Comments
	Representation of Instructions
	Fields in MIPS
	Fig 1.18: Mapping of register names and numbers
	Logical Operations
	Control Operations
	Decision Making:
	i) Branch if Equal (BEQ):
	ii) Branch if not Equal (BNE):
	Example:
	if (i == j) f = g + h; else f = g – h;
	Looping:
	Example: (1)
	Case / Switch Statements

	UNIT - II ARITHMETIC
	INTRODUCTION
	Signed and Unsigned Numbers:
	Unsigned binary numbers:
	Signed Magnitude Representation:
	Examples:
	Two’s Complement Representation:
	FIXED POINT ARITHMETIC
	Example:
	Precision loss and overflow
	Addition and Subtraction
	Fig 2.1: Addition and Subtraction operation
	Steps for addition:
	Steps for subtraction:
	Fig 2.3: Manipulating carry
	Multiplication
	Fig 2.4: Basic multiplication algorithm
	Fig 2.5: Flowchart for Booth’s algorithm Example 2.5: Multiply 7 and 3 using Booth’s algorithm.
	Example 2.6 : Multiply -5 and -7 using Booth’s algorithm A Q Q-1 M
	Division
	Fig 2.6: Division Terminologies
	Fig 2.8: Fixed point division Example 2.7: Divide -7 by 3
	Example 2.8: Divide -7 by -3
	Example 2.10: Divide -7 by 3
	FLOATING POINT ARITHMETIC
	Fig 2.9: Parts of floating point number Conversion of Decimal number to floating point:
	Example 2.11: Find the floating point equivalent of -17.
	Terminologies:
	Fig 2.10: Floating point formats
	1. Single precision:
	2. Double precision:
	Floating point addition and subtraction
	Fig 2.11: Flowchart for floating point addition / subtraction
	Floating point multiplication
	Fig 2.13: Flowchart for Floating point multiplication
	Example 2.20: Perform binary multiplication on 0.5 and -0.4375.
	MIPS floating point instructions
	HIGH PERFROMANCE ARTHMETIC
	High performance adders
	High performance Multiplication Multiplication using variable length shift
	Rules:
	Multiplication Using Uniform Shifts
	Uniform shifts of two
	Multiplication Using Carry-Save Adders
	SUB WORD PARALLELISM
	Advantages of subword parallelism
	Support for subword parallelism

	UNIT - III THE PROCESSOR
	INTRODUCTION
	MIPS ARCHITECTURE
	Implementation of MIPS
	Fig 3.1 :Implementation of MIPS architecture with multiplexers and control lines Sequence of operations
	MIPS instruction format
	LOGIC DESIGN CONVENTIONS
	Differences between Combinatorial and Sequential elements
	Clocking Methodology
	Edge triggered clocking methodology
	BUILDING A DATAPATH
	Instruction Fetch:
	R type instructions:
	Load and Store instructions:
	Fig 3.5: Data memory and sign extension unit
	Branch Instructions:
	beq t1, t2, offset
	Fig 3. 6: Datapath of branch Instructions
	Creating a single Datapath
	Fig: 3.7: Simple datapath
	SIMPLE IMPLEMENTATION SCHEME
	Fig 3.8: An abstract view of MIPS implementation Instruction Formats of MIPS
	Fig 3.10: Load or store instruction
	Fig 3.11: Branch Instructions
	Fig 3.12: Implementation scheme with control lines Operation of the Datapath given in Fig 3.12:
	Effect of the control signals
	Finalizing the Controls
	PIPELINING
	Stages in MIPS pipelining:
	Fig 3.13: 5 stage pipelining of MIPS architecture
	Fig 3.14 a) Non pipelined Execution
	Designing instruction sets for Pipelining
	Hazards in Pipelining
	Types of hazard:
	Data Hazards
	add $s0, $t0, $t1 sub $t2, $s0, $t3
	Fig 3.15: Data Hazard
	lw $s0, 20($t1) sub $t2, $s0, $t3
	Fig 3.16: Load-Use data hazard
	Problem 3.1
	Solution :
	A PIPELINED DATAPATH
	Fig 3.17: Single cycle datapath
	Operations in each stage of Pipeline:
	1. Instruction fetch:
	2. Instruction decode and register file read:
	3. Execute or address calculation:
	4. Memory access:
	5. Write back:
	PIPELINED CONTROL
	Fig 3.20: Control signals in single cycled data path Sequence of operations:
	DATA HAZARDS
	Forwarding or Bypassing
	lw $s0, 20($t1) sub $t2, $s0, $t3 (1)
	sub $2, $1, $3 and $12, $2, $5 or $13, $6, $2 add $14, $2, $2
	Fig 3.21: Pipelined diagram
	sub $2, $1, $3 sll $0, $0, $0 sll $0, $0, $0 and $12, $2, $5 or $13, $6, $2 add $14, $2, $2 sw $15, 100($2)
	Fig 3.22: Pipelined dependencies
	Pipeline register. Field in the register
	Stalling
	CONTROL HAZARDS
	Example:
	Solutions for control hazards:
	Static Branch Prediction
	Fig 3.24 a) Branch not taken
	Branch Stalling
	Delayed Branches:
	Dynamic Branch Prediction
	1 bit Prediction scheme
	-
	- (1)
	2 bit prediction scheme:
	Fig 3.24: 2 bit prediction scheme
	EXCEPTIONS
	Exception Handling in the MIPS Architecture:
	Exceptions in a Pipelined Implementation:
	PARALLELISM VIA INSTRUCTIONS
	Implementing multiple issue processor
	Speculation
	Issue in Speculation:
	Static Multiple Issue
	Dynamic Multiple-Issue Processors
	Fig 3.25: Units of dynamic scheduling pipeline

	UNIT - IV MEMORY AND I/O ORGANIZATION
	INTRODUCTION
	Fig 4.1 Memory Hierarchy
	Fig 4.2: Data access by processor
	MEMORY HIERARCHY
	Principle of Locality
	Need for memory hierarchy
	 Processor Memory:
	 Primary memory:
	 Secondary memory:
	Terminologies in memory access
	Fig 4.2: Memory level vs Access Time
	Levels in Memory Hierarchy
	 CPU Registers:
	 Static Random Access Memory (SRAM):
	 Main memory or Dynamic Random Access Memory (DRAM):
	 Local Disks (Local Secondary Storage):
	 Remote Secondary Storage:
	Distinction between Static RAM and Dynamic RAM
	Fig 4.3: Classification of Memory
	Primary Memory:
	i) Random Access Memory (RAM):
	ii) Read Only Memory (ROM):
	Secondary Memory:
	MEMORY CHIP ORGANISATION
	Fig 4.4: Organisation of 16 x 8 memory
	Organisation of 1M x 1 memory chip:
	Organisation of memory word as a row:
	Fig 4.5: Organisation of memory word as row Organisation ofseveral memory words in row:
	Fig 4.6: Organisation ofseveral memory words in row Signals used in memory chip:
	Fig 4.7: Signals in accessing the memory
	CACHE MEMORY
	Terminologies in Cache
	Cache performance:
	Issues in Cache memory:
	Cache Mapping Policies:
	Fig 4.8: Cache mapping
	Direct Mapping
	Fig 4.9: Direct memory mapping
	Fig 4.10: Associative Mapping
	Fig 4.11: Set associative mapping
	Writing to a cache:
	Cache Replacement Algorithms
	VIRTUAL MEMORY
	Terminologies:
	Working mechanism
	Fig 4.12: Mapping of virtual and physical memory
	Fig 4.13: Conversion of logical address to physical address Role of control bit in page table
	Fig 4.14: Page table
	Fig 4.14: Occurrence of page fault
	1. First In First Out (FIFO) page replacement algorithm
	2. Last In First Out (LIFO) page replacement algorithm
	3. Least Recently Used (LRU) page replacement algorithm
	4. Optimal page replacement algorithm
	5. Random page replacement algorithms
	Translation Lookaside Buffer (TLB)
	4.3.5 Protection in Virtual memory
	Hardware Level:
	PARALLEL BUS ARCHITECTURES
	1. Multiple-bus with full bus–memory connection (MBFBMC)
	2. Multiple bus with partial bus–memory connection (MBPBMC)
	3. Multiple bus with class-based memory connection (MBCBMC)
	4. Multiple bus with single bus memory connection (MBSBMC)
	Fig 4.16 a) Multiple-bus with full bus–memory connection (MBFBMC)
	Fig 4.16 c) Multiple bus with partial bus–memory connection (MBPBMC)
	Bus Synchronisation:
	Fig 4.17: Bus synchronisation
	Programmed I/O
	Fig 4.18: Workflow in programmed I/O
	Direct Memory Access (DMA)
	Fig 4.19: CPU bus signals for DMA transfer
	Fig 4.20: Operations in DMA
	Serial Peripheral Interface (SPI)
	Fig 4.21: SPI master with three slaves
	Inter-Integrated Circuit (I2C)
	Working of I2C
	Fig 4.23: I2C Message Format
	Read/Write Bit
	Data Frame
	Steps in Data transmission
	Advantages
	Disadvantages
	MASS STORAGE
	Solid State Devices
	Hard Drives
	External Hard Drives
	Optical Drives
	Tape disks
	Redundant Array of Inexpensive Disks (RAID) Storage
	1. RAID 0 (Disk striping):
	2. RAID 1 (Disk Mirroring):
	3. RAID 5 (Striping with parity):
	4. RAID 6 (Striping with double parity):
	5. RAID 10 (Striping + Mirroring):
	Universal Serial Bus (USB) Devices
	Flash Drives
	INPUT AND OUTPUT DEVICES
	Input Devices Keyboard
	Fig 4.24: Layers in keyboard
	Trackball, Joystick and Touch pad
	Scanners
	Output Devices Video Displays
	Fig 4.25: CRT Monitor
	Printers
	Daisy Wheel Printers
	Dot Matrix Printers
	Inkjet printers
	Laser Printers

	UNIT - V ADVANCED COMPUTER ARCHITECTURE
	PARALLEL PROCESSING ARCHITECTURES
	SISD (Single Instruction, Single Data stream)
	Fig 5.1: Single Instruction, Single Data Stream SIMD (Single Instruction, Multiple Data streams)
	Fig 5.2:Single Instruction, Multiple Data streams MISD (Multiple Instruction, Single Data stream)
	Fig 5.3:Multiple Instruction, Single Data stream
	Fig 5.4:Multiple Instruction, Multiple Data streams Single Multiple
	Multiple SIMD MIMD
	Fig 5.5: Comparison of Flynn’s taxonomy
	HARDWARE MULTITHREADING
	Hardware vs Software multithreading
	Advantages of hardware multithreading:
	Cost of hardware multithreading:
	Types of hardware multithreading
	Fine Grained Multithreading
	Advantages:
	Disadvantages:
	Coarse grained multithreading
	Advantages: (1)
	Disadvantages
	Simultaneous Multithreading (SMT)
	Fig 5.6: Hardware multithreading
	Load Balancing:
	Types of shared memory multiprocessors
	i) Uniform Memory Access (UMA)
	Fig 5.7: Uniform memory access model
	Fig 5.8:Non-uniform Memory Access model
	 Non-Caching NUMA (NC-NUMA):
	Fig 5.9:Non-Caching NUMA
	Fig 5.10:Cache-Coherent NUMA
	GRAPHICS PROCESSING UNITS
	Differences between CPU and GPU
	GPU features
	Development of GPU
	Fig 5.12: GPU Pipeline
	Vertex Processing
	Pixel Processing
	Output Merger Stage
	CLUSTERS AND WAREHOUSE SCALE COMPUTERS
	WSCs as Servers
	Differences between WSCs and data centers
	 Ample parallelism:
	 Operational costs count:
	 Scale and its opportunities and problems:
	Architecture of WSC
	1 rack unit (U)=1.75 inches or 44.45 mm.
	Programming model for WSC
	Storage of WSC
	WSC networking
	Performance
	MULTIPROCESSOR NETWORK TOPOLOGIES
	Design Issues Of Interconnection Networks
	Performance parameters
	 Extensibility
	Network Topologies
	Cube Based Network
	 Binary hypercube or n-cube:
	 Cube Connected Cycle (CCC)
	 Folded HyperCube (FHC)
	Fig 5.15: Folded Hypercube
	 Reduced Hypercube (RHC)
	Fig 5.17: Reduced Hypercube
	Fig 5.18: Hierarchical Cube Network
	 Meta Cube (MC)
	 Folded Dual Cube (FDC)
	 Folded Metacube (FMC)
	 Necklace Hypercube (NH)
	Fig 5.20: Necklace Hypercube
	 Binary Tree (BT)
	 Ring (R)
	 Linearly Extensible Tree (LET)
	Fig 5.21: Linearly Extensible Tree
	Fig 5.22:Linearly Extensible Cube

	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
	COMMON FOR: DEPARTMENT OF INFORMATION TECHNOLOGY
	CS8492 – DATABASE MANAGEMENT SYSTEMS
	YEAR / SEM : II / III
	R – 2017
	LECTURE NOTES
	Unit – III Transactions
	Concurrency
	Transaction Concepts
	(Or)
	A Simple Transaction Model / Simple Model of a Database (for purposes of transactions):
	Read Operation:
	Write Operation:

	Figure: Two sample transactions. (a) Transaction T1 (b) Transaction T2
	Storage Structure
	Volatile Storage
	Nonvolatile Storage
	Stable Storage

	State Diagram of a Transaction
	(Or) (1)
	Active State
	Partially Committed
	Committed
	Failed State
	Aborted

	ACID Properties
	Properties of Transaction

	Atomicity
	Example:
	Consistency
	1. Total before T occurs = 600 + 300 = 900
	Isolation
	Durability
	Schedules
	Equivalence Schedules
	Two schedules would be conflicting if they have the following properties −
	Two schedules having multiple transactions with conflicting operations are said to be conflict equivalent if and only if −
	Types of Schedule
	Serial Schedule
	Non-serial Schedule
	Serializable Schedule

	Serializability
	Testing of Serializability
	Precedence Graph for Schedule S:
	For Example:
	Precedence Graph for Schedule S1:
	Precedence graph for schedule S2:
	Types of Serializability
	1. Conflict Serializability
	2. View Serializability

	Example: (1)
	Conflict Serializable Schedule
	Conflicting Operations
	Example: (2)
	Conflict Equivalent
	Example: (3)
	View Serializability
	View Equivalent
	1. Initial Read
	2. Updated Read
	3. Final Write
	Example: (4)
	Step 2: Initial Read
	Step 3: Final Write
	T1 → T2 → T3
	Irrecoverable Schedule
	Recoverable with Cascading Rollback
	Concurrency Control
	(Or) (2)
	Purpose of Concurrency Control
	Example: (5)
	Need for Concurrency
	The Lost Update Problem
	Figure: (a) The Lost Update Problem The Temporary Update (or Dirty Read) Problem
	Figure: (b) The Temporary Update Problem
	The basic rules for locking are,
	The locking worksas,
	There are two lock modes,
	Binary Lock
	Shared (S) Lock Mode
	Exclusive (X) Lock Mode

	Lock Compatibility Matrix
	(Or) (3)
	Pitfalls of Lock-Based Protocols
	2. Timestamp Based Protocol
	Example use of the Protocol
	3. Timestamp Ordering Protocol
	 If a transaction Ti issues a read(X) operation −
	 If a transaction Ti issues a write(X) operation −
	1. Basic Timestamp Ordering
	2. Strict Timestamp Ordering
	3. Thomas's Write Rule

	Correctness of Timestamp-Ordering Protocol
	Recoverability and Cascade Freedom
	Solution 1:
	4. Graph based Protocols
	Tree Protocol
	Drawbacks
	Multiple Granularity
	Example of Granularity Hierarchy
	Intention Lock Modes
	Compatibility Matrix with Intention Lock Modes
	Multiple Granularity Locking Scheme
	Two Phase Locking
	Phase 1: Preparation
	Phase 2: The Final Commit
	The Two-Phase Locking Protocol
	Types of Two – Phase Locking Protocol
	Strict Two-Phase Locking Protocol
	Rigorous Two-Phase Locking
	Conservative Two-Phase Locking Protocol

	Lock Conversions
	First Phase:
	Second Phase:
	Automatic Acquisition of Locks
	end
	then
	Implementation of Locking
	Lock Table
	Deadlock Conditions
	Timeouts
	Deadlock Prevention
	No Mutual Exclusion:
	No Hold and Wait:
	Allow Preemption:
	Removing Circular Wait:
	Wait-Die Scheme
	Wound-Wait Scheme

	Deadlock Avoidance
	(Or) (4)
	Wait-for Graph

	Transaction Recovery
	What is Recovery?
	Failure Classification
	1. System Crash
	2. Transaction Failure
	3. Network Failure
	4. Disk Failure
	5. Media Failure
	Storage Structure / Storage of Data
	Volatile Memory
	Non – VolatileMemory

	To avoid data loss in the secondary memory, there are three methods used to back it up:
	Stable Memory

	Log-Based Recovery
	Log-based recovery works as follows −
	Deferred Database Modification
	Immediate Database Modification
	Shadow Paging Technique
	Recovery with Concurrent Transaction
	Checkpoint
	Recovery
	Save Points
	COMMIT Command
	Syntax:
	SAVEPOINT Command
	Syntax:
	Example:

	ROLLBACK Command
	Syntax:
	Example:

	Isolation Levels
	Read uncommitted
	Example
	BEGIN TRY
	BEGIN CATCH
	PRINT 'TRANSACTION FAILED' END CATCH
	READ COMMITTED
	BEGIN TRY (1)
	BEGIN CATCH (1)
	PRINT 'TRANSACTION FAILED' END CATCH (1)
	SNAPSHOT
	Read Committed
	Read committed example 1:
	Session 1
	Session 2
	Output

	Read committed example 2
	Session 1
	Session 2
	Output

	Read committed example 3
	Session 1
	Session 2
	Output

	Read Uncommitted
	Read uncommitted example 1
	Session 1
	Session 2
	Output

	Repeatable Read
	Repeatable Read Example 1
	Session 1
	Session 2
	Output

	Repeatable Read Example 2
	Session 1
	Session 2
	Output

	Repeatable Read Example 3
	Session 1
	Session 2
	Output

	Serializable
	Serializable Example 1
	Session 1
	Session 2
	Output
	Session 1 (1)
	Session 2 (1)
	Output (1)

	Snapshot Example 1
	Session 1
	Session 2
	Output

	Unit – I Relational Databases
	Database
	(Or) (5)
	Database Management System (DBMS) What is DBMS?
	Features of Database:
	Functionsof DBMS
	Database-System Applications
	Enterprise Information
	 Accounting
	 Human Resources
	 Manufacturing
	Banking and Finance
	 Credit Card Transactions
	 Finance
	Universities
	Airlines
	Telecommunication

	Purpose of Database System
	Figure: A Simplified Database System Environment
	File Processing System
	Disadvantages of File System over DBMS
	Data Redundancy and Inconsistency
	Difficulty in Accessing Data
	Data Isolation
	Integrity Problems
	Atomicity Problem
	Concurrent Access Anomalies
	Security Problems
	File Systems vs Database Systems
	File System
	Disadvantages of DBMS
	Characteristics of the Database Approach
	Self-Describing Nature of a Database System
	Insulation between Programs and Data and Data Abstraction
	Support of Multiple Views of the Data
	Sharing of Data and Multiuser Transaction Processing
	Database Terminologies
	Tables
	Key
	Field Names
	Fields
	Domain
	View
	Records
	Constraints
	Cells
	Index
	Data
	Information
	NULL Value
	Data Integrity
	Database Normalization
	Objects
	Views of Data
	Data Abstraction
	Physical Level
	Logical Level
	View Level
	Figure: The Three Levels of Data Abstraction
	Instances and Schemas
	Data Models
	(Or) (6)
	Categories of Data Models
	(Or) (7)
	Relational Model
	Entity-Relationship Model
	Object-Based Data Model
	Semistructured Data Model
	Database Languages
	Data-Manipulation Language
	Data-Definition Language

	Domain Constraints
	Referential Integrity
	Assertions
	Authorization
	Database Designers
	Database Design for a University Organization
	Record Based Data Models Relational Data Model
	Figure: Relational Model
	Example: (6)
	End
	End (1)
	Figure: Network Model
	Figure: A Hierarchical data model for Human Resource System Object-Oriented Data Model / Object Based Data Model
	Semi-structured Data Model
	Database System Architecture
	Components of DBMS
	Figure: Database System Structure
	Authorization & Integrity Manager
	File Manager
	Buffer Manager
	Transaction Manager
	 Atomicity
	 Consistency
	 Isolation
	 Durability
	Query Processor
	DDL Interpreter
	DML Compiler
	Query Evaluation Engine
	Two-tier Architecture
	Three-tier Architecture
	atomicity.
	Recovery Manager
	Failure Recovery
	Concurrency-Control Manager
	Database Users and Administrators
	Naive Users
	Application Programmers
	Sophisticated Users
	Specialized Users
	Database Administrators
	(Or) (8)
	Schema Definition
	Storage Structure and Access-method Definition Schema and Physical-organization Modification
	Granting of Authorization for Data Access
	Routine Maintenance
	Introduction to Relational Databases Explain relational DBMS in detail.
	Relational Model (1)
	Keys
	Write short notes on keys in DBMS.
	Types of keys in DBMS
	Relational Database Characteristics
	Figure: Relational DBMS (RDBMS)
	CODD’S RULE
	Rule Zero
	Rule 1: Information Rule
	Rule 2: Guaranteed Access Rule
	Rule 3: Systematic Treatment of NULL Values
	Rule 4: Active Online Catalog
	Rule 5: Comprehensive Data Sub-language Rule
	Rule 6: View Updating Rule
	Rule 7: High-level Insert, Update and Delete Rule
	Rule 8: Physical Data Independence
	Rule 9: Logical Data Independence
	Rule 10: Integrity Independence
	Relational Query Languages
	Relational Algebra
	Operations of Relational Algebra Unary Operations
	Binary Operations
	Unary Operations
	Example (1)
	Output
	Output (1)
	Output (2)
	Example (2)
	Output (3)
	Binary Operations (1)
	Relational Calculus
	Tuple Relational Calculus (TRC)

	Example (3)
	Output (4)
	Example (4)
	Output (5)
	Domain Relational Calculus (DRC)

	Example (5)
	Output (6)
	SQL Fundamentals
	(Or) (9)
	Characteristics of SQL
	Advantages of SQL
	Roles of SQL
	time:
	Data Control Language (DCL)
	Transaction Control Language (TCL)
	DDL Commands
	Create Command (Database)
	Create Command (Table)
	Syntax
	Example
	Syntax (1)
	Example (1)

	Alter Command
	Syntax
	Example

	Drop Command
	Syntax
	Example

	Truncate Command
	Syntax
	Example

	DML Commands
	Insert Command
	Syntax
	Example

	Update Command
	Syntax
	Example

	Delete Command
	Syntax
	Example

	DCL Commands
	Grant Command
	Syntax
	Example

	Revoke Command
	Syntax
	Example

	TCL Commands
	Commit command
	Syntax

	Rollback Command
	Syntax
	Example

	Savepoint Command
	Syntax
	Example

	Advanced SQL Features
	Tuple Variables
	String Operations
	Example: (7)
	Order by Clause
	Explain the aggregate functions in SQL with an example. (April/May 2018)
	Examples
	Aggregate functions with group by clause
	Example: Find the average account balance at each branch.
	Aggregate functions with having clause
	Null Values
	Example: (8)
	Example: (9)
	Nested Subqueries
	Set Membership
	In
	Not In

	Set Comparison
	Example: (10)
	Test for Empty Relations
	Example: (11)
	Test for absence of duplicate tuples
	Example: (12)
	Complex Queries
	Derived Relations
	With Clause

	Views
	Write short notes on views.
	view.
	Syntax
	Example: (13)
	(2) Assigning Names to Columns
	(3) Selecting data from a view
	(4) Updation of a view

	For the view to be updatable, it should meet following criteria:
	(5) Destroying a View

	Syntax (1)
	Example (6)
	Joins
	Types of Joins
	Inner Join

	Example 1
	Example 2
	Outer Join

	Types of Outer Join
	1. Left Outer join
	Example 3
	2. Right outer join
	Example 4
	Embedded SQL
	EXEC SQL <embedded SQL statement >;
	Embedded SQL in C Program Examples Example 1
	Example 2 (1)
	Dynamic SQL
	CS8493- Operating System UNIT-I
	1.1 introduction
	1.2 Computer system overview
	1.3 Basic elements
	1.4 Instruction Execution and Interrupts

	.
	. (1)
	1.6 Cache Memory
	1.7 Direct Memory Access

	. (2)
	1.7 Multiprocessor and Multicore Organization

	. (3)
	1.7.2 Multicore Organization

	. (4)
	. (5)
	. (6)
	. (7)
	. (8)
	1.10 Computer System Organization

	. (9)
	 System Calls
	 Typically written in a high-level language (C or C++)
	 Three most common APIs are Win32 API for Windows, POSIX API for POSIX-based systems (including virtually all versions of UNIX, Linux, and Mac OS X), and Java API for the Java virtual machine (JVM)
	1.11.1 System Call Implementation
	 System-call interface maintains a table indexed according to these numbers
	 The caller need know nothing about how the system call is implemented
	 Most details of OS interface hidden from programmer by API

	. (10)
	1.11.2 System Call Parameter Passing
	Types of System Calls
	 File management
	 Information maintenance
	1.12 System Programs

	. (11)
	. (12)
	1.12 OS Generation and System Boot.
	The 1940's - First Generations
	The 1950's - Second Generation
	The 1960's - Third Generation

	. (13)
	Fourth Generation
	12.2 System Boot.

	. (14)
	CS8493- Operating System UNIT-II
	PROCESS CONTROL BLOCK (PCB)
	Schedulers
	Context Switch
	Operations on Processes
	Process Creation
	C Program Forking Separate Process
	A tree of processes on a typical Solaris
	Cooperating Processes

	Interprocess Communication (IPC)
	Direct Communication
	Indirect Communication
	Benefits
	1. Many-to-One
	2. One-to-One
	3. Many-to-Many Model
	Windows 7
	Process Synchronization
	The Critical-Section Problem:
	Requirements to be satisfied for a Solution to the Critical-Section Problem:
	Solution to Dining Philosophers Problem
	Mutual Exclusion Implementation using semaphore
	Semaphore Implementation
	Deadlock & starvation:
	Types of Semaphores
	CPU Scheduling
	CPU-I/O Burst Cycle
	CPU Scheduler
	Preemptive Scheduling
	Non-preemptive Scheduling
	Dispatcher
	Scheduling Criteria
	CPU Scheduling Algorithms
	First-Come, First-Served (FCFS) Scheduling
	Shortest-Job-First (SJF) Scheduling
	Determining Length of Next CPU Burst
	Examples of Exponential Averaging
	Priority Scheduling
	Round Robin (RR)
	Multilevel Queue
	Multilevel Feedback Queue
	Deadlocks
	System Model
	Deadlock Characterization
	Resource-Allocation Graph
	Example of a Resource Allocation Graph
	Deadlock Prevention
	• No Preemption –
	Deadlock Avoidance
	Safe State
	Avoidance algorithms
	Resource-Allocation Graph Scheme
	Unsafe State In Resource-Allocation Graph
	Example of Banker’s Algorithm
	Deadlock Detection
	• Detection algorithm
	Single Instance of Each Resource Type
	Several Instances of a Resource Type
	UNIT-III STORAGE MANAGEMENT
	Three different stages of binding:
	Logical vs. Physical Address Space
	Memory-Management Unit (MMU)

	. (15)
	Dynamic Loading
	Dynamic Linking
	Swapping

	. (16)
	. (17)
	o Solutions

	. (18)
	Segmentation Hardware
	<Segment-number, offset>
	o Relocation.
	o Sharing.
	o Allocation.

	. (19)
	Segmentation with paging

	. (20)
	10 10 12

	. (21)
	Paging
	(i) Basic Method:

	. (22)
	Paging model of logical and physical memory

	. (23)
	(a) Before Allocation (b) After Allocation
	(ii) Hardware implementation of Page Table
	o TLB (Translation Look-aside Buffer)

	. (24)
	o Effective Access Time:

	. (25)
	(iv) Structures of the Page Table

	. (26)
	o Advantages:
	Virtual Memory That is Larger than Physical Memory
	o Advantages

	. (27)
	Basic Concepts:
	Valid-Invalid bit

	. (28)
	Page table when some pages are not in main memory

	. (29)
	Pure demand paging
	Performance of demand paging
	Page Replacement

	. (30)
	Page Replacement Algorithms
	(a) FIFO page replacement algorithm
	Example:

	. (31)
	Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
	(b) Optimal page replacement algorithm

	. (32)
	(c) LRU(Least Recently Used) page replacement algorithm
	No. of page faults = 12
	1. Counters
	2. Stack

	. (33)
	(d) LRU Approximation Page Replacement
	(i) Additional Reference Bits Algorithm
	Example:
	(ii) Second Chance Algorithm

	. (34)
	(e) Counting-Based Page Replacement
	Page Buffering Algorithm
	Technique 1:

	. (35)
	Technique 3:
	Allocation of Frames
	o Equal allocation
	o Proportional allocation
	Global vs. Local Replacement
	Thrashing

	. (36)
	1. Working-Set Strategy

	. (37)
	2. Page-Fault Frequency Scheme
	o Prepaging
	o Page Size
	o TLB Reach
	o I/O interlock

	. (38)
	Allocating Kernel Memory
	OS Examples

	. (39)
	. (40)
	Magnetic Disks
	I/O SYSTEMS
	Disk Scheduling and Management
	1. FCFS Scheduling:
	2. SSTF (shortest-seek-time-first)Scheduling
	4. C-SCAN Scheduling
	5. LOOK Scheduling
	Disk Management
	error-correcting code (ECC).
	2. Boot Block:
	3. Bad Blocks:
	Method 1: “Handled manuallyǁ
	Method 2: “sector sparing or forwarding”
	Method 3: “sector slipping”
	File System Storage-File Concepts
	Examples of files:
	File Attributes
	File Operations
	Access Methods
	2. Direct Access
	Directory and Disk Structure
	1. Single – Level Directory
	• Disadvantage:
	2. Two – Level Directory
	Disadvantage:
	3. Tree – Structured Directory
	4. Acyclic Graph Directory.
	Sharing and Protection File Sharing
	2. Remote File System:
	a) The client-server Model:
	b) Distributed Information systems:
	c) Failure Modes:
	d) Consistency Semantics:
	(i) UNIX Semantics:
	(ii) Session Semantics:
	(iii) Immutable –shared File Semantics:
	File Protection
	(ii) Types of Access
	(iii) Access Control
	File System Implementation- File System Structure
	• Characteristics of a disk:
	Layered File System
	Directory Implementation
	2. Hash Table
	Allocation Methods
	1. Contiguous Allocation
	Disadvantages:
	2. Determining how much space is needed for a file.
	To overcome these disadvantages:
	2. Linked Allocation
	Disadvantages: (1)
	2. Space required for the pointers
	3. Reliability
	File Allocation Table(FAT)
	3. Indexed Allocation
	Disadvantages 1.Pointer Overhead
	2. Size of Index block
	• Combined scheme:
	Free-space Management
	1. Bit Vector
	2. Linked List
	3. Grouping
	4. Counting
	I/O Systems
	PC bus structure:
	Direct I/O instructions
	Polling
	Interrupts
	Application I/O Interface
	Block and Character Devices
	Network Devices
	Clocks and Timers
	Kernel I/O Subsystem
	I/O Scheduling:
	Buffering:
	Caching
	Spooling and Device Reservation:
	Error Handling:

	5.1 The Linux System
	5.2 Important features of Linux Operating System
	5.3 Components of Linux System
	5.4 Architecture
	5.5 Modes of operation
	 Kernel Mode:
	 User Mode:

	5.6 Major Services provided by LINUX System
	2. Logins from terminals (getty)
	3. Logging and Auditing (syslog)
	4. Periodic command execution (cron & at)
	5. Graphical user interface
	7. Network File System (NFS & CIFS)
	5.7 SYSTEM ADMINISTRATOR
	5.7.1 Responsibilities of a System Administrator
	5.7.2 Various System Administrator Roles
	5.7.3 Requirements for LINUX system administrator
	5.8 SETTING UP A LINUX MULTIFUNCTION SERVER
	5.8.1 Server Requirements
	5.8.2 Installing & Configuring Network Services
	Configuring the Network
	server1:/home/admin# rndc status
	Setting up Ubuntu shares in a Windows environment
	Traditional Architecture vs. Virtual Architecture
	Hardware Virtualization
	Architecture - Virtualization
	5.10.1 Setting up a VMware Workstation
	VMware Workstation
	VMWare Player
	VMware Tools
	Installing and Configuring VMWare
	VMware Web Access Login
	1. Start VMware Workstation
	vmware &
	5.10.3 Setting up a XEN Workstation XEN Workstation
	XEN Environment
	Benefits of Using XenServer
	2. Using XenServer increases flexibility by:
	Administering XenServer
	Installing and Configuring XenServer
	Installing a Xen Guest OS from the Command-line
	1. Preparing the System for virt-install
	2. Running virt-install to Build the Xen Guest System

	1. Define data structure.
	2. What do you mean by non-linear data structure? Give example.
	3. What do you linear data structure? Give example.
	4. List the various operations that can be performed on data structure.
	5. What is abstract data type? What are all not concerned in an ADT?
	7. What is a linked list?
	9. Define doubly linked list.
	10. Write down the steps to modify a node in linked lists.
	➢ Display the messages as “The node is modified”.
	12. State the properties of LIST abstract data type with suitable example.
	13. State the advantages of circular lists over doubly linked list.
	14. What are the advantages of doubly linked list over singly linked list?
	15. Why is the linked list used for polynomial arithmetic?
	16. What is the advantage of linked list over arrays?
	17. What is the circular linked list?
	18. What is the basic purpose of header of the linked list?
	19. What is the advantage of an ADT?
	20. What is static linked list? State any two applications of it.
	3. Write the postfix form for the expression -A+B-C+D?
	4. What are the postfix and prefix forms of the expression?
	5. Explain the usage of stack in recursive algorithm implementation?
	6. Define Queue.
	7. What are the various operations performed on the Queue?
	8. How do you test for an empty Queue?
	9. Write down the function to insert an element into a queue, in which the queue is implemented as an array. (May 10)
	Error (“Full queue”);
	10..Define Dequeue.
	11. Define Circular Queue.
	12. List any four applications of stack.
	16 MARKS
	2. Define Height of tree?
	3. Define Depth of tree?
	4. What is the length of the path in a tree?
	5. Define sibling?
	6. Define binary tree?
	7. What are the two methods of binary tree implementation?
	8. What are the applications of binary tree?
	9. List out few of the Application of tree data-structure?
	10. Define expression tree?
	11. Define tree– traversal and mention the type of traversals?
	12. Define in -order traversal?
	13. Define threaded binary tree.
	14. What are the types of threaded binary tree?
	15. Define Binary Search Tree.
	16. What is AVL Tree?
	17. List out the steps involved in deleting a node from a binary search tree.
	18. What is ‘B’ Tree?
	19. Define complete binary tree.
	2. Define Graph?
	3. Define adjacency matrix?
	4. Define adjacent nodes?
	5. What is a directed graph?
	6. What is an undirected graph?
	7. What is a loop?
	8. What is a simple graph?
	9. What is a weighted graph?
	10. Define indegree and out degree of a graph?
	11. Define path in a graph?
	12. What is a simple path?
	13. What is a cycle or a circuit?
	14. What is an acyclic graph?
	15. What is meant by strongly connected in a graph?
	16. When a graph said to be weakly connected?
	17. Name the different ways of representing a graph? Give examples (Nov 10)
	18. What is an undirected acyclic graph?
	19. What is meant by depth?
	20. What is the use of BFS?
	21. What is topological sort?
	22. Write BFS algorithm
	23. Define biconnected graph?
	24. What are the two traversal strategies used in traversing a graph?
	25. Articulation Points (or Cut Vertices) in a Graph
	2. List the different sorting algorithms.
	3. Why bubble sort is called so?
	4. State the logic of bubble sort algorithm.
	5. What number is always sorted to the top of the list by each pass of the Bubble sort algorithm?
	“bubbles” up to the location where it belongs.
	7. State the logic of selection sort algorithm.
	8. What is the output of selection sort after the 2nd iteration given the following
	9. How does insertion sort algorithm work?
	10. What operation does the insertion sort use to move numbers from the unsorted section to the sorted section of the list?
	11. How many key comparisons and assignments an insertion sort makes in its worst case?
	12. Which sorting algorithm is best if the list is already sorted? Why?
	13. Which sorting algorithm is easily adaptable to singly linked lists? Why?
	14. Why Shell Sort is known diminishing increment sort?
	15. Which of the following sorting methods would be especially suitable to sort alist L consisting of a sorted list followed by a few “random” elements?
	16. What is the output of quick sort after the 3rd iteration given the following sequence?
	17. Mention the different ways to select a pivot element.
	18. What is divide-and-conquer strategy?
	19. Compare quick sort and merge sort.
	20. Define Searching.
	21. What is linear search?
	22. What is Binary search?
	23. Define hash function?
	16 MARKS (1)
	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
	COMMON FOR: DEPARTMENT OF INFORMATION TECHNOLOGY
	CS3351 – DIGITAL PRINCIPLES AND COMPUTER ORGANIZATION
	YEAR / SEM : II / III
	R – 2021
	LECTURE NOTES
	UNIT I COMBINATIONAL LOGIC
	Sequential circuits:

	ANALYSIS PROCEDURE
	Explain the analysis procedure. Analyze the combinational circuit the following logic diagram.
	(May

	Logic diagramforanalysis example
	DESIGNPROCEDURE
	Explain the procedure involved in designing combinational circuits.

	**
	Half adder:

	Truth Table:

	Design a full adder using NAND and NOR gates respectively. (Nov -10)
	Truth table:

	Logic diagram:
	Full adder using Two half adder:

	Design a half subtractor circuit. (Nov-2009)

	Logic diagram: (1)
	Full subtractor:

	K-Map:

	Parallel Binary Adder: (Ripple Carry Adder):

	Complement of a number: 1’s complement:
	Example:
	2’s complement:
	Example: (1)
	Subtraction using 2’s complement addition:
	Example: (2)
	Solution:

	Fast adder (or) Carry Look Ahead adder:

	4 bit-Parallel adder/subtractor:

	Design a 2 bit magnitude comparator. (May 2006)

	Design of 2 – bit Magnitude Comparator.
	K-Map: (1)

	************************* (1)
	Design to perform BCD addition.(or) What is BCD adder? Design an adder to perform arithmetic addition of two decimal bits in BCD. (May -08)(Apr 2017,2018)[Nov – 2019]

	Binary Multiplier:
	Explain about binary Multiplier.

	************************************* (1)
	Design a binary to gray converter. (Nov-2009)(Nov
	Binary to Grayconverter

	Truth Table
	K-MAP FORG1: K-MAP FORG0:
	Logic diagram: (2)
	Gray to Binary converter:

	Truth Table: (1)
	Logic Diagram:
	BCD to Excess -3 converter:

	Truth table:
	K-Map:
	Excess -3 to BCD converter:

	Truth table: (1)
	Design Binary to BCD converter.
	K-map:

	****************************** (1)
	Explain about decoders with necessary diagrams. (Apr 2018)(Nov 2018)

	2 to 4 decoder:
	Truth table: (2)
	Design for 3 to 8 decoder with 2 to 4 decoder:
	Implementation of Boolean function using decoder:
	Example: Implement full adder using decoder.

	Logic Diagram:

	Encoder:

	Octal to Binary Encoder:
	Truth table:
	Logic Diagram: (1)
	Priority Encoder:
	Design a priority encoder with logic diagram.(or) Explain the logic diagram of a 4 – input priority encoder. (Apr – 2019)

	Truth table: (1)
	K-Map:
	Logic diagram:
	MULTIPLEXERS AND DEMULTIPLEXERS
	Design a 2:1 and 4:1 multiplexer.

	2 to 1 MUX:
	Truth table: (2)
	4 to 1 MUX:
	Truth Table:
	Example: Implement the Boolean expression using MUX

	Example: Implement the boolean function using Multiplexer. [NOV – 2019]
	Example: 32:1 Multiplexer using 8:1 Mux (Nov 2018) (Apr – 2019)
	DEMULTIPLEXERS:
	Explain about demultiplexers.

	Logic Diagram: Truth Table:
	1. Implement full adder using De-multiplexer.
	Solution:
	Parity Checker / Generator:
	3- bit Even Parity generator: Truth Table:
	4- bit Even parity checker: Truth Table:
	INTRODUCTION TO HDL
	HDL MODELS OF COMBINATIONAL CIRCUITS
	Gate level modeling
	Data flow modeling
	HDL for2-to-4 line decoder
	UNIT II COMBINATIONAL LOGIC
	1) Define combinational logic. (May 2008, 2016)
	2) What are sequential circuits?
	3) Write the design procedure for combinational circuits?
	4) What is Half adder?
	Truth Table:
	Logic Diagram: Half adder using NAND gate:
	7) Draw the Logic diagram of full adder.
	Logic diagram:
	10) What is Full subtractor? Write the truth table of full subtractor. (Nov 2017)
	11) Draw Full subtractor using two half subtractor.
	13) Draw the logic diagram for four bit binary parallel adder.
	Example:
	15) What is 2’s complement of a number?
	Example: (1)
	16) How Subtraction of binary numbers perform using 2’s complement addition?
	17) Given the two binary numbers X = 1010100 and Y = 1000011, perform the subtraction
	18) Draw the logic diagram of Parallel Binary Subtractor.
	20) Draw the logic diagram of 2’s complement adder/subtractor. (May 2013)
	21) What is Magnitude Comparator? [NOV – 2019]
	22) Design a 1-bit Magnitude Comparator. Truth table:
	23) What is Decoder? What are binary decoders? (Nov 2017)
	24) Design a 3 to 8 decoder with 2 to 4 decoder.
	25) What is Encoder? (May 2012)
	26) What is Priority Encoder? (Apr 2017)
	27) Define Multiplexer (MUX) (or) Data Selector. (Dec 2006, May 2011) [NOV – 2019]
	28) What is De-multiplexer?
	29) What is Parity?
	30) What is Parity Checker / Generator:
	31) What is even parity and odd parity?
	31) Give the applications of Demultiplexer.
	32) Mention the uses of Demultiplexer.
	34) What is the function of the enable input in a Multiplexer?
	35) List out the applications of decoder? (Dec 2006)
	36) What is the Application of Mux?
	37) List out the applications of comparators?
	38) What is carry look-ahead addition?
	39) What is the Difference between Decoder & Demux.?
	41) How Gray Code to Binary Conversion done?
	32) Draw the circuit for 4 to 1 line multiplexer. (Apr 2017) [NOV – 2019] Logic Diagram:
	Truth Table: (1)
	43) List the Verilog HDL model of a combinational circuits.
	44) What is meant by Gate level modeling?
	45) What is meant by data flow modeling?
	46) What is meant by Behavioral modeling?
	47) What is Verilog?
	48) Define logic synthesis and simulation.
	49) List the standard HDLs that supported by IEEE.
	50) Write the truth table of 2 to 4 line decoder and draw its logic diagram. (Apr – 2019) 2 to 4 decoder:
	UNIT III SYNCHRONOUS SEQUENTIAL LOGIC
	Sequential circuits:
	Types of sequential circuits:

	1. Synchronous sequential circuit:
	2. Asynchronous sequential circuits:
	LATCHES AND FLIP FLOPS
	Flip-Flop:
	Latch:

	SR Latch: Using NOR gate
	Realize SR Latch using NOR and NAND gates and explain its operation.

	FLIP FLOPS
	Explain about triggering of flip flops in detail.

	Level Triggering:
	Edge Triggering:
	******************************* Explain the operation of flipflops.(Nov 2017)
	Excitation table for all flip flops:
	*** MEALY AND MOORE MODELS
	Write short notes on Mealy and Moore models in sequential circuits.

	Difference between Moore model and Mealy model.
	State table:

	2. What are the classifications of sequential circuits?
	3. Define Latch.
	4. Define a flip flop.
	5. What are the different types of flip-flop?
	6. What is the main difference between a latch and flip flop?
	7. State few application of Flip-Flop.
	8. What is the operation of D flip-flop?
	9. What is the operation of JK flip-flop?
	10. What is the operation of T flip-flop? (Nov 2018)
	11. Define race around condition.
	12. What is triggering? What is the need for trigger in flip-flop?
	13. What is meant by level and edge-triggering? (Nov 2017) (Apr – 2019)
	14. How do you eliminate race around condition in JK flip flop. ?
	15. Define rise time.
	16. Define fall time.
	17. Define skew and clock skew.
	18. Define setup time.
	19. Draw the logic diagram and write the function table of D Latch. (Apr 2019)
	21. Define propagation delay.
	22. Explain the flip-flop excitation tables for RS FF.
	23. Give some applications of clocked RS Flip-flop.
	24. What is the drawback of SR Flipflop? How is this minimized? (Apr 2018)
	25. How many flip flops are required to build a Binary counter that counts from 0 to 1023?
	26. State the difference between latches and flipflops. (Apr 2019)
	Counter:

	COUNTERS
	Uses of Counters:

	Modulo 16 ripple /Asynchronous Up Counter
	Explain the operation of a 4-bit binary ripple counter.
	Truth table:

	Explain about Asynchronous Up/Down counter.

	Explain about 4-bit Synchronous up-counter.

	4- bit Synchronous down-counter:
	Explain about 4-Bit Synchronous down counter.

	Explain about Modulo 8 Synchronous Up/Down Counter.

	2. What is binary counter?
	3. State the applications of counters.
	4. List the types of counters.
	5. Give the comparison between synchronous & Asynchronous counters. (Nov/Dec 2009, Nov 2017)
	7. What is modulo-N counter?
	DESIGN OF RIPPLE COUNTERS
	Design a 3-bit binary counter using T-flip flops. [NOV – 2019]
	Explain about 3-Bit Asynchronous binary counter. (Nov -2009)

	********************************** ANALYSIS OF CLOCKED SEQUENTIAL CIRCUIT
	Design and analyze of clocked sequential circuit with an example.

	DESIGN OF SYNCHRONOUS COUNTERS
	Design and analyze of clocked sequential circuit with an example.

	State Diagram:
	Flip-Flop Input Equations:
	1. Define state diagram.
	2. What is the use of state diagram?
	3. What is state table? (Nov 2018)
	4. What is a state equation?
	5. Define sequential circuit.
	6. What do you mean by present state?
	7. What do you mean by next state?
	8. Define synchronous sequential circuit.
	9. What are the steps for the design of asynchronous sequential circuit?
	Design of a Synchronous Decade Counter Using JK Flip- Flop (Apr 2018, Nov 2018)

	State diagram:
	Excitation table:
	Logic Diagram:
	Design of an Asynchronous Decade Counter Using JK Flip- Flop.

	Design of a Synchronous Modulus-Six Counter Using SR Flip-Flop(Nov 2017)

	State diagram: (1)
	K-Map:
	SHIFT REGISTERS
	Explain various types of shift registers. (or) Explain the operation of a 4-bit bidirectional shift register. (Or) What are registers? Construct a 4 bit register using D-flip flops and explain the operations on the register. (or) With diagram explain ...
	Shift Right Register
	Shift Left Register

	************************************** (1)
	Explain about universal shift register.(Apr -2018)

	** SHIFT REGISTER COUNTERS:
	Explain about Johnson and Ring counter. (Nov 2018)

	Johnson counter:
	Ring Counter:
	**
	2. Define shift registers.
	3. What are the different types of shift registers?[Nov 2010,April 2007,Apr 2018, Nov 2018]
	5. Define Shift Register Counter.
	6. What is bi-directional shift register and unidirectional shift register?
	7. What are the two types of shift register counters?[April/May 2007,Nov/Dec 2006,2011,2012]
	8. How can a SIPO shift register is converted in to SISO shift register? (Apr/May 2010)
	9. What is bi-directional shift register and unidirectional shift register?
	10. What is sequence generator?
	HDL FOR SEQUENTIAL CIRCUITS
	Test Bench:
	** (1)
	2. Draw the diagram of 3-bit ripple counter.

	Components of a computer system:
	Input Unit:
	Output Unit
	Memory Unit
	fixed size called words.
	Arithmetic and Logic Unit(ALU):
	Control Unit (CU):
	add a, b, c
	MIPS Assembly Language
	Design Principle 1: Simplicity favors regularity. Compiling Two C Assignment Statements into MIPS
	Answer
	Compiling a complex C Assignment into MIPS Example 2:
	Answer (1)
	Note : ‘ #’symbol indicate the comment line Operands of the Computer Hardware
	 Memory operand
	 Index register
	Design Principle 2: Smaller is faster.
	Example: (2)
	Answer (2)
	Memory Operands
	Memory addresses and contents of memory at those locations
	load.
	Actual MIPS memory addresses and contents of memory for those words.
	alignment restriction
	Big endian and little Endian
	Compiling an Assignment When an Operand Is in Memory Example 1:
	MIPS Code
	Example 2:
	MIPS code
	Constant or Immediate Operands
	Design Principle 3: Make the common case fast.
	Advantage of constant operands
	Index register
	Memory Locations and Addresses
	Fig 3.1 Memory words
	Byte Addressability
	Big-Endian and Little-Endian Assignments
	Word Alignment
	Accessing Numbers and Characters
	Memory Operations
	 A computer must have instructions capable of performing 4 types of operations:
	REGISTER TRANSFER NOTATION (RTN)
	ASSEMBLY LANGUAGE NOTATION
	BASIC INSTRUCTION TYPES
	Overview
	Immediate Addressing and Small Operands
	Instruction
	Direct Addressing
	Memory-Indirect Addressing
	Register Direct Addressing
	Register Indirect Addressing Displacement Addressing(Index addressing mode)
	X(Ri).
	Displacement Addressing
	Relative Addressing
	Base-Register Addressing
	Auto- increment mode
	(Ri) +
	Auto- decrement mode
	- (Ri)
	Code from CPI for the instruction class A B C
	Code from Instruction count for each class
	2. What is cache memory?
	4. What is the function of control unit?
	5. What are basic operations of a computer memory?
	6. List out the operations of the computer.
	7. What are the main elements of a computer?
	8. Define Computer design.
	9. What is instruction set architecture?
	10. State Amdahl’s law. Nov / Dec 2014
	11. Define Stored Programmed Concept.
	12. What are the registers generally contained in the processor?(Nov/Dec-2019)
	13. What do you mean by Memory address register (MAR) and Memory dataregister (MDR)?
	14. What is Data path?
	15. What is elapsed time of computer system?
	16. What is processor time of a program?
	17. Define clock rate.
	R=1/P,
	18. What is meant by clock cycle?
	19. Write down the basic performance equation. (Apr/May-2014)(Nov/Dec 2019) T=N*S/R
	20. What is meant by addressing mode? List its types. (May/June 2013) Nov/ Dec 2013
	21. Define Register addressing mode with an example.
	Effective address (EA) = Ri, Where Ri is a processor register.
	EA = Loc Where loc is the memory address.
	EA = X + [PC]
	EA = [Ri] or EA = [Loc]
	EA = X + [Ri].
	EA = (Ri) +
	EA = - (Ri)
	29. What is register?
	30. List the phases, which are included in the each instruction cycle?
	31. What are the types of computer?
	32. What are the two major steps in processing an instruction? (Or) Write the two steps that are common to implement any type of instruction. Nov. / Dec. 2018
	33. What are the speedup techniques available to increase the performance of a computer?
	34. What are Timing signals?
	35. Distinguish between auto increment and auto decrement addressing mode. (May/June 2016)
	38. What are the merits and demerits of single address instructions? (Nov/Dec 2011)
	Eg: Add A Store A
	39. Explain the disadvantages of using a single type of instruction.
	40. What is relative addressing mode? When is it used? (May/June 2012)
	 Example: JNZ BACK
	41. Suppose you wish to run a program P with 8.5 * 109 instructions on a 5 Ghz machine with CPI of 0.8. What is the expected CPU time? (Nov/Dec 2010)
	42. What does the term hertz refer to? (Nov/Dec 2010)
	43. Mention the registers used for communications between processor and main memory. (May/June 2010)
	44. What is SPEC? Specify the formula for SPEC rating. (May/June 2012)(Apr/May 2014)
	SPEC rating (ratio) = TR / TC;
	45. Give an example each of zero-address, one-address, two-address and three-address instructions. (Or) Classify the instructions based on the operations they perform and give one example to each category. Apr. / May 2018, Nov. / Dec. 2018
	46. Which data structures can be best supported using (a) indirect addressing mode (b) indexed addressing mode?
	47. What are the four basic types of operations that need to be supported by an instructor set?
	48. What are the address-sequencing capabilities required in a control memory?
	49. What are the limitations of assembly language? (M/J 2007)
	50. A memory byte location contains the pattern 00101100. What does this pattern represent when interpreted as a number? What does it represent as an ASCII Code? (Nov/Dec 2007)
	51. What is the information conveyed by addressing modes? (Nov/Dec 2007)
	52. Why is the data bus in most microprocessors bi-directional while the address bus is unidirectional? (Apr/May 2008)
	53. What is meant by the stored program concept? Discuss. (May/June 2007)
	54. What are the two techniques used to increase the clock rate R?
	55. What is Big-Endian and Little-Endian representations? (Nov/Dec 2014)
	56. What is meant by instructions? (May/June 2016)
	57. What is the use of Instruction register?
	58. What is the use of MAR?
	59. What is the use of MDR?
	60. State the basic performance equation of a computer. (Apr/May 2014) T= (NxS)/R
	61. What are the two basic operations involving in the memory?
	62. How to measure the performance of the system?
	63. What is register indirect addressing mode? When is it used? (Nov/Dec 2013)
	64. List the eight great ideas invented by computer architects. (Nov/Dec-2015)
	65. Distinguish pipelining from parallelism. (N/D2015)
	66. Give the formula for CPU execution time for a program.(Nov/Dec 2016)
	67. What is an instruction register? (Nov/Dec 2016)
	68. State the need for indirect addressing mode. Give an example. Apr/May 2017
	69. Specify the CPU performance equation. Nov/ Dec 2012
	70. Write the equation for the dynamic power required per transistor. Apr. / May 2018
	71. Consider three different processors P1, P2, and P3 executing the same instruction set. P1 has a 3 GHz clock rate and a CPI of 1.5. P2 has a 2.5 GHz clock rate and a CPI of 1.0. P3 has a 4.0 GHz clock rate and has a CPI of 2.2.Which processor has t...
	72. Give the MIPS code for the statement f=(g+h)-(i+j). May 2019 Simple arithmetic expression,assignment
	f = (g + h) - (i + j);
	add $s1, $s3, $s4 # $s1 = i + j
	73. Define Word Length. Nov/Dec-2019
	PART B
	An Overview of the Implementation
	For every instruction, the first two steps are identical:
	For example,
	An abstract view of the implementation of the MIPS subset showing the Major functional units and the major connections between them
	Two state elements are needed to store and access instructions, and an adder is needed to compute the next instruction address.
	A portion of the datapath used for fetching instructions and incrementing the program counter.
	To write a data word, we will need two inputs:
	Register and ALU
	The two units needed to implement loads and stores, in addition to the register file and ALU
	There are two details in the definition of branch instructions
	To deal with the later complication, we will need to shift the offset field by 2.
	The datapath for a branch uses the ALU to evaluate the branch condition and a separate adder to compute the branch target as the sum of the incremented PC and the sign-extended, lower 16 bits of the instruction (the branch displacement), shifted left ...
	3. Briefly explain about Control Implementation scheme. Control Implementation scheme:
	The ALU Control:
	How the ALU control bits are set depends on the ALUOp control bits and the different function codes for the R-type instruction.
	The truth table for the 4 ALU control bits (called Operation).
	4. Give detail description about the Design of Main Control Unit. Designing the Main Control Unit
	The three instruction classes (R-type, load and store, and branch) use two different instruction formats
	The data path of all necessary multiplexors and all control lines identified.
	The effect of each of the seven control signals.
	Operation of the Data path:
	These steps are ordered by the flow of information:
	Five steps (similar to the R-type executed in four):
	The data path in operation for a load instruction:
	The data path in operation for a branch-on-equal instruction.
	The four steps for execution:
	 Role of cache memory
	Sequential executions of instructions.
	Hardware organization of pipelining.
	Pipelined executions of instructions (Instructions Pipelining)
	Instruction execution divided into four steps.
	ROLE OF CACHE MEMORY:
	PIPELINE PERFORMANCE:
	Effect of an execution operation taking more than one clock cycle
	Throughput
	CPI=f/MIPS
	Speedup
	S(m)=T(1)/T (m)
	Dependencies
	1. Control dependency
	Pipelined data path and control
	The following operations can be performed independently in the process,
	Use of instruction queue in hardware organization Advantages of Pipelining:
	Disadvantages of Pipelining:
	I. Data Hazards
	III. Structural Hazard
	Pipeline stall caused by a cache miss in F2
	Clock cycles time
	Pipeline stalled by data dependency between D2 and w1
	Operand Forwarding:
	Example: (3)
	Operand forwarding in a pipeline processor
	Handling Data Hazard in Software:
	Side Effects:
	Over View:
	Unconditional Branch:
	An idle cycle caused by a branch instruction
	Branch address computed in execute stage
	Instruction Queue and Pre fetching:
	Hardware organization of instruction queue
	Conditional Branches:
	Delayed Branch:
	EXAMPLE:
	(a). Original program loop
	(b). Reordering instructions
	The sequence of events during the last two passes in the loop is illustrated in figure.
	Branch prediction: Over view:
	Branch prediction
	Timing when branch decision has been incorrectly predicted as not taken Static prediction
	Dynamic Branch Prediction: (May/June2013)
	Algorithm:
	A 2-State machine representation of branch-prediction
	Algorithm: (1)
	PART-A
	MIPS instruction set:(Micro Instruction per Second)
	2. What are R-type instructions? (Apr/May 2015)Nov/Dec 2020
	3. Define Branch target address.
	4. Define the terms Data path element, CPU Data path and Data path cycle? Nov / Dec 2016, Apr.
	5. When will the instruction have die effect?
	6. Define branch penalty.
	7. What is the use of instruction queue in pipeline?
	8. Define dispatch unit.
	9. What is meant by branch folding and what is the condition to implement it?
	10. What is meant by delay branch slot?
	11. Define delayed branching.
	12. Define branch prediction.Nov / Dec 2015
	13. What are the two types of branch prediction technique available? (May/June 2009)
	14. Define static and dynamic branch prediction.
	15. List the two states in the dynamic branch prediction.
	16. List out the four stages in the branch prediction algorithm.
	17. Define Register renaming. (Nov/Dec 2009)
	18. What is pipelining and what are the advantages of pipelining? (Apr/May 2010) Nov / Dec 2013
	Advantages: May / June 2016
	19. Draw the hardware organization of two-stage pipeline.
	20. Name the four stages of pipelining. (Or)What are the steps in pipelining processor?Nov/Dec 2020.
	21. Write short notes on instruction pipelining.
	22. What is the role of cache in pipelining? (Or) What is the need to use the cache memory in pipelining concept?(Nov/Dec 2011)
	23. What is meant by bubbles in pipeline? Or what is meant by pipeline bubble? Nov / Dec 2016
	24. What are the major characteristics of pipeline?
	25. Give the features of the addressing mode suitable for pipelining. (Apr/May 2014)
	26. What are the disadvantages of increasing the number of stages in pipelined processing?(Apr/May 2011) (Or) What would be the effect,if we increase the number of pipelining stages? (Nov/Dec 2011)
	S(m)=T(1)/T (m) (1)
	27. What is the ideal CPI of a pipelined processor?
	28. How can memory access be made faster in a pipelined operation? Which hazards can be reduced by faster memory access? (Apr/May 2010)
	Performance measures:
	The following Hazards can be reduced by faster memory access:
	29. Write down the expression for speedup factor in a pipelined architecture. May 2013
	30. Define Hazard and State different types of hazards that occur in pipeline.Nov / Dec 2015, Apr / May 2017, May 2019 Nov/Dec 2020.
	The various pipeline hazards are:
	31. What is structural hazard?(Nov/Dec 2008) (Apr /May 2014)
	32. What is data hazard in pipelining? (Nov/Dec 2007, 2008)
	33. What are instruction hazards (or) control hazards?
	34. How can we eliminate the delay in data hazard?
	35. How can we eliminate data hazard using software?
	36. List the techniques used for overcoming hazard.
	37. What are the techniques used to present control hazard?
	38. List the types of data hazards.
	39. Define stall.
	40. Give 2 examples for instruction hazard.
	41. A =5 A<-3+A A<-4+A What hazard does the above two instructions create when executed concurrently? (Apr/May 2011)
	42. What is meant by speculative execution? (Apr/May 2012) Or what is the need for speculation? (Nov/Dec 2014), May 2019
	43. What is meant by hazard in pipelining? Define data and control hazards. (May/June 2013) (Apr/May 2012)
	Types
	44. Why is branch prediction algorithm needed? Distinguish between static and dynamic branch prediction. (May/June 2009) Or Differentiate between the static and dynamic techniques. (May/June 2013)
	45. What is Branch Target Buffer?
	46. Define program counter (PC).
	47. What are Sign-extend?
	48. Define Register file.
	49. What is a Don’t-care term?
	50. Define Forwarding.
	51. What is a branch prediction buffer? (Apr/May 2015)
	53. Give one example for MIPS exception. Apr. / May 2018, Nov. / Dec. 2018
	stage Problem exceptions occurring
	54. What is precise and imprecise exception? (Apr/May 2009)(Nov/Dec 2019)
	55. Define edge triggered clocking. May 2019(Nov/Dec 2019)
	56. What is Instruction Level Parallelism? (Dec 2012, Dec 2013, May 2015, May 2016)
	57. What are the approaches to exploit ILP? (Dec 2012, Dec 2015)
	58. What is Loop Level Parallelism?
	59. Give the methods to enhance performance of ILP.
	60. Define Dynamic Scheduling. (May 2013) (Or) Explain the idea behind dynamic scheduling. (Nov/Dec 2016)
	61. List the drawbacks of Dynamic Scheduling.
	62. List the advantages of Dynamic Scheduling. (May 2012)
	63. Differentiate Static and Dynamic Scheduling.
	65. What is Branch Prediction?
	66. What are the types of branch prediction?
	67. What is meant by dynamic branch prediction? [May 2019]
	68. What is Branch Prediction Buffer? (May 2014)
	69. What are the things present in Dynamic Branch Prediction?
	70. Define Correlating Branch Prediction.
	71. List the five levels of branch prediction. (May 2013)
	72. What is Reservation Station?
	73. What is ROB?
	74. What are the four fields involved in ROB?
	75. What is Imprecise Exception?
	76. What are the two possibilities of imprecise exceptions?
	77. What is Register Renaming?
	78. Difference between Static and Dynamic Branch Prediction? (May 2011)
	80. How PCSrc Signal generated in a datapath diagram? Nov/Dec 2021
	MEMORY MANAGEMENT
	Cache Measures
	Average Memory Access Time = Memory Hit Time + Memory Miss Rate x Miss Penalty Cache Mapping
	3. Discuss in detail about various cache mapping techniques.
	Cache Mapping

	Direct Mapping:
	Associative Mapping:
	Set-Associative Mapping:
	Uses of Cache
	Types of Cache
	Locality of Reference

	Types of Locality of Reference
	VIRTUAL MEMORY
	Figure: Virtual Memory Space
	Pros and Cons of using Virtual Memory
	Programmed I/O
	Memory-Mapped I/O systems.
	I/O instructions
	Limitations of programmed I/O
	DIRECT MEMORY ACCESS
	DMA Operations: May 2009
	Execution of a DMA-operation (single block transfer)
	Cycle Stealing:
	Centralized Arbitration:
	Sequence of signals during transfer of bus mastership for the devices
	Distributed Arbitration
	OUTPUT DEVICES:
	Types of Printers:
	The output is generated in the following steps:
	Liquid Crystal Displays (LCDs)
	Serial Port
	Program 1 Program 2
	Interrupt Hardware
	Enabling and Disabling Interrupts
	Edge-triggered
	Handling Multiple Devices:
	Polling Scheme:
	Merit:
	Demerit:
	Vectored Interrupt: Nov / Dec 2011, 2012
	Interrupt Nesting: Multiple Priority Scheme:
	Privileged Instruction:
	Privileged Exception:
	Implementation of Interrupt Priority using individual Interrupt request acknowledge lines
	Simultaneous Requests:
	Merits:
	Arrangement of Priority Groups:
	Initiating the Interrupt Process:
	Exception of ISR:
	13. Explain various ways to List and explain various I/O performance measures. (April/May 2017) (Or)Explain in detail about I/O performance measures with an example. (April/May 2014,2015)

	Problem: [May 2019]
	Answer the following questions:
	2. What is the average time spent in the queue?
	Universal Serial Bus (USB)
	Content: Universal Serial Bus (USB)
	Key Objectives of Universal Serial Bus
	USB Architecture
	Isochronous Traffic on USB
	Types of USB Connectors
	USB Type A:
	USB Type B:
	Mini USB:
	Micro USB:
	USB Type C:
	USB 3.0 Micro B:
	Electrical Characteristics of USB
	Physical Layer:
	Link Layer
	Transport Layer
	1. What is Memory?
	2. What is the secondary memory?
	3. What are some examples of secondary storage device?
	4. What are the characteristics of a secondary storage device?
	5. What are the three main categories of secondary storage?
	6. What is Bandwidth?
	7. Define a Cache.
	8. What is Cache Memory?
	9. Give the mapping techniques of cache.
	10. What is Write Stall?
	11. Define Mapping Functions.
	12. What is Address Translation?
	13. What is the transfer time?
	(Or)
	14. What is latency and seek time?
	15. What is the clock cycle time?
	16. What is Access Time?
	17. What is meant by disk fragmentation?
	18. What is the average access time for a hard disk?
	19. What is rotational latency time?
	20. What is meant by disk latency?
	21. Define Page Fault.
	22. Define a Cache Unit.
	23. Define Hit Ratio.(Nov/Dec 2019)Nov/Dec 2021
	24. Define a Miss.Nov/Dec 2021
	25. What is meant by memory stall cycles? (M 2016)
	26. What is Miss Penalty?
	27. Write the formula to calculate average memory access time. (Or) Write the formula to measure average memory access time for memory hierarchy performance. (Nov / Dec 2018)
	28. What is a miss in a cache? (Or) What does Cache Miss mean? (Or) Define Cache Miss. (Nov/Dec 2010, April/May 2018)
	29. Define Cache Hit. (Or) What does Cache Hit mean? (April/May 2018)
	30. Differentiate between Cache Miss and Cache Hit.
	31. What is miss penalty for a cache?
	32. What is miss rate in cache?
	33. What is hit time in cache?
	34. How is cache memory measured?
	35. What is the memory cycle time?
	36. What is the memory access time?
	37. What is the data transfer rate?
	38. What does access time measure?
	39. List the method to improve the cache performance.
	40. What is Split Transactions?
	41. What is Cylinder?
	42. What is Synchronous Bus?
	43. Explain difference between latency and throughput.
	44. What is called Pages?
	45. What are the techniques to reduce hit time?
	46. What are the categories of cache miss? (April/May 2013) (Or) Point out one simple technique used to reduce each of the three "C" misses in cache memories. (Nov/Dec 2017)
	47. How the conflicts misses are divided? (Nov/Dec 2016)
	48. What is Sequence Recorded?
	49. Write the formula to calculate the CPU execution time.
	50. Write the formula to calculate the CPU time.
	51. What is RAID? (Nov/Dec 2011, April/May 2015, 2017)
	(Or) (1)
	52. Explain the terms availability and dependability. (Nov/Dec 2017)
	53. What are the differences and similarities between SCSI and IDE? (April/May 2017)
	55. What are the measures of I/O performance? (Nov/Dec 2013) I/O Performance Measures
	56. What are the types of storage devices? (Nov/Dec 2016, April/May 2017)
	57. What do you mean by Memory Interleaving?
	58. What are the factors responsible for the maximum I/O bus performance? (April/May 2005)
	59. What are the two major advantages and disadvantages of the bus? (May/June 2007) Advantages:
	Disadvantages:
	60. Is the RISC processor is necessary? Why? (May/June 2007)
	61. Define the terms cache miss and cache hit. (Nov/Dec 2011, May/June 2013)
	62. Compare software and hardware RAID.
	64. What is a register in memory?
	65. What is the storage hierarchy?
	66. What is Cache Optimization?
	67. List the six basic optimization techniques of cache. (Nov/Dec 2016) (Or) List the basic six cache optimizations for improving cache performance. (Nov / Dec 2018)
	68. Difference between Volatile and Non-volatile Memory. (Or) Outline the difference between volatile and non-volatile memory. (April/May 2018)
	70. What is hit and miss ratio?
	71. Differentiate between SRAM and DRAM.
	72. Differentiate between throughput and response time. [May 2019]
	1. On average, how utilized is the disk?
	3. What is the average response time for a disk request, including the queuing time and disk service time?
	74. What is IO mapped input output?
	75. Specify the three types of the DMA transfer techniques?
	76. Name any three of the standard I/O interface.
	77. What is an I/O channel?
	78. Why program controlled I/O is unsuitable for high-speed data transfer?
	79. What is the function of I/O interface?
	80. Name some of the IO devices.
	81. Define interface.
	82. What is programmed I/O?
	84. Differentiate Programmed I/O and Interrupt I/O. (Nov / Dec 2014)
	86. What is DMA?
	87. What are MAR and MBR?
	89. Define memory interleaving. (Apr / May 2017)
	90. What is an interrupt?
	91. What are the uses of interrupts?
	92. Define vectored interrupts.
	93. What are the steps taken when an interrupt occurs?
	94. Summarize the sequence of events involved in handling an interrupt request from a single device. (Apr / May 2017) Write the sequence of operations carried out by a processor when interrupted by a peripheral device connected to it. (Apr/May 2018)
	95. Point out how DMA can improve I/O speed. (May / June 2015)
	96. Define IO Processor.
	97. Draw the Memory hierarchy in a typical computer system. (Nov/Dec 2018)(Or) Draw the basic structure of a memory hierarchy. (Apr/May 2019)
	100. Define Bus Structures.
	101. What is the meaning of USB?(Nov/Dec 2019)
	102. what is baud rate?Nov/Dec 2020.
	103. In memory organization,what is temporal locality? Nov/Dec 2021
	104. How many total bits are required for a direct-mapped cache with 16KB of data and 4 word blocks, assuming a 32-bit address? (Apr/May 2019)
	105. Define SATA.
	106. Explain about USB.

