

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

CS3362 C PROGRAMMING AND DATA STRUCTURES
LABORATORY

Semester - 03

LABORATORY MANUAL

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Vision

To excel in providing value based education in the field of Electronics and
Communication Engineering, keeping in pace with the latest technical developments
through commendable research, to raise the intellectual competence to match global
standards and to make significant contributions to the society upholding the ethical
standards.

Mission

 To deliver Quality Technical Education, with an equal emphasis on theoretical
and practical aspects.

 To provide state of the art infrastructure for the students and faculty to upgrade
their skills and knowledge.

 To create an open and conducive environment for faculty and students to carry
out research and excel in their field of specialization.

 To focus especially on innovation and development of technologies that is
sustainable and inclusive, and thus benefits all sections of the society.

 To establish a strong Industry Academic Collaboration for teaching and research,
that could foster entrepreneurship and innovation in knowledge exchange.

 To produce quality Engineers who uphold and advance the integrity, honour and
dignity of the engineering.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

1. To provide the students with a strong foundation in the required sciences in order
to pursue studies in Electronics and Communication Engineering.

2. To gain adequate knowledge to become good professional in electronic and
communication engineering associated industries, higher education and
research.

3. To develop attitude in lifelong learning, applying and adapting new ideas and
technologies as their field evolves.

4. To prepare students to critically analyze existing literature in an area of
specialization and ethically develop innovative and research oriented
methodologies to solve the problems identified.

5. To inculcate in the students a professional and ethical attitude and an ability to
visualize the engineering issues in a broader social context.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1: Design, develop and analyze electronic systems through application of relevant
electronics, mathematics and engineering principles.

PSO2: Design, develop and analyze communication systems through application of
fundamentals from communication principles, signal processing, and RF System Design
& Electromagnetics.

PSO3: Adapt to emerging electronics and communication technologies and develop
innovative solutions for existing and newer problems.

LIST OF EXPERIMENTS:

1. Practice of C programming using statements, expressions, decision
making and iterative statements

2. Practice of C programming using Functions and Arrays

3. Implement C programs using Pointers and Structures

4. Implement C programs using Files

5. Development of real time C applications

6. Array implementation of List ADT

7. Array implementation of Stack and Queue ADTs

8. Linked list implementation of List, Stack and Queue ADTs

9. Applications of List, Stack and Queue ADTs

10. Implementation of Binary Trees and operations of Binary Trees

11. Implementation of Binary Search Trees

12. Implementation of searching techniques

13. Implementation of Sorting algorithms : Insertion Sort, Quick Sort, Merge Sort

14. Implementation of Hashing – any two collision techniques

Ex no:1a PROGRAM USING I/O STATEMENTS AND EXPRESSIONS

 AIM:

To write a ‘C’ program to find the area and perimeter of a circle.

ALGORITHM:

Step-1: Start the program.

Step-2: Read radius.

Step-3: Area →PI*radius*radius. (PI=3.1)

Step-4: Perimeter→ 2*PI*radius.

Step-5: Print the area and perimeter.

Step-6: Stop the program.

PROGRAM:

#include<stdio.h>

#include<conio.h>

#define PI 3.14f

void main()

{

float rad, area,perm;

clrscr();

printf(“\n Enter the radius of a circle:”);

 scanf(“%f”,&rad);

area=PI*rad*rad;

perm=2*PI*rad;

printf(“\n Area of a circle: %f”,area);

 printf(“\n Perimeter of a circle: %f”,perm);

 getch();

}

OUTPUT:

Enter the radius of a circle: 2.34

Area of a circle: 17.193384

Perimeter of a circle: 14.695200

Result:

Thus, the ‘C’ program for finding the area and perimeter of a circle has been executed

successfully.

Ex no:1b. PROGRAM USING DECISION MAKING STATEMENTS

AIM:

To write a ‘C’ program to find the largest number among three numbers.

ALGORITHM:

Step-1: Start the program.

Step-2: Read three numbers (a, b, & c).

Step-3: If a is greater than b & c, then print “a is greater”.

Step-4: ElseIf b is greater than a & b, then print “b is greater”.

Step-5: Else print “c is greater”.

Step-6: EndIf.

Step-7: Stop the program

PROGRAM:

#include<stdio.h>

#include<conio.h>

void main()

{

int a, b, c;

clrscr();

printf(“\n Enter three numbers:”);

scanf(“%d %d %d”,&a,&b,&c);

if((a>b)&&(a>c))

{

printf(“\n %d is greater”,a);

}

 else if((b>a)&&(b>c))

{

printf(“\n %d is greater”,b);

}

else

{

printf(“\n %d is greater”,c);

}

getch();

}

Output:

 Enter three numbers: 10 30 20

 30 is greater.

RESULT:

Thus, the ‘C’ program for finding the largest number among three numbers

has been executed successfully.

Ex no:2 PROGRAM USING TWO-DIMENSIONAL ARRAY

 AIM:

 To write a ‘C’ program to populate a two dimensional array

with height and weight of persons and compute the body mass index of the

individuals.

 ALGORITHM:

 Step-1: Start the program.

Step-2: Read the weight, height.

Step-3: Calculate the BMI=weight*weight.

Step-4: Print the BMI.

Step-5: Stop the program.

PROGRAM:

 #include<stdio.h>

#include<conio.h>

void main()

{

int weight[5][5], n, i, j, bmi;

clrscr();

printf(“\n Enter the upper limit:”);

scanf(“%d”,&n);

printf(“\n Enter Weight and Height:”);

for(i=0;i<n;i++)

{

for(j=0;j<n;j++)

{

scanf(“%d”,&weight[i][j]);

}

}

for(i=0;i<n;i++)

{

for(j=0;j<n;j++)

{

printf(“%d\t”,weight[i][j]);

bmi=weight[i][j]*weight[i][j];

printf(“\n BMI:%d”,bmi);

}

}

getch();

}

OUTPUT:

Enter the upper limit: 2

Enter Weight and Height:
 53 5.5

65 5.5

53 5.5

 65 5.5

BMI: 18.859083

BMI: 23.129063

RESULT:

 Thus, the ‘C’ program to populate a two dimensional array with height

and weight of persons and compute the body mass index of the individuals has been

executed successfully

Ex no:3 PROGRAM USING STUCTURES AND POINTERS

AIM:

To write a ‘C’ program to generate salary slip of employees using structures and

pointers.

ALGORITHM:

Step-1: Start the program.

Step-2: Read the employees details e1, empid, name, basic, hra, da, ma, pf, insurance, gross, and net.

Step-3: e1=(struct employee*)malloc(sizeof(struct employee)*num).

Step-4: Print input for every employee.

Step-5: For(i=0;i<num;i++).

Step-6: Calculate gross amount.

Step-7: Calculate net amount.

Step-8: End For.

Step-9: Stop the program.

PROGRAM:

#include <stdio.h>

 struct p

 {

 int x;

 char y;

 };

 int main()

 {

 struct p p1[] = {1, 92, 3, 94, 5, 96};

 struct p *ptr1 = p1;

 int x = (sizeof(p1) / 3);

 if (x == sizeof(int) + sizeof(char))

 printf("%d\n", ptr1->x);

 else

 printf("Falsen");

 }

OUTPUT:

 False n

RESULT:

 Thus the program completed and executed successfully

Ex no:4 Implement C programs using Files

AIM:

 To write a ‘C’ program to Implement C programs using Files

#include <stdio.h>

 int main()

{

 FILE *fptr;

 char name[50];

 int marks, i, num;

 printf("Enter number of students: ");

 scanf("%d", &num);

 fptr = (fopen("C:\\student.txt", "w"));

 if(fptr == NULL)

 {

 printf("Error!");

 exit(1);

 }

 for(i = 0; i < num; ++i)

 {

 printf("For student%d\nEnter name: ", i+1);

 scanf("%s", name);

 printf("Enter marks: ");

 scanf("%d", &marks);

 fprintf(fptr,"\nName: %s \nMarks=%d \n", name, marks);

 }

 fclose(fptr);

 return 0;

}

Output:

Enter number of students: 5

For student1

Enter name: manikandan

Enter marks: 76

For student2

Enter name: kameshwaren

Enter marks: 100

For student3

Enter name: ajay raja

Enter marks: 71

For student4

Enter name: gopal

Enter marks: 65

For student5

Enter name: krishna

 Enter marks: 89

RESULT:

 Thus the program completed and executed successfully

Ex no:5 DEVELOPMENT OF REAL TIME C APPLICATIONS

AIM:

To write a ‘C’ program to generate salary slip of employees using structures and

pointers.

ALGORITHM:

Step-1: Start the program.

Step-2: Read the employees details e1, empid, name, basic, hra, da, ma, pf,

insurance, gross, and net.

Step-3: e1=(struct employee*)malloc(sizeof(struct

employee)*num). Step-4: Print input for every employee.

Step-5:

For(i=0;i<num;i++).

Step-6: Calculate gross

amount. Step-7: Calculate

net amount. Step-8: End

For.

Step-9: Stop the

program.

PROGRAM:

#include<stdio.h>

#include<conio.h>

struct emp

{

 int empno ;

 char name[10] ;

 int bpay, allow, ded, npay ;

} e[10] ;

void main()

{

 int i, n ;

 printf("Enter the number of employees : ") ;

 scanf("%d", &n) ;

 for(i = 0 ; i < n ; i++)

 {

 printf("\nEnter the employee number : ") ;

 scanf("%d", &e[i].empno) ;

 printf("\nEnter the name : ") ;

 scanf("%s", e[i].name) ;

 printf("\nEnter the basic pay, allowances & deductions : ") ;

 scanf("%d %d %d", &e[i].bpay, &e[i].allow, &e[i].ded) ;

 e[i].npay = e[i].bpay + e[i].allow - e[i].ded ;

 }

 printf("\nEmp. No. Name \t Bpay \t Allow \t Ded \t Npay \n\n") ;

 for(i = 0 ; i < n ; i++)

 {

 printf("%d \t %s \t %d \t %d \t %d \t %d \n", e[i].empno,

 e[i].name, e[i].bpay, e[i].allow, e[i].ded, e[i].npay) ;

 }

 getch() ;

}

OUTPUT:

Enter the number of employees:

2 Enter your input for every

employee:

Employee ID: 9293

Employee Name: Ram

Basic Salary: 250000

HRA: 50000

DA: 4000

Insurance: 6000

Employee ID: 9282

Employee Name: Raj

Basic Salary: 150000

HRA: 25000

DA: 3000

Insurance: 2500

Enter Employee ID to get payslip:

9293 Salary Slip of Ram:

Employee ID: 9293

Basic Salary: 250000

House Rent

Allowance: 5000

Dearness Allowance:

6000

Medical Allowance: 5000

Gross Salary: 23900982.00

Rupees Deductions:

Provident Fund: 4000

Insurance: 6000

Net Salary: 23890982.00 Rupees

Do you want to continue(1/0): 1

Enter Employee ID to get

payslip: 9382 Salary Slip of Raj:

Employee ID: 9392

Basic Salary: 150000

House Rent Allowance:

25000 Dearness

Allowance: 3000

Medical Allowance: 3500

Gross Salary: 4450328.00

Rupees Deductions:

Provident Fund: 3000

Insurance: 2500

Net Salary: 4444828.00 Rupees

 Do you want to continue(1/0): 0

RESULT:

 Thus, the ‘C’ program to generate salary slip of employees using structures

and pointers has been executed successfully.

Ex. No: 6 IMPLEMENTATION OF SINGLY LINKED LIST

AIM:

To write the C program for implementing the linked list.

ALGORITHM:

 Step 1: Define a C- struct for each node in the stack. Each node in the list contains data

and link to the next node.

Step 2: To insert the new node, the new pointer will be added as per the position.

 Step 3: To delete the existing node in the list, first delete the pointer the particular

node and points to the next node

 Step 4: Display the list

 PROGRAM:

#include <stdio.h>

#include <malloc.h>

#include <stdlib.h>

void main()

{

 struct node

 {

 int num;

 struct node *ptr;

 };

 typedef struct node NODE;

 NODE *head, *first, *temp = 0;

 int count = 0;

 int choice = 1;

 first = 0;

 while (choice)

 {

 head = (NODE *)malloc(sizeof(NODE));

 printf("Enter the data item\n");

 scanf("%d", &head-> num);

 if (first != 0)

 {

 temp->ptr = head;

 temp = head;

 }

 else

 {

 first = temp = head;

 }

 fflush(stdin);

 printf("Do you want to continue(Type 0 or 1)?\n");

 scanf("%d", &choice);

 }

 temp->ptr = 0;

 /* reset temp to the beginning */

 temp = first;

 printf("\n status of the linked list is\n");

 while (temp != 0)

 {

 printf("%d=>", temp->num);

 count++;

 temp = temp -> ptr;

 }

 printf("NULL\n");

 printf("No. of nodes in the list = %d\n", count);

}

OUTPUT:

****Main Menu****

Choose one option from the

following list ...

1. Insert in begining

2. Insert at last

3. Insert in the middle

4. Delete from Beginning

5. Delete from last

6. Delete node after specified location

7. Find

8. Display

9. Exit

Enter your choice? 1

Enter value 25

Node inserted

****Main Menu****

hoose one option from the

following list ...

1.Insert in begining

2.Insert at last

3.Insert in the middle

4.Delete from Beginning

5.Delete from last

6.Delete node after specified

location

7.Find

8.Display

9.Exit

Enter your choice? 2

Enter value? 99

Node inserted

****Main Menu****

Choose one option from the

following list ...

1.Insert in begining

2.Insert at last

3.Insert in the middle

4.Delete from Beginning

5.Delete from last

6.Delete node after specified location

7.Find

8.Display

9.Exit

Enter your choice? 3

Enter element value55

Enter the location after which you

want to insert 25

can't insert

****Main Menu****

Choose one option from the

following list ...

1.Insert in begining

2.Insert at last

3.Insert in the middle

4.Delete from Beginning

5.Delete from last

6.Delete node after specified location

7.Find

8.Display

9.Exit

Enter your choice? 4

Node deleted from the begining ...

 ****Main Menu****

Choose one option from the

following list ...

1.Insert in begining

2.Insert at last

3.Insert in the middle

4.Delete from Beginning

5.Delete from last

6.Delete node after specified location

7.Find

8.Display

9.Exit

Enter your choice? 5

Only node of the list deleted ...

****Main Menu****

Choose one option from the

following list ...

1.Insert in begining

2.Insert at last

3.Insert in the middle

4.Delete from Beginning

5.Delete from last

6.Delete node after specified location

7.Find

8.Display

9.Exit

Enter your choice? 6

Enter the location of the node after

which you want to perform deletion

66

can't Delete

****Main Menu****

Choose one option from the

following list ...

1.Insert in begining

2.Insert at last

3.Insert in the middle

4.Delete from Beginning

5.Delete from last

6.Delete node after specified location

7.Find

8.Display

9.Exit

Enter your choice? 7

Empty List

****Main Menu****

Choose one option from the

following list ...

1.Insert in begining

2.Insert at last

3.Insert in the middle

4.Delete from Beginning

5.Delete from last

6.Delete node after specified location

7.Find

8.Display

9.Exit

Enter your choice? 8

Nothing to print

****Main Menu****

Choose one option from the

following list ...

1.Insert in begining

2.Insert at last

3.Insert in the middle

4.Delete from Beginning

5.Delete from last

6.Delete node after specified location

7.Find

8.Display

9.Exit

Enter your choice? 9

Exit.

1. Insert in begining

2. Insert at last

3. Insert in the middle

4. Delete from Beginning

5. Delete from last
6. Delete node after specified location

7. Find

8. Display

9. Exit

Enter your
choice? 1

Enter value

25

Node inserted

****Main Menu****

Choose one option from the following list ...

1. Insert in begining

2. Insert at last

3. Insert in the middle

4. Delete from Beginning

5. Delete from last
6. Delete node after specified location

7. Find

8. Display

9. Exit

Enter your

choice? 2

Ente

r

valu

e?

99
Node inserted

****Main Menu****

Choose one option from the following list ...

1. Insert in begining

2. Insert at last

3. Insert in the middle

4. Delete from Beginning

5. Delete from last
6. Delete node after specified location

7. Find

8. Display

9. Exit

Enter your

choice? 3

Enter element value55

Enter the location after which you want

to insert 25

can't insert

****Main Menu****

Choose one option from the following list ...

1. Insert in begining

2. Insert at last

3. Insert in the middle

4. Delete from Beginning

5. Delete from last
6. Delete node after specified location

7. Find

8. Display

9. Exit

Enter your

choice? 4

Node deleted from the begining ...

 ****Main Menu****

Choose one option from the following list ...

1. Insert in begining

2. Insert at last

3. Insert in the middle

4. Delete from Beginning

5. Delete from last
6. Delete node after specified location

7. Find

8. Display

9. Exit

Enter your choice?

5
Only node of the list deleted ...

****Main Menu****

Choose one option from the following list ...

1. Insert in begining

2. Insert at last

3. Insert in the middle

4. Delete from Beginning

5. Delete from last
6. Delete node after specified location

7. Find

8. Display

9. Exit

Enter your choice?

6

Enter the location of the node after which you want to perform deletion

66
can't Delete

****Main Menu****

Choose one option from the following list ...

1. Insert in begining

2. Insert at last

3. Insert in the middle

4. Delete from Beginning

5. Delete from last
6. Delete node after specified location

7. Find

8. Display

9. Exit

Enter your choice?

7
Empty List

****Main Menu****

Choose one option from the following list ...

1. Insert in begining

2. Insert at last

3. Insert in the middle

4. Delete from Beginning

5. Delete from last
6. Delete node after specified location

7. Find

8. Display

9. Exit

Enter your choice?

8
Nothing to print

****Main Menu****

Choose one option from the following list ..

1. Insert in begining

2. Insert at last

3. Insert in the middle

4. Delete from Beginning

5. Delete from last
6. Delete node after specified location

7. Find

8. Display

9. Exit

Enter your choice?

9
Exit

RESULT:

 Thus the program completed and executed successfully

Ex no:7a ARRAY IMPLEMENTATION USING STACK ADT

AIM:

To write the C program for stack using array implementation.

ALGORITHM:

Step1: Define a array which stores stack elements..

Step 2: The operations on the stack are

a. PUSH data into the stack

b. POP data out of stack

Step 3: PUSH DATA INTO STACK

a. Enter the data to be inserted into stack.

b. If TOP is NULL the input data is the first node in stack. The link of the

node is NULL. TOP points to that node.

c. If TOP is NOT NULL the link of TOP points to the new node. TOP

points to that node.

Step 4: POP DATA FROM STACK

a. If TOP is NULL the stack is empty.

b. If TOP is NOT NULL the link of TOP is the current TOP and the

pervious TOP is popped from stack.

Step 5: The stack represented by linked list is traversed to display its content.

PROGRAM:

#include <stdio.h>

#define MAXSIZE 5

struct stack

{

 int stk[MAXSIZE];

 int top;

};

typedef struct stack STACK;

STACK s;

void push(void);

int pop(void);

void display(void);

void main ()

{

 int choice;

 int option = 1;

 s.top = -1;

 printf ("STACK OPERATION\n");

 while (option)

 {

 printf ("--\n");

 printf (" 1 --> PUSH \n");

 printf (" 2 --> POP \n");

 printf (" 3 --> DISPLAY \n");

 printf (" 4 --> EXIT \n");

 printf ("--\n");

 printf ("Enter your choice\n");

 scanf ("%d", &choice);

 switch (choice)

 {

 case 1:

 push();

 break;

 case 2:

 pop();

 break;

 case 3:

 display();

 break;

 case 4:

 return;

 }

 fflush (stdin);

 printf ("Do you want to continue(Type 0 or 1)?\n");

 scanf ("%d", &option);

 }

}

/* Function to add an element to the stack */

void push ()

{

 int num;

 if (s.top == (MAXSIZE - 1))

 {

 printf ("Stack is Full\n");

 return;

 }

 else

 {

 printf ("Enter the element to be pushed\n");

 scanf ("%d", &num);

 s.top = s.top + 1;

 s.stk[s.top] = num;

 }

 return;

}

/* Function to delete an element from the stack */

int pop ()

{

 int num;

 if (s.top == - 1)

 {

 printf ("Stack is Empty\n");

 return (s.top);

 }

 else

 {

 num = s.stk[s.top];

 printf ("poped element is = %dn", s.stk[s.top]);

 s.top = s.top - 1;

 }

 return(num);

}

/* Function to display the status of the stack */

void display ()

{

 int i;

 if (s.top == -1)

 {

 printf ("Stack is empty\n");

 return;

 }

 else

 {

 printf ("\n The status of the stack is \n");

 for (i = s.top; i >= 0; i--)

 {

 printf ("%d\n", s.stk[i]);

 }

 }

 printf ("\n");

}

OUTPUT:

STACK OPERATION

--

 1 --> PUSH

 2 --> POP

 3 --> DISPLAY

 4 --> EXIT

--

Enter your choice

1

Enter the element to be pushed

34

Do you want to continue(Type 0 or 1)?

0

$ a.out

STACK OPERATION

--

 1 --> PUSH

 2 --> POP

 3 --> DISPLAY

 4 --> EXIT

--

Enter your choice

1

Enter the element to be pushed

34

Do you want to continue(Type 0 or 1)?

1

--

 1 --> PUSH

 2 --> POP

 3 --> DISPLAY

 4 --> EXIT

--

Enter your choice

2

poped element is = 34

Do you want to continue(Type 0 or 1)?

1

--

 1 --> PUSH

 2 --> POP

 3 --> DISPLAY

 4 --> EXIT

--

Enter your choice

3

Stack is empty

Do you want to continue(Type 0 or 1)?

1

--

 1 --> PUSH

 2 --> POP

 3 --> DISPLAY

 4 --> EXIT

--

Enter your choice

1

Enter the element to be pushed

50

Do you want to continue(Type 0 or 1)?

1

--

 1 --> PUSH

 2 --> POP

 3 --> DISPLAY

 4 --> EXIT

--

Enter your choice

1

Enter the element to be pushed

60

Do you want to continue(Type 0 or 1)?

1

--

 1 --> PUSH

 2 --> POP

 3 --> DISPLAY

 4 --> EXIT

--

Enter your choice

3

The status of the stack is

60

50

Do you want to continue(Type 0 or 1)?

1

--

 1 --> PUSH

 2 --> POP

 3 --> DISPLAY

 4 --> EXIT

--

Enter your choice

4

RESULT:

Thus the program completed and executed successfully

Ex no:7b ARRAY IMPLEMENTATION USING QUEUE ADT

AIM:

write a program for Queue using array implementation.

ALGORITHM:

Step1: Define a array which stores queue elements..

Step 2: The operations on the queue are

a. INSERT data into the queue

b. DELETE data out of queue

Step 3: INSERT DATA INTO queue

a. Enter the data to be inserted into queue.

b. If TOP is NULL the input data is the first node in queue. The link of the

node is NULL. TOP points to that node.

c. If TOP is NOT NUL the link of TOP points to the new node. TOP

points to that node.

Step 4: DELETE DATA FROM queue

a. If TOP is NULL the queue is empty .

b. If TOP is NOT NULL the link of TOP is the current TOP. The pervious

TOP is popped from queue.

Step 5: The queue represented by linked list is traversed to display its content.

PROGRAM:

 #include <stdio.h>

#define MAX 50

void insert();

void delete();

void display();

int queue_array[MAX];

int rear = - 1;

int front = - 1;

main()

{

 int choice;

 while (1)

 {

 printf("1.Insert element to queue \n");

 printf("2.Delete element from queue \n");

 printf("3.Display all elements of queue \n");

 printf("4.Quit \n");

 printf("Enter your choice : ");

 scanf("%d", &choice);

 switch (choice)

 {

 case 1:

 insert();

 break;

 case 2:

 delete();

 break;

 case 3:

 display();

 break;

 case 4:

 exit(1);

 default:

 printf("Wrong choice \n");

 } /* End of switch */

 } /* End of while */

} /* End of main() */

void insert()

{

 int add_item;

 if (rear == MAX - 1)

 printf("Queue Overflow \n");

 else

 {

 if (front == - 1)

 /*If queue is initially empty */

 front = 0;

 printf("Inset the element in queue : ");

 scanf("%d", &add_item);

 rear = rear + 1;

 queue_array[rear] = add_item;

 }

} /* End of insert() */

void delete()

{

 if (front == - 1 || front > rear)

 {

 printf("Queue Underflow \n");

 return ;

 }

 else

 {

 printf("Element deleted from queue is : %d\n", queue_array[front]);

 front = front + 1;

 }

} /* End of delete() */

void display()

{

 int i;

 if (front == - 1)

 printf("Queue is empty \n");

 else

 {

 printf("Queue is : \n");

 for (i = front; i <= rear; i++)

 printf("%d ", queue_array[i]);

 printf("\n");

 }

} /* End of display() */

OUTPUT:

1.Insert element to queue

2.Delete element from queue

3.Display all elements of queue

4.Quit

Enter your choice : 1

Inset the element in queue : 10

1.Insert element to queue

2.Delete element from queue

3.Display all elements of queue

4.Quit

Enter your choice : 1

Inset the element in queue : 15

1.Insert element to queue

2.Delete element from queue

3.Display all elements of queue

4.Quit

Enter your choice : 1

Inset the element in queue : 20

1.Insert element to queue

2.Delete element from queue

3.Display all elements of queue

4.Quit

Enter your choice : 1

Inset the element in queue : 30

1.Insert element to queue

2.Delete element from queue

3.Display all elements of queue

4.Quit

Enter your choice : 2

Element deleted from queue is : 10

1.Insert element to queue

2.Delete element from queue

3.Display all elements of queue

4.Quit

Enter your choice : 3

Queue is :

15 20 30

1.Insert element to queue

2.Delete element from queue

3.Display all elements of queue

4.Quit

 Enter your choice : 4

RESULT:

Thus the program completed and executed successfull

EX : 8(a) IMPLEMENTATION OF STACK USING LINKED LIST

AIM:

To write a program for stack using linked list implementation.

ALGORITHM:

Step1: Define a C-struct for each node in the stack. Each node in the stack contains

data and link to the next node. TOP pointer points to last node inserted in the

stack.

Step 2: The operations on the stack are

a. PUSH data into the stack

b. POP data out of stack

Step 3: PUSH DATA INTO STACK

a. Enter the data to be inserted into stack.

b. If TOP is NULL the input data is the first node in stack. the link of the
node is NULL. TOP points to that node.

c. If TOP is NOT NULL, the link of TOP points to the new node. TOP

points to that node.

Step 4: POP DATA FROM STACK

a. If TOP is NULL the stack is empty.

b. If TOP is NOT NULL the link of TOP is the current TOP. The

pervious TOP is popped from stack.

Step 5: The stack represented by linked list is traversed to display its content.

PROGRAM:

#include <stdio.h>

#include <stdlib.h>

struct node

{

 int info;

 struct node *ptr;

}*top,*top1,*temp;

int topelement();

void push(int data);

void pop();

void empty();

void display();

void destroy();

void stack_count();

void create();

int count = 0;

void main()

{

 int no, ch, e;

 printf("\n 1 - Push");

 printf("\n 2 - Pop");

 printf("\n 3 - Top");

 printf("\n 4 - Empty");

 printf("\n 5 - Exit");

 printf("\n 6 - Dipslay");

 printf("\n 7 - Stack Count");

 printf("\n 8 - Destroy stack");

 create();

 while (1)

 {

 printf("\n Enter choice : ");

 scanf("%d", &ch);

 switch (ch)

 {

 case 1:

 printf("Enter data : ");

 scanf("%d", &no);

 push(no);

 break;

 case 2:

 pop();

 break;

 case 3:

 if (top == NULL)

 printf("No elements in stack");

 else

 {

 e = topelement();

 printf("\n Top element : %d", e);

 }

 break;

 case 4:

 empty();

 break;

 case 5:

 exit(0);

 case 6:

 display();

 break;

 case 7:

 stack_count();

 break;

 case 8:

 destroy();

 break;

 default :

 printf(" Wrong choice, Please enter correct choice ");

 break;

 }

 }

}

/* Create empty stack */

void create()

{

 top = NULL;

}

/* Count stack elements */

void stack_count()

{

 printf("\n No. of elements in stack : %d", count);

}

/* Push data into stack */

void push(int data)

{

 if (top == NULL)

 {

 top =(struct node *)malloc(1*sizeof(struct node));

 top->ptr = NULL;

 top->info = data;

 }

 else

 {

 temp =(struct node *)malloc(1*sizeof(struct node));

 temp->ptr = top;

 temp->info = data;

 top = temp;

 }

 count++;

}

/* Display stack elements */

void display()

{

 top1 = top;

 if (top1 == NULL)

 {

 printf("Stack is empty");

 return;

 }

 while (top1 != NULL)

 {

 printf("%d ", top1->info);

 top1 = top1->ptr;

 }

 }

/* Pop Operation on stack */

void pop()

{

 top1 = top;

 if (top1 == NULL)

 {

 printf("\n Error : Trying to pop from empty stack");

 return;

 }

 else

 top1 = top1->ptr;

 printf("\n Popped value : %d", top->info);

 free(top);

 top = top1;

 count--;

}

/* Return top element */

int topelement()

{

 return(top->info);

}

/* Check if stack is empty or not */

void empty()

{

 if (top == NULL)

 printf("\n Stack is empty");

 else

 printf("\n Stack is not empty with %d elements", count);

}

/* Destroy entire stack */

void destroy()

{

 top1 = top;

 while (top1 != NULL)

 {

 top1 = top->ptr;

 free(top);

 top = top1;

 top1 = top1->ptr;

 }

 free(top1);

 top = NULL;

 printf("\n All stack elements destroyed");

 count = 0;

}

OUTPUT:

1 - Push

2 - Pop

3 - Top

4 - Empty

5 - Exit

6 - Dipslay

7 - Stack Count

8 - Destroy stack

Enter choice : 1

Enter data : 56

 Enter choice : 1

Enter data : 80

 Enter choice : 2

 Popped value : 80

Enter choice : 3

 Top element : 56

Enter choice : 1

Enter data : 78

 Enter choice : 1

Enter data : 90

 Enter choice : 6

90 78 56

Enter choice : 7

 No. of elements in stack : 3

Enter choice : 8

 All stack elements destroyed

Enter choice : 4

 Stack is empty

Enter choice : 5

RESULT:

Thus the program completed and executed successfully.

EX.NO :8(b) IMPLEMENTATION OF QUEUE USING LINKED LIST

AIM:

To write a program for queue using linked list implementation.

ALGORITHM:

Step1: Define a C-struct for each node in the queue. Each node in the queue contains

data and link to the next node. Front and rear pointer points to first and last

node inserted in the queue.

Step 2: The operations on the queue are

a. INSERT data into the queue

b. DELETE data out of queue

Step 3: INSERT DATA INTO queue

a. Enter the data to be inserted into queue.

b. If TOP is NULL the input data is the first node in queue. the link of the

node is NULL. TOP points to that node.

c. If TOP is NOT NULL the link of TOP points to the new node. TOP

points to that node.

Step 4: DELETE DATA FROM queue .
a. If TOP is NULL the queue is empty
b. If TOP is NOT NULL.

c. The link of TOP is the current TOP and the pervious TOP is popped from

queue.

Step 5: The queue represented by linked list is traversed to display its content.

PROGRAM:

#include <stdio.h>

#include <stdlib.h>

struct node

{

 int info;

 struct node *ptr;

}*front,*rear,*temp,*front1;

int frontelement();

void enq(int data);

void deq();

void empty();

void display();

void create();

void queuesize();

int count = 0;

void main()

{

 int no, ch, e;

 printf("\n 1 - Enque");

 printf("\n 2 - Deque");

 printf("\n 3 - Front element");

 printf("\n 4 - Empty");

 printf("\n 5 - Exit");

 printf("\n 6 - Display");

 printf("\n 7 - Queue size");

 create();

 while (1)

 {

 printf("\n Enter choice : ");

 scanf("%d", &ch);

 switch (ch)

 {

 case 1:

 printf("Enter data : ");

 scanf("%d", &no);

 enq(no);

 break;

 case 2:

 deq();

 break;

 case 3:

 e = frontelement();

 if (e != 0)

 printf("Front element : %d", e);

 else

 printf("\n No front element in Queue as queue is empty");

 break;

 case 4:

 empty();

 break;

 case 5:

 exit(0);

 case 6:

 display();

 break;

 case 7:

 queuesize();

 break;

 default:

 printf("Wrong choice, Please enter correct choice ");

 break;

 }

 }

}

/* Create an empty queue */

void create()

{

 front = rear = NULL;

}

/* Returns queue size */

void queuesize()

{

 printf("\n Queue size : %d", count);

}

/* Enqueing the queue */

void enq(int data)

{

 if (rear == NULL)

 {

 rear = (struct node *)malloc(1*sizeof(struct node));

 rear->ptr = NULL;

 rear->info = data;

 front = rear;

 }

 else

 {

 temp=(struct node *)malloc(1*sizeof(struct node));

 rear->ptr = temp;

 temp->info = data;

 temp->ptr = NULL;

 rear = temp;

 }

 count++;

}

/* Displaying the queue elements */

void display()

{

 front1 = front;

 if ((front1 == NULL) && (rear == NULL))

 {

 printf("Queue is empty");

 return;

 }

 while (front1 != rear)

 {

 printf("%d ", front1->info);

 front1 = front1->ptr;

 }

 if (front1 == rear)

 printf("%d", front1->info);

}

/* Dequeing the queue */

void deq()

{

 front1 = front;

 if (front1 == NULL)

 {

 printf("\n Error: Trying to display elements from empty queue");

 return;

 }

 else

 if (front1->ptr != NULL)

 {

 front1 = front1->ptr;

 printf("\n Dequed value : %d", front->info);

 free(front);

 front = front1;

 }

 else

 {

 printf("\n Dequed value : %d", front->info);

 free(front);

 front = NULL;

 rear = NULL;

 }

 count--;

}

/* Returns the front element of queue */

int frontelement()

{

 if ((front != NULL) && (rear != NULL))

 return(front->info);

 else

 return 0;

}

/* Display if queue is empty or not */

void empty()

{

 if ((front == NULL) && (rear == NULL))

 printf("\n Queue empty");

 else

 printf("Queue not empty");

}

OUTPUT:

1 - Enque

2 - Deque

3 - Front element

4 - Empty

5 - Exit

6 - Display

7 - Queue size

Enter choice : 1

Enter data : 14

Enter choice : 1

Enter data : 85

Enter choice : 1

Enter data : 38

Enter choice : 3

Front element : 14

Enter choice : 6

14 85 38

Enter choice : 7

Queue size : 3

Enter choice : 2

Dequed value : 14

Enter choice : 6

85 38

Enter choice : 7

Queue size : 2

Enter choice : 4

Queue not empty

Enter choice : 5

RESULT:

Thus the program completed and executed successfully.

EX.NO.9 APPLICATIONS OF LIST, STACK AND QUEUE ADTS

AIM:

To write a c program for Applications of List, Stack and Queue ADTs

Polynomial additions

 ALGORITHM:

 1.) [Initialize segment variables][Initialize Counter] Set i=0,j=0,k=0

2.) Repeat step 3 while i<t1 and j<t2

3.) If p1[i].expo=p2[j].expo, then

p3[i].coeff=p1[i].coeff+p2[i].coeff

p3[k].expo=p1[i].exp [Increase counter]

Set i=i+1,j=j+1,k=k+1else if p1[i].expo > p2[j].expo, then

p3[k].coeff=p1[i].coeff p3[k].expo=p1[i].expo [Increase counter] Set i=i+1,k=k+1

else

p3[k].coeff=p2[j].coeff p3[k].expo=p2[j].expo

Set j=j+1,k=k+1

 [End of If]

 [End of loop]

4.) Repeat while i<t1

p3[k].coeff=p1[i].coeff

p3[k].expo=p1[i].expo Set i=i+1,k=k+1

 [End of loop]

5.) Repeat while j<t2

p3[k].coeff=p2[j].coeff

p3[k].expo=p2[j].expo

 Set j=j+1,k=k+1

 [End of loop]

6.) Return k

7.) Exit

PROGRAM:

#include<stdio.h>

 /* declare structure for polynomial */

 struct poly

 {

 int coeff;

 int expo;

 };

 /* declare three arrays p1, p2, p3 of type structure poly.

 * each polynomial can have maximum of ten terms

 * addition result of p1 and p2 is stored in p3 */

 struct poly p1[10],p2[10],p3[10];

 /* function prototypes */

 int readPoly(struct poly []);

 int addPoly(struct poly [],struct poly [],int ,int ,struct poly []);

 void displayPoly(struct poly [],int terms);

 int main()

 {

 int t1,t2,t3;

 /* read and display first polynomial */

 t1=readPoly(p1);

 printf(" \n First polynomial : ");

 displayPoly(p1,t1);

 /* read and display second polynomial */

 t2=readPoly(p2);

 printf(" \n Second polynomial : ");

 displayPoly(p2,t2);

 /* add two polynomials and display resultant polynomial */

 t3=addPoly(p1,p2,t1,t2,p3);

 printf(" \n\n Resultant polynomial after addition : ");

 displayPoly(p3,t3);

 printf("\n");

 return 0;

 }

 int readPoly(struct poly p[10])

 {

 int t1,i;

 printf("\n\n Enter the total number of terms in the polynomial:");

 scanf("%d",&t1);

 printf("\n Enter the COEFFICIENT and EXPONENT in DESCENDING ORDER\n");

 for(i=0;i<t1;i++)

 {

 printf(" Enter the Coefficient(%d): ",i+1);

 scanf("%d",&p[i].coeff);

 printf(" Enter the exponent(%d): ",i+1);

 scanf("%d",&p[i].expo); /* only statement in loop */

 }

 return(t1);

 }

 int addPoly(struct poly p1[10],struct poly p2[10],int t1,int t2,struct poly p3[10])

 {

 int i,j,k;

 i=0;

 j=0;

 k=0;

 while(i<t1 && j<t2)

 {

 if(p1[i].expo==p2[j].expo)

 {

 p3[k].coeff=p1[i].coeff + p2[j].coeff;

 p3[k].expo=p1[i].expo;

 i++;

 j++;

 k++;

 }

 else if(p1[i].expo>p2[j].expo)

 {

 p3[k].coeff=p1[i].coeff;

 p3[k].expo=p1[i].expo;

 i++;

 k++;

 }

 else

 {

 p3[k].coeff=p2[j].coeff;

 p3[k].expo=p2[j].expo;

 j++;

 k++;

 }

 }

 /* for rest over terms of polynomial 1 */

 while(i<t1)

 {

 p3[k].coeff=p1[i].coeff;

 p3[k].expo=p1[i].expo;

 i++;

 k++;

 }

 /* for rest over terms of polynomial 2 */

 while(j<t2)

 {

 p3[k].coeff=p2[j].coeff;

 p3[k].expo=p2[j].expo;

 j++;

 k++;

 }

 return(k); /* k is number of terms in resultant polynomial*/

 }

 void displayPoly(struct poly p[10],int term)

 {

 int k;

 for(k=0;k<term-1;k++)

 printf("%d(x^%d)+",p[k].coeff,p[k].expo);

 printf("%d(x^%d)",p[term-1].coeff,p[term-1].expo);

}

OUTPUT:

Enter the total number of terms in the polynomial:4

Enter the COEFFICIENT and EXPONENT in DESCENDING ORDER

Enter the Coefficient(1): 3

Enter the exponent(1): 4

Enter the Coefficient(2): 7

Enter the exponent(2): 3

Enter the Coefficient(3): 5

Enter the exponent(3): 1

Enter the Coefficient(4): 8

Enter the exponent(4): 0

First polynomial : 3(x^4)+7(x^3)+5(x^1)+8(x^0)

Enter the total number of terms in the polynomial:5

Enter the COEFFICIENT and EXPONENT in DESCENDING ORDER

Enter the Coefficient(1): 7

Enter the exponent(1): 5

Enter the Coefficient(2): 6

Enter the exponent(2): 4

Enter the Coefficient(3): 8

Enter the exponent(3): 2

Enter the Coefficient(4): 9

Enter the exponent(4): 1

Enter the Coefficient(5): 2

Enter the exponent(5): 0

Second polynomial : 7(x^5)+6(x^4)+8(x^2)+9(x^1)+2(x^0)

Resultant polynomial after addition : 7(x^5)+9(x^4)+7(x^3)+8(x^2)+14(x^1)+10(x^0)

RESULT:

Thus the program completed and executed successfully.

EX.N0. 10 IMPLEMENTATION OF BINARY TREES AND OPERATIONS OF

 BINARY TREES

AIM:

To write a c program for Implementation of Binary Trees and operations of Binary

Trees

ALGORITHM:

Step 1: Declare function

add(),search(),findmin().find(),findmax(),Display(). Step 2: Create a

structure for a tree contains left pointer and right pointer.

Step 3: Insert an element is by checking the top node and the leaf node and the
operation

will be performed.

Step 4: Deleting an element contains searching the tree and deleting the

item. Step 5: Display the Tree elements.

PROGRAM:

#include <stdio.h>

#include <stdlib.h>

// structure of a node

struct node

{

 int data;

 struct node *left;

 struct node *right;

};

// globally initialized root pointer

struct node *root = NULL;

// function prototyping

struct node *create_node(int);

void insert(int);

struct node *delete (struct node *, int);

int search(int);

void inorder(struct node *);

void postorder();

void preorder();

struct node *smallest_node(struct node *);

struct node *largest_node(struct node *);

int get_data();

int main()

{

 int userChoice;

 int userActive = 'Y';

 int data;

 struct node* result = NULL;

 while (userActive == 'Y' || userActive == 'y')

 {

 printf("\n\n------- Binary Search Tree ------\n");

 printf("\n1. Insert");

 printf("\n2. Delete");

 printf("\n3. Search");

 printf("\n4. Get Larger Node Data");

 printf("\n5. Get smaller Node data");

 printf("\n\n-- Traversals --");

 printf("\n\n6. Inorder ");

 printf("\n7. Post Order ");

 printf("\n8. Pre Oder ");

 printf("\n9. Exit");

 printf("\n\nEnter Your Choice: ");

 scanf("%d", &userChoice);

 printf("\n");

 switch(userChoice)

 {

 case 1:

 data = get_data();

 insert(data);

 break;

 case 2:

 data = get_data();

 root = delete(root, data);

 break;

 case 3:

 data = get_data();

 if (search(data) == 1)

 {

 printf("\nData was found!\n");

 }

 else

 {

 printf("\nData does not found!\n");

 }

 break;

 case 4:

 result = largest_node(root);

 if (result != NULL)

 {

 printf("\nLargest Data: %d\n", result->data);

 }

 break;

 case 5:

 result = smallest_node(root);

 if (result != NULL)

 {

 printf("\nSmallest Data: %d\n", result->data);

 }

 break;

 case 6:

 inorder(root);

 break;

 case 7:

 postorder(root);

 break;

 case 8:

 preorder(root);

 break;

 case 9:

 printf("\n\nProgram was terminated\n");

 break;

 default:

 printf("\n\tInvalid Choice\n");

 break;

 }

 printf("\n__________\nDo you want to continue? ");

 fflush(stdin);

 scanf(" %c", &userActive);

 }

 return 0;

}

// creates a new node

struct node *create_node(int data)

{

 struct node *new_node = (struct node *)malloc(sizeof(struct node));

 if (new_node == NULL)

 {

 printf("\nMemory for new node can't be allocated");

 return NULL;

 }

 new_node->data = data;

 new_node->left = NULL;

 new_node->right = NULL;

 return new_node;

}

// inserts the data in the BST

void insert(int data)

{

 struct node *new_node = create_node(data);

 if (new_node != NULL)

 {

 // if the root is empty then make a new node as the root node

 if (root == NULL)

 {

 root = new_node;

 printf("\n* node having data %d was inserted\n", data);

 return;

 }

 struct node *temp = root;

 struct node *prev = NULL;

 // traverse through the BST to get the correct position for insertion

 while (temp != NULL)

 {

 prev = temp;

 if (data > temp->data)

 {

 temp = temp->right;

 }

 else

 {

 temp = temp->left;

 }

 }

 // found the last node where the new node should insert

 if (data > prev->data)

 {

 prev->right = new_node;

 }

 else

 {

 prev->left = new_node;

 }

 printf("\n* node having data %d was inserted\n", data);

 }

}

// deletes the given key node from the BST

struct node *delete (struct node *root, int key)

{

 if (root == NULL)

 {

 return root;

 }

 if (key < root->data)

 {

 root->left = delete (root->left, key);

 }

 else if (key > root->data)

 {

 root->right = delete (root->right, key);

 }

 else

 {

 if (root->left == NULL)

 {

 struct node *temp = root->right;

 free(root);

 return temp;

 }

 else if (root->right == NULL)

 {

 struct node *temp = root->left;

 free(root);

 return temp;

 }

 struct node *temp = smallest_node(root->right);

 root->data = temp->data;

 root->right = delete (root->right, temp->data);

 }

 return root;

}

// search the given key node in BST

int search(int key)

{

 struct node *temp = root;

 while (temp != NULL)

 {

 if (key == temp->data)

 {

 return 1;

 }

 else if (key > temp->data)

 {

 temp = temp->right;

 }

 else

 {

 temp = temp->left;

 }

 }

 return 0;

}

// finds the node with the smallest value in BST

struct node *smallest_node(struct node *root)

{

 struct node *curr = root;

 while (curr != NULL && curr->left != NULL)

 {

 curr = curr->left;

 }

 return curr;

}

// finds the node with the largest value in BST

struct node *largest_node(struct node *root)

{

 struct node *curr = root;

 while (curr != NULL && curr->right != NULL)

 {

 curr = curr->right;

 }

 return curr;

}

// inorder traversal of the BST

void inorder(struct node *root)

{

 if (root == NULL)

 {

 return;

 }

 inorder(root->left);

 printf("%d ", root->data);

 inorder(root->right);

}

// preorder traversal of the BST

void preorder(struct node *root)

{

 if (root == NULL)

 {

 return;

 }

 printf("%d ", root->data);

 preorder(root->left);

 preorder(root->right);

}

// postorder travsersal of the BST

void postorder(struct node *root)

{

 if (root == NULL)

 {

 return;

 }

 postorder(root->left);

 postorder(root->right);

 printf("%d ", root->data);

}

// getting data from the user

int get_data()

{

 int data;

 printf("\nEnter Data: ");

 scanf("%d", &data);

 return data;

}

OUTPUT:

------- Binary Search Tree ------

1. Insert

2. Delete

3. Search

4. Get Larger Node Data

5. Get smaller Node data

-- Traversals --

6. Inorder

7. Post Order

8. Pre Oder

9. Exit

Enter Your Choice: 1

Enter Data: 20

* node having data 20 was inserted

Do you want to continue? y

------- Binary Search Tree ------

1. Insert

2. Delete

3. Search

4. Get Larger Node Data

5. Get smaller Node data

-- Traversals --

6. Inorder

7. Post Order

8. Pre Oder

9. Exit

Enter Your Choice: 1

Enter Data: 15

* node having data 15 was inserted

Do you want to continue? y

------- Binary Search Tree ------

1. Insert

2. Delete

3. Search

4. Get Larger Node Data

5. Get smaller Node data

-- Traversals --

6. Inorder

7. Post Order

8. Pre Oder

9. Exit

Enter Your Choice: 1

Enter Data: 25

* node having data 25 was inserted

Do you want to continue? y

------- Binary Search Tree ------

1. Insert

2. Delete

3. Search

4. Get Larger Node Data

5. Get smaller Node data

-- Traversals --

6. Inorder

7. Post Order

8. Pre Oder

9. Exit

Enter Your Choice: 1

Enter Data: 12

* node having data 12 was inserted

Do you want to continue? y

------- Binary Search Tree ------

1. Insert

2. Delete

3. Search

4. Get Larger Node Data

5. Get smaller Node data

-- Traversals --

6. Inorder

7. Post Order

8. Pre Oder

9. Exit

Enter Your Choice: 1

Enter Data: 18

* node having data 18 was inserted

Do you want to continue? y

------- Binary Search Tree ------

1. Insert

2. Delete

3. Search

4. Get Larger Node Data

5. Get smaller Node data

-- Traversals --

6. Inorder

7. Post Order

8. Pre Oder

9. Exit

Enter Your Choice: 1

Enter Data: 65

* node having data 65 was inserted

Do you want to continue? N

RESULT:

Thus the program completed and executed successfully.

EX.N0. 11 BINARY SEARCH TREE

AIM:

To write a c program for binary search tree.

ALGORITHM:

Step 1: Declare function add(),search(),findmin().find(),findmax(),Display().

Step 2: Create a structure for a tree contains left pointer and right pointer.

Step 3: Insert an element is by checking the top node and the leaf node and the
operation will be performed.

Step 4: Deleting an element contains searching the tree and deleting the

item. Step 5: Display the Tree elements.

PROGRAM:

#include<stdio.h>

#include<stdlib.>

#include<conio.h>

struct searchtree

{

 int element;

struct searchtree *left,*right;

}*root;

typedef struct searchtree *node;

typedef int ElementType;

node insert(ElementType, node);

node delete(ElementType, node);

void makeempty();

node findmin(node);

node findmax(node);

node find(ElementType, node);

void display(node, int);

void main()

{

int ch;

ElementType a;

node temp;

makeempty();

while(1)

{

printf("\n1. Insert\n2. Delete\n3. Find min\n4. Find max\n5. Find\n6. Display\n7.

Exit\nEnter Your Choice : ");

scanf("%d",&ch);

switch()

case 1:

printf("Enter an element : ");

scanf("%d", &a);

root = insert(a, root);

break;

case 2:

printf("\nEnter the element to delete : ");

scanf("%d",&a);

root = delet(a, root);

break;

case 3:

printf("\nEnter the element to search : ");

scanf("%d",&a); temp = find(a, root); if (temp != NULL);

printf("Element found");

break;

case 4:

printf("\nEnter the element to search : ");

scanf("%d",&a); temp = find(a, root);

if (temp != NULL) printf("Element found");

break;

case 5:

temp = findmin (root);

if(temp==NULL)

printf("\nEmpty tree");

else

printf("\nMinimum element : %d", temp->element);

break;

case 6:

if(root==NULL)

printf("\nEmpty tree");

break;

case 7:

else

display(root, 1);

exit(0) default:

printf(“\nInvalid choice”);

}

}

}

node insert(ElementType x,node t)

{

if(t==NULL)

{

t = (node)malloc(sizeof(node)); t->element = x;

t->left = t->right = NULL;

}

else

{

if(x < t->element)

t->left = insert(x, t->left); else if(x > t->element)

t->right = insert(x, t->right);

}

return t;

}

node delete(ElementType x,node t)

{

node temp; if(t == NULL)

printf("\nElement not found");

else

{

if(x < t->element)

t->left = delete(x, t->left); else if(x > t->element)

t->right = delet(x, t->right);

else

{

if(t->left && t->right)

{

temp = findmin(t->right);

t->element = temp->element;

t->right = delet(t->element,t->right);

}

else if(t->left == NULL)

t=t->right;

}

}return t;

}

else

 t=t->left;

 void makeempty()

{

root = NULL;

}

node findmin(node temp)

{

if(temp == NULL || temp->left == NULL) return temp;

return findmin(temp->left);

}

node findmax(node temp)

{

if(temp==NULL || temp->right==NULL) return temp;

return findmin(temp->right);

}

 node find(ElementType x, node t)

{

if(t==NULL) return NULL;

 if(x<t->element) return find(x,t->left); if(x>t->element) return find(x,t->right);

return t

}

void display(node t,int level)

{

 int i; if(t)

{

 display(t->right, level+1);

 printf(“\n”);

for(i=0;i<level;i++)

{

printf(" ");

}

printf("%d", t->element);

display(t->left, level+1);

}

}

OUTPUT

1. Insert

2. Delete

3. Find

4. Find Min

5. Find Max

6. Display

7. Exit

Enter your Choice : 1 Enter an element : 10

1. Insert

2. Delete

3. Find

4. Find Min

5. Find Max

6. Display

7. Exit

Enter your Choice : 1 Enter an element : 20

1. Insert

2. Delete

3. Find

4. Find Min

5. Find Max

6. Display

7. Exit

Enter your Choice : 1

Enter an element : 5

1. Insert

2. Delete

3. Find

4. Find Min

5. Find Max

6. Display

7. Exit

Enter your Choice : 4 The smallest Number is 5

1. Insert

2. Delete

3. Find

4. Find Min

5. Find Max

6. Display

7. Exit

Enter your Choice : 3 Enter an element : 100 Element not Found

1. Insert

2. Delete

3. Find

4. Find Min

5. Find Max

6. Display

7. Exit

Enter your Choice : 2 Enter an element : 20

1. Insert

2. Delete

3. Find

4. Find Min

5. Find Max

6. Display

7. Exit

Enter your Choice : 6 5

10

1. Insert

2. Delete

3. Find

4. Find Min

5. Find Max

6. Display

7. Exit

Enter your Choice : 7

RESULT:

Thus the program completed and executed successfully.

EX NO :12 IMPLEMENTATION OF LINEAR SEARCH

AIM:

 To write the C program for implementing the linear search.

ALGORITHM:

Linear_Search(a, n, val) // 'a' is the given array, 'n' is the size of given array, 'val' is the

value to search

Step 1: set pos = -1

Step 2: set i = 1

Step 3: repeat step 4 while i <= n Step 4: if a[i] == val

set pos = i print pos go to step 6

[end of if]

set ii = i + 1 [end of loop]

Step 5: if pos = -1

print "value is not present in the array " [end of if]

Step 6: exit

\

PROGRAM:

#include <stdio.h>

void main()

{

 int num;

 int i, keynum, found = 0;

 printf("Enter the number of elements ");

 scanf("%d", &num);

 int array[num];

 printf("Enter the elements one by one \n");

 for (i = 0; i < num; i++)

 {

 scanf("%d", &array[i]);

 }

 printf("Enter the element to be searched ");

 scanf("%d", &keynum);

 /* Linear search begins */

 for (i = 0; i < num ; i++)

 {

 if (keynum == array[i])

 {

 found = 1;

 break;

 }

 }

 if (found == 1)

 printf("Element is present in the array at position %d",i+1);

 else

 printf("Element is not present in the array\n");

}

OUTPUT:

Enter the Size of the Array: 6

Enter the Array:

arr[0]= 7

arr[1]= 9

arr[2]= 74

arr[3]= 23

arr[4]= 64

arr[5]= 92

Enter the Element to be Searched: 74

Element is at 2 position from start {0-based indexing}

Element is at 3 position from start {1-based indexing}

RESULT:

Thus the program completed and executed successfully.

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

EC3352 DIGITAL SYSTEMS DESIGN

Semester - 03

LABORATORY MANUAL

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Vision

To excel in providing value based education in the field of Electronics and
Communication Engineering, keeping in pace with the latest technical developments
through commendable research, to raise the intellectual competence to match global
standards and to make significant contributions to the society upholding the ethical
standards.

Mission

 To deliver Quality Technical Education, with an equal emphasis on theoretical
and practical aspects.

 To provide state of the art infrastructure for the students and faculty to upgrade
their skills and knowledge.

 To create an open and conducive environment for faculty and students to carry
out research and excel in their field of specialization.

 To focus especially on innovation and development of technologies that is
sustainable and inclusive, and thus benefits all sections of the society.

 To establish a strong Industry Academic Collaboration for teaching and research,
that could foster entrepreneurship and innovation in knowledge exchange.

 To produce quality Engineers who uphold and advance the integrity, honour and
dignity of the engineering.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

1. To provide the students with a strong foundation in the required sciences in order
to pursue studies in Electronics and Communication Engineering.

2. To gain adequate knowledge to become good professional in electronic and
communication engineering associated industries, higher education and
research.

3. To develop attitude in lifelong learning, applying and adapting new ideas and
technologies as their field evolves.

4. To prepare students to critically analyze existing literature in an area of
specialization and ethically develop innovative and research oriented
methodologies to solve the problems identified.

5. To inculcate in the students a professional and ethical attitude and an ability to
visualize the engineering issues in a broader social context.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1: Design, develop and analyze electronic systems through application of relevant
electronics, mathematics and engineering principles.

PSO2: Design, develop and analyze communication systems through application of
fundamentals from communication principles, signal processing, and RF System Design
& Electromagnetics.

PSO3: Adapt to emerging electronics and communication technologies and develop
innovative solutions for existing and newer problems.

LIST OF EXPERIMENTS:

1. Design of adders and subtractors & code converters.

2. Design of Multiplexers & Demultiplexers.

3. Design of Encoders and Decoders.

4. Design of Magnitude Comparators

5. Design and implementation of counters using flip-flops

6. Design and implementation of shift registers.

 1

EXP NO. : 01 STUDY OF LOGIC GATES

 DATE :

AIM:

To study about logic gates and verify their truth tables.

APPARATUS REQUIRED:

THEORY:

 Circuit that takes the logical decision and the process are called logic gates. Each gate has one or

more input and only one output.

OR, AND and NOT are basic gates. NAND and NOR are known as universal gates. Basic gates form

these gates.

AND GATE:

The AND gate performs a logical multiplication commonly known as AND function. The output is high

when both the inputs are high. The output is low level when any one of the inputs is low.

OR GATE:

The OR gate performs a logical addition commonly known as OR function. The output is high when any

one of the inputs is high. The output is low level when both the inputs are low.

NOT GATE:

 The NOT gate is called an inverter. The output is high when the input is low. The output is

low when the input is high.

NAND GATE:

The NAND gate is a contraction of AND-NOT. The output is high when both inputs are low and any one

of the input is low .The output is low level when both inputs are high.

SL No. COMPONENT SPECIFICATION QTY

1. AND GATE IC 7408 1

2. OR GATE IC 7432 1

3. NOT GATE IC 7404 1

4. NAND GATE 2 I/P IC 7400 1

5. NOR GATE IC 7402 1

6. X-OR GATE IC 7486 1

7. NAND GATE 3 I/P IC 7410 1

8. IC TRAINER KIT - 1

9. PATCH CORD - 14

 2

 NOR GATE:

The NOR gate is a contraction of OR-NOT. The output is high when both inputs are low. The output is

low when one or both inputs are high.

X-OR GATE:

The output is high when any one of the inputs is high. The output is low when both the inputs are low and

both the inputs are high.

PROCEDURE:

(i) Connections are given as per circuit diagram.

(ii) Logical inputs are given as per circuit diagram.

(iii) Observe the output and verify the truth table.

AND GATE:

SYMBOL: PIN DIAGRAM:

 3

OR GATE:

NOT GATE:

SYMBOL: PIN DIAGRAM:

 4

X-OR GATE:

SYMBOL: PIN

DIAGRAM:

2-INPUT NAND GATE:

SYMBOL: PIN DIAGRAM:

 5

3-INPUT NAND GATE :

NOR GATE:

RESULT:

The truth tables of all the basic logic gates were verified.

 6

EXP NO. : 02

DATE :

VERIFICATION OF BOOLEAN THEOREMS USING DIGITAL LOGIC GATES

AIM:

To verify the Boolean Theorems using logic gates.

APPARATUS REQUIRED:

SL. NO. COMPONENT SPECIFICATION QTY.

1. AND GATE IC 7408 1

2. OR GATE IC 7432 1

3. NOT GATE IC 7404 1

4. IC TRAINER KIT - 1

5. CONNECTING WIRES
-

As per
required

THEORY:

BASIC BOOLEAN LAWS

1. Commutative Law
The binary operator OR, AND is said to be commutative if,

 A+B = B+A

 A.B=B.A

2. Associative Law

The binary operator OR, AND is said to be associative

 if, 1. A+(B+C) = (A+B)+C

 2. A.(B.C) = (A.B).C

3. Distributive Law

The binary operator OR, AND is said to be distributive

 if, 1. A+(B.C) = (A+B).(A+C)

 2. A.(B+C) = (A.B)+(A.C)

4. Absorption Law

 1. A+AB = A

 2. A+AB = A+B

5. Involution (or) Double complement Law

 A = A

6. Idempotent Law

 1.A+A = A

 2.A.A = A

7. Complementary Law

 1. A+A' = 1

 2. A.A' = 0

 7

8. De Morgan’s Theorem

1. The complement of the sum is equal to the sum of the product of the individual

complements. A+B = A.B

2. The complement of the product is equal to the sum of the individual complements.

A.B = A+B

 8

Demorgan’s Theorem

a) Proof of equation (1):
Construct the two circuits corresponding to the functions A’. B’and (A+B)’ respectively.
Show that for all combinations of A and B, the two circuits give identical results. Connect
these circuits and verify their operations.

 9

Proof of equation (2)

Construct two circuits corresponding to the functions A’+B’and (A.B)’ A.B,
respectively. Show that, for all combinations of A and B, the two circuits give identical
results. Connect these circuits and verify their operations.

 10

We will also use the following set of postulates:

P1: Boolean algebra is closed under the AND, OR, and NOT operations.

P2: The identity element with respect to • is one and + is zero. There is no
identity element with respect to logical NOT.

P3: The • and + operators are commutative.

P4: • and + are distributive with respect to one another. That is,

A • (B + C) = (A • B) + (A • C) and A + (B • C) = (A + B) • (A + C).

P5: For every value A there exists a value A’ such that A•A’ = 0 and A+A’ = 1.

This value is the logical complement (or NOT) of

A.

P6: • and + are both associative. That is, (A•B)•C = A•(B•C) and (A+B)+C = A+(B+C).

You can prove all other theorems in boolean algebra using these postulates.

PROCEDURE:

1. Obtain the required IC along with the Digital trainer kit.

2. Connect zero volts to GND pin and +5 volts to Vcc .

3. Apply the inputs to the respective input pins.

4. Verify the output with the truth table.

RESULT:

Thus the above stated Boolean laws are verified.

 11

EXP NO. :03

DATE :

DESIGN AND IMPLEMENTATION OF CODE CONVERTERS

AIM:

To design and implement 4-bit

(i) Binary to gray code converter

(ii) Gray to binary code converter

(iii) BCD to excess-3 code converter

(iv) Excess-3 to BCD code converter

APPARATUS REQUIRED:

Sl.No. COMPONENT SPECIFICATION QTY.

1. X-OR GATE IC 7486 1

2. AND GATE IC 7408 1

3. OR GATE IC 7432 1

4. NOT GATE IC 7404 1

5. IC TRAINER KIT - 1

6. PATCH CORDS - 35

THEORY:

The availability of large variety of codes for the same discrete elements of information results in the use

of different codes by different systems. A conversion circuit must be inserted between the two systems if

each uses different codes for same information. Thus, code converter is a circuit that makes the two

systems compatible even though each uses different binary code.

The bit combination assigned to binary code to gray code. Since each code uses four bits to represent a

decimal digit. There are four inputs and four outputs. Gray code is a non-weighted code.

The input variable are designated as B3, B2, B1, B0 and the output variables are designated as C3, C2,

C1, Co. from the truth table, combinational circuit is designed. The Boolean functions are obtained from

K-Map for each output variable.

A code converter is a circuit that makes the two systems compatible even though each uses a different

binary code. To convert from binary code to Excess-3 code, the input lines must supply the bit

combination of elements as specified by code and the output lines generate the corresponding bit

combination of code. Each one of the four maps represents one of the four outputs of the circuit as a

function of the four input variables.

A two-level logic diagram may be obtained directly from the Boolean expressions derived by the maps.

These are various other possibilities for a logic diagram that implements this circuit. Now the OR gate

whose output is C+D has been used to implement partially each of three outputs.

PROCEDURE:

(i) Connections were given as per circuit diagram.

(ii) Logical inputs were given as per truth table

(iii) Observe the logical output and verify with the truth tables.

 12

BINARY TO GRAY CODE CONVERTOR

TRUTH TABLE:

| Binary input | Gray code output |

B3 B2 B1 B0 G3 G2 G1 G0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

K-Map for G3:

 G3 = B3

 13

K-Map for G2:

K-Map for G1:

K-Map for G0:

 14

LOGIC DIAGRAM:

GRAY CODE TO BINARY CONVERTOR

TRUTH TABLE:

| Gray Code | Binary Code |

G3 G2 G1 G0 B3 B2 B1 B0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

1

0

1

0

1

1

0

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

1

1

0

0

1

0

1

0

1

0

1

0

1

0

1

 15

K-Map for B3:

 B3 = G3

K-Map for B2:

 16

K-Map for B1:

K-Map for B0:

 17

LOGIC DIAGRAM:

BCD TO EXCESS-3 CONVERTER

TRUTH TABLE:

| BCD input | Excess – 3 output |

B3 B2 B1 B0 E3 E2 E1 E0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

0

0

1

1

0

0

0

1

0

1

0

1

0

1

0

1

0

0

0

0

0

1

1

1

1

1

0

1

1

1

1

0

0

0

0

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

 18

K-Map for E3:

 E3 = B3 + B2 (B0 + B1)

K-Map for E2:

E2=B2B1+B2B1B0+B2B1B0

E2=B2B1+B1(B2B0+B2B0) = B2B1+B1(B2 B0)

 19

K-Map for E1:

 = B1 О B0

K-Map for E0:

 20

LOGIC DIAGRAM:

EXCESS-3 TO BCD CONVERTOR

TRUTH TABLE:

| Excess – 3 Input | BCD Output |

x3 x2 X3 X4 A B C D

0

0

0

0

0

1

1

1

1

1

0

1

1

1

1

0

0

0

0

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

0

0

1

1

0

0

0

1

0

1

0

1

0

1

0

1

 21

K-Map for A:

 A = X1 X2 + X3 X4 X1

K-Map for B:

 22

K-Map for C:

K-Map for D:

 23

LOGIC DIAGRAM:

RESULT:

Thus the code converters were designed and verified using the corresponding truth table.

 24

EXP NO. :04 DESIGN OF 4-BIT ADDER AND SUBTRACTOR

DATE :

AIM:

To design and implement 4-bit adder and subtractor using IC 7483.

APPARATUS REQUIRED:

Sl.No. COMPONENT SPECIFICATION QTY.

1. IC IC 7483 1

2. EX-OR GATE IC 7486 1

3. NOT GATE IC 7404 1

3. IC TRAINER KIT - 1

4. PATCH CORDS - 40

THEORY:

4 BIT BINARY ADDER:

A binary adder is a digital circuit that produces the arithmetic sum of two binary numbers. It can be

constructed with full adders connected in cascade, with the output carry from each full adder connected

to the input carry of next full adder in chain. The augends bits of ‘A’ and the addend bits of ‘B’ are

designated by subscript numbers from right to left, with subscript 0 denoting the least significant bits.

The carries are connected in chain through the full adder. The input carry to the adder is C0 and it ripples

through the full adder to the output carry C4.

4 BIT BINARY SUBTRACTOR:

The circuit for subtracting A-B consists of an adder with inverters, placed between each data input ‘B’

and the corresponding input of full adder. The input carry C0 must be equal to 1 when performing

subtraction.

4 BIT BINARY ADDER/SUBTRACTOR:

The addition and subtraction operation can be combined into one circuit with one common binary adder.

The mode input M controls the operation. When M=0, the circuit is adder circuit. When M=1, it becomes

subtractor.

4 BIT BCD ADDER:

 Consider the arithmetic addition of two decimal digits in BCD, together with an input carry from

a previous stage. Since each input digit does not exceed 9, the output sum cannot be greater than 19, the 1

in the sum being an input carry. The output of two decimal digits must be represented in BCD and should

appear in the form listed in the columns.

 ABCD adder that adds 2 BCD digits and produce a sum digit in BCD. The 2 decimal digits,

together with the input carry, are first added in the top 4 bit adder to produce the binary sum.

 25

PROCEDURE:

1. Connections were given as per circuit diagram.

2. Logical inputs were given as per truth table

3. Observe the logical output and verify with the truth tables.

PIN DIAGRAM FOR IC 7483:

Input Data A Input Data B Addition Subtraction

A4 A3 A2 A1 B4 B3 B2 B1 C S4 S3 S2 S1 B D4 D3 D2 D1

1 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 1 0

1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0

0 0 1 0 1 0 0 0 0 1 0 1 0 0 1 0 1 0

0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 1 0

1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1 1 1

1 1 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1

1 0 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1

 26

4-BIT BINARY ADDER/SUBTRACTOR

LOGIC DIAGRAM:

 27

BCD ADDER:

TRUTH TABLE:

BCD SUM CARRY

S4 S3 S2 S1 C

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 1

1 0 1 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

K MAP

 C = S4 (S3 + S2)

 28

LOGIC DIAGRAM:

RESULT:

The design of the 4-bit Binary adder and l subtractor circuit was done and its truth table was verified.

 29

EXP NO. :05

DATE :

DESIGN AND IMPLEMENTATION OF MULTIPLEXER

AIM:

 To design and implement multiplexer using logic gates.

APPARATUS REQUIRED:

Sl.No. COMPONENT SPECIFICATION QTY.

1. 3 I/P AND GATE IC 7411 2

2. OR GATE IC 7432 1

3. NOT GATE IC 7404 1

2. IC TRAINER KIT - 1

3. PATCH CORDS - 32

THEORY:

MULTIPLEXER:

Multiplexer means transmitting a large number of information units over a smaller number of channels or

lines. A digital multiplexer is a combinational circuit that selects binary information from one of many

input lines and directs it to a single output line. The selection of a particular input line is controlled by a

set of selection lines. Normally there are 2n input line and n selection lines whose bit combination

determine which input is selected.

DEMULTIPLEXER:

 The function of Demultiplexer is in contrast to multiplexer function. It takes information from one

line and distributes it to a given number of output lines. For this reason, the demultiplexer is also known

as a data distributor. Decoder can also be used as demultiplexer.

In the 1: 4 demultiplexer circuit, the data input line goes to all of the AND gates. The data select lines

enable only one gate at a time and the data on the data input line will pass through the selected gate to the

associated data output line.

PROCEDURE:

(i) Connections are given as per circuit diagram.

(ii) Logical inputs are given as per circuit diagram.

(iii) Observe the output and verify the truth table.

 30

BLOCK DIAGRAM FOR 4:1 MULTIPLEXER:

FUNCTION TABLE:

S1 S0 INPUTS Y

0 0 D0 → D0 S1’ S0’

0 1 D1 → D1 S1’ S0

1 0 D2 → D2 S1 S0’

1 1 D3 → D3 S1 S0

Y = D0 S1’ S0’ + D1 S1’ S0 + D2 S1 S0’ + D3 S1 S0

 31

CIRCUIT DIAGRAM FOR MULTIPLEXER:

TRUTH TABLE:

S1 S0 Y = OUTPUT

0 0 D0

0 1 D1

1 0 D2

1 1 D3

 32

PIN DIAGRAM FOR IC 74150: MUX

RESULT:

The design of the 4x1 Multiplexer circuits was done and their truth tables were verified.

 33

EXP NO. :06

DATE :

DESIGN AND IMPLEMENTATION OF ENCODER AND DECODER

AIM:

 To design and implement encoder and decoder using logic gates and study of IC 7445 and IC

74147.

APPARATUS REQUIRED:

Sl.No. COMPONENT SPECIFICATION QTY.

1. 3 I/P NAND GATE IC 7410 2

2. OR GATE IC 7432 3

3. NOT GATE IC 7404 1

2. IC TRAINER KIT - 1

3. PATCH CORDS - 27

THEORY:

ENCODER:

An encoder is a digital circuit that perform inverse operation of a decoder. An encoder has 2n input lines

and n output lines. In encoder the output lines generates the binary code corresponding to the input value.

In octal to binary encoder it has eight inputs, one for each octal digit and three output that generate the

corresponding binary code. In encoder it is assumed that only one input has a value of one at any given

time otherwise the circuit is meaningless. It has an ambiguila that when all inputs are zero the outputs are

zero. The zero outputs can also be generated when D0 = 1.

DECODER:

 A decoder is a multiple input multiple output logic circuit which converts coded input into coded

output where input and output codes are different. The input code generally has fewer bits than the output

code. Each input code word produces a different output code word i.e there is one to one mapping can be

expressed in truth table. In the block diagram of decoder circuit the encoded information is present as n

input producing 2n possible outputs. 2n output values are from 0 through out 2n – 1.

PROCEDURE:

(i) Connections are given as per circuit diagram.

(ii) Logical inputs are given as per circuit diagram.

(iii) Observe the output and verify the truth table.

 34

BCD TO DECIMAL DECODER:

PIN DIAGRAM FOR IC 74155:2x4 Decoder

PIN DIAGRAM FOR IC 74147(Encoder)

 35

LOGIC DIAGRAM FOR ENCODER:

TRUTH TABLE:

 INPUT OUTPUT

Y1 Y2 Y3 Y4 Y5 Y6 Y7 A B C

1 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 1 1

0 0 0 1 0 0 0 1 0 0

0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 1 1 1 1

 36

LOGIC DIAGRAM FOR DECODER:

TRUTH TABLE:

INPUT OUTPUT

E A B D0 D1 D2 D3

1 0 0 1 1 1 1

0 0 0 0 1 1 1

0 0 1 1 0 1 1

0 1 0 1 1 0 1

0 1 1 1 1 1 0

RESULT:

The design of the Encoder and Decoder circuit was done and the input and output were obtained

 37

EXP NO. :07

DATE :

DESIGN AND IMPLEMENTATION OF 3 BIT SYNCHRONOUS UP/DOWN

COUNTER

AIM:

 To design and implement 3 bit synchronous up/down counter.

APPARATUS REQUIRED:

Sl.No. COMPONENT SPECIFICATION QTY.

1. JK FLIP FLOP IC 7476 2

2. 3 I/P AND GATE IC 7411 1

3. OR GATE IC 7432 1

4. XOR GATE IC 7486 1

5. NOT GATE IC 7404 1

6. IC TRAINER KIT - 1

7. PATCH CORDS - 35

THEORY:

A counter is a register capable of counting number of clock pulse arriving at its clock input. Counter

represents the number of clock pulses arrived. An up/down counter is one that is capable of progressing

in increasing order or decreasing order through a certain sequence. An up/down counter is also called

bidirectional counter. Usually up/down operation of the counter is controlled by up/down signal. When

this signal is high counter goes through up sequence and when up/down signal is low counter follows

reverse sequence.

PROCEDURE:

(i) Connections are given as per circuit diagram.

(ii) Logical inputs are given as per circuit diagram.

(iii) Observe the output and verify the truth table.

 38

STATE DIAGRAM:

CHARACTERISTIC TABLE:

 Q Qt+1 J K

0 0 0 X

0 1 1 X

1 0 X 1

1 1 X 0

 39

TRUTH TABLE:

Input

Up/Down

Present State

QA QB QC

Next State

QA+1 Q B+1 QC+1

A

JA KA

B

JB KB

C

JC KC

0 0 0 0 1 1 1 1 X 1 X 1 X

0 1 1 1 1 1 0 X 0 X 0 X 1

0 1 1 0 1 0 1 X 0 X 1 1 X

0 1 0 1 1 0 0 X 0 0 X X 1

0 1 0 0 0 1 1 X 1 1 X 1 X

0 0 1 1 0 1 0 0 X X 0 X 1

0 0 1 0 0 0 1 0 X X 1 1 X

0 0 0 1 0 0 0 0 X 0 X X 1

1 0 0 0 0 0 1 0 X 0 X 1 X

1 0 0 1 0 1 0 0 X 1 X X 1

1 0 1 0 0 1 1 0 X X 0 1 X

1 0 1 1 1 0 0 1 X X 1 X 1

1 1 0 0 1 0 1 X 0 0 X 1 X

1 1 0 1 1 1 0 X 0 1 X X 1

1 1 1 0 1 1 1 X 0 X 0 1 X

1 1 1 1 0 0 0 X 1 X 1 X 1

K MAP

 40

LOGIC DIAGRAM:

RESULT:

Thus the 3-bit synchronous up/down counters was implemented successfully.

 41

EXP NO. :08

DATE :

DESIGN AND IMPLEMENTATION OF SHIFT REGISTERS

AIM:

To design and implement

(i) Serial in serial out

(ii) Serial in parallel out

(iii) Parallel in serial out

(iv) Parallel in parallel out

APPARATUS REQUIRED:

Sl.No. COMPONENT SPECIFICATION QTY.

1. D FLIP FLOP IC 7474 2

2. OR GATE IC 7432 1

3. IC TRAINER KIT - 1

4. PATCH CORDS - 35

THEORY:

A register is capable of shifting its binary information in one or both directions is known as shift register.

The logical configuration of shift register consist of a D-Flip flop cascaded with output of one flip flop

connected to input of next flip flop. All flip flops receive common clock pulses which causes the shift in

the output of the flip flop. The simplest possible shift register is one that uses only flip flop. The

output of a given flip flop is connected to the input of next flip flop of the register. Each clock pulse shifts

the content of register one bit position to right.

PROCEDURE:

(i) Connections are given as per circuit diagram.

(ii) Logical inputs are given as per circuit diagram.

(iii) Observe the output and verify the truth table.

 42

PIN DIAGRAM:

SERIAL IN SERIAL OUT:

LOGIC DIAGRAM:

TRUTH TABLE:

 CLK

Serial in Serial out

1 1 0

2 0 0

3 0 0

4 1 1

5 X 0

6 X 0

7 X 1

 43

SERIAL IN PARALLEL OUT:

 LOGIC DIAGRAM:

TRUTH TABLE:

CLK

DATA

OUTPUT

Q3 Q2 Q1 Q0

1 1 1 0 0 0

2 0 0 1 0 0

3 0 0 0 1 0

4 1 1 0 0 1

PARALLEL IN SERIAL OUT:

LOGIC DIAGRAM:

 44

TRUTH TABLE:

CLK D3 D2 D1 D0 OUTPUT

0 1 0 0 1 1

1 0 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0 1

PARALLEL IN PARALLEL OUT:

LOGIC DIAGRAM:

TRUTH TABLE:

CLK

DATA INPUT OUTPUT

D3 D2 D1 D0 Q3 Q2 Q1 Q0

1 1 0 0 1 1 0 0 1

2 1 0 1 0 1 0 1 0

RESULT:

Thus the implementation of shift registers using flip flops was completed successfully.

 45

EXP NO. : 09 DESIGN OF ADDER AND SUBTRACTOR

DATE :

AIM:

To design and construct half adder, full adder, half subtractor and full subtractor circuits and

verify the truth table using logic gates.

APPARATUS REQUIRED:

Sl.No. COMPONENT SPECIFICATION QTY.

1. AND GATE IC 7408 1

2. X-OR GATE IC 7486 1

3. NOT GATE IC 7404 1

4. OR GATE IC 7432 1

3. IC TRAINER KIT - 1

4. PATCH CORDS - 23

THEORY:

HALF ADDER:

A half adder has two inputs for the two bits to be added and two outputs one from the sum ‘ S’

and other from the carry ‘ c’ into the higher adder position. Above circuit is called as a carry signal from

the addition of the less significant bits sum from the X-OR Gate the carry out from the AND gate.

FULL ADDER:

A full adder is a combinational circuit that forms the arithmetic sum of input; it consists of three

inputs and two outputs. A full adder is useful to add three bits at a time but a half adder cannot do so. In

full adder sum output will be taken from X-OR Gate, carry output will be taken from OR Gate.

HALF SUBTRACTOR:

The half subtractor is constructed using X-OR and AND Gate. The half subtractor has two input

and two outputs. The outputs are difference and borrow. The difference can be applied using X-OR Gate,

borrow output can be implemented using an AND Gate and an inverter.

FULL SUBTRACTOR:

The full subtractor is a combination of X-OR, AND, OR, NOT Gates. In a full subtractor the logic

circuit should have three inputs and two outputs. The two half subtractor put together gives a full

subtractor .The first half subtractor will be C and A B. The output will be difference output of full

subtractor. The expression AB assembles the borrow output of the half subtractor and the second term is

the inverted difference output of first X-OR.

 46

PROCEEDURE:

(i) Connections are given as per circuit diagram.

(ii) Logical inputs are given as per circuit diagram.

(iii) Observe the output and verify the truth table.

HALF ADDER

TRUTH TABLE:

A B CARRY SUM

0

0

1

1

0

1

0

1

0

0

0

1

0

1

1

0

K-Map for SUM: K-Map for CARRY:

 SUM = A’B + AB’ CARRY = AB

LOGIC DIAGRAM:

 47

FULL ADDER

TRUTH TABLE:

A B C CARRY SUM

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

0

0

1

0

1

1

1

0

1

1

0

1

0

0

1

K-Map for SUM:

 SUM = A’B’C + A’BC’ + AB’C’ + ABC

K-Map for CARRY:

 CARRY = AB + BC + AC

LOGIC DIAGRAM:

 48

FULL ADDER USING TWO HALF ADDERS

HALF SUBTRACTOR

TRUTH TABLE:

A B BORROW DIFFERENCE

0

0

1

1

0

1

0

1

0

1

0

0

0

1

1

0

K-Map for DIFFERENCE:

 DIFFERENCE = A’B + AB’

K-Map for BORROW:

BORROW = A’B

LOGIC DIAGRAM:

 49

FULL SUBTRACTOR

TRUTH TABLE:

A B C BORROW DIFFERENCE

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

1

1

0

0

0

1

0

1

1

0

1

0

0

1

K-Map for Difference:

Difference = A’B’C + A’BC’ + AB’C’ + ABC

K-Map for Borrow:

 Borrow = A’B + BC + A’C

LOGIC DIAGRAM:

 50

FULL SUBTRACTOR USING TWO HALF SUBTRACTORS:

RESULT:

The design of the half adder, full adder and half subtractor and full subtractor circuits was done and their

truth tables were verified.

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

EC3361 ELECTRONIC DEVICES AND CIRCUITS LABORATORY

Semester - 03

LABORATORY MANUAL

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Vision

To excel in providing value based education in the field of Electronics and
Communication Engineering, keeping in pace with the latest technical developments
through commendable research, to raise the intellectual competence to match global
standards and to make significant contributions to the society upholding the ethical
standards.

Mission

 To deliver Quality Technical Education, with an equal emphasis on theoretical
and practical aspects.

 To provide state of the art infrastructure for the students and faculty to upgrade
their skills and knowledge.

 To create an open and conducive environment for faculty and students to carry
out research and excel in their field of specialization.

 To focus especially on innovation and development of technologies that is
sustainable and inclusive, and thus benefits all sections of the society.

 To establish a strong Industry Academic Collaboration for teaching and research,
that could foster entrepreneurship and innovation in knowledge exchange.

 To produce quality Engineers who uphold and advance the integrity, honour and
dignity of the engineering.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

1. To provide the students with a strong foundation in the required sciences in order
to pursue studies in Electronics and Communication Engineering.

2. To gain adequate knowledge to become good professional in electronic and
communication engineering associated industries, higher education and
research.

3. To develop attitude in lifelong learning, applying and adapting new ideas and
technologies as their field evolves.

4. To prepare students to critically analyze existing literature in an area of
specialization and ethically develop innovative and research oriented
methodologies to solve the problems identified.

5. To inculcate in the students a professional and ethical attitude and an ability to
visualize the engineering issues in a broader social context.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1: Design, develop and analyze electronic systems through application of relevant

electronics, mathematics and engineering principles.

PSO2: Design, develop and analyze communication systems through application of

fundamentals from communication principles, signal processing, and RF System Design
& Electromagnetics.

PSO3: Adapt to emerging electronics and communication technologies and develop
innovative solutions for existing and newer problems.

LIST OF EXPERIMENTS:

1. Characteristics of PN Junction Diode and Zener diode.

2. Full Wave Rectifier with Filters.

3. Design of Zener diode Regulator.

4. Common Emitter input-output Characteristics.

5. MOSFET Drain current and Transfer Characteristics.

6. Frequency response of CE and CS amplifiers.

7. Frequency response of CB and CC amplifiers.

8. Frequency response of Cascode Amplifier

9. CMRR measurement of Differential Amplifier

10. Class A Transformer Coupled Power Amplifier.

1

EXPT. NO:

DATE :

CHARACTERISTICS OF PN JUNCTION DIODE

Aim:

To determine the forward and reverse characteristics of the given PN junction diode and to determine cut-

in voltage

Apparatus required:

Sl. No. Description Range Quantity

1 Regulated Power Supply (0-15)V 2

2

Ammeter

0-20m A ,

0-200uA

Each 1

3 Voltmeter (0-20)V 2

4 Diode IN 4007 2

5 Resistor 1kΩ 2

6 Bread board --- 2

7 Connecting Wires --- As per required

Theory:

Donor impurities (pentavalent) are introduced into one-side and acceptor

impurities(trivalent) into the other side of a single crystal of an intrinsic semiconductor to form a PN

junction diode with a junction called depletion region (this region is depleted off the charge carriers). This

region gives rise to a potential barrier called cut-in Voltage. This is the voltage across the diode at which

it starts conducting. The PN junction can conduct beyond this potential. The PN junction supports

unidirectional current flow. If positive terminal of the input supply is connected to anode (P-side) and

negative terminal of the input supply is connected the cathode Then diode is said to be forward biased.

If negative terminal of the input supply is connected to anode (p-side) and positive

terminal of the input supply is connected to cathode (n-side) then the diode is said to be reverse biased.

On forward biasing, initially no current flows due to barrier potential. As the applied potential

exceeds the barrier potential the charge carriers gain sufficient energy to cross the potential barrier

and hence enter the other region. On reverse biasing, the majority charge carriers are attracted

towards the terminals due to the applied potential resulting in the widening of the depletion region.

Since the charge carriers are pushed towards .

2

Terminals no current flows through the device due to majority charge carriers. There will be

some current in the device due to minority carriers. The generation of such carriers is independent of the

applied potential and hence the current is constant for all increasing reverse potential. This current is

referred to as reverse saturation current (IO) and it increases with temperature.

PN Junction Diode Symbol :

Circuit Diagram: Forward Bias

Reverse Bias:

3

Procedure:

1. Connect the circuit as per the circuit diagram.

2. Switch on the power supply.

3. Vary the power supply voltage step by step from zero volt.

4. Take the voltmeter and ammeter readings for every variation of power supply.

5. Re-Connect the circuit for reverse bias condition as shown in figure.

6. Repeat the step 3 and 4 for reverse bias.

7. Draw the graph for forward bias and reverse bias for PN junction diode.

8. Note down cut-in voltage for PN junction diode.

9. Switch of the power supply.

Tabulation :

Reverse Bias:

SL.NO Voltmeter(v) Current (m A)

4

Forward bias:

SL.NO Voltage(v) Current (m A)

Model Graph:

5

Result:

Thus the forward and reverse characteristics of the given PN junction diode is determined.

6

EXPT. NO:

DATE :

Aim:

CHARACTERISTICS OF ZENER DIODE

To determine the breakdown voltage of a given zener diode.

Apparatus Required:

S.No Description Range Quality

1 RPS (0-15) V 2

2 ammeter (0-200) mA 2

3 voltmeter (0-15)V 2

4 Zener Diode 4148 2

5 Connecting wires - As per Required

6 Resister 1KΩ 2

7 Bread Board - 2

Theory:

A properly doped crystal diode, which has a sharp breakdown voltage, is known as zener diode.

1. Forward Bias:

On forward biasing, initially no current flows due to barrier potential. As the applied

potential increases, it exceeds the barrier potential at one value and the charge carriers gain sufficient

energy to cross the potential barrier and enter the other region. the holes ,which are majority carriers in

p-region, become minority carriers on entering the N-regions and electrons, which are the majority

carriers in the N-regions become minority carriers on entering the P- region. This injection of minority

carriers results current, opposite to the direction of electron movement.

7

2. Reverse Bias:

When the reverse bias is applied due to majority carriers small amount of current (ie) reverse

saturation current flows across the junction. As the reverse bias is increased to breakdown voltage,

sudden rise in current takes place due to zener effect.

Zener Effect :

Normally, PN junction of Zener Diode is heavily doped. Due to heavy doping the depletion

layer will be narrow. When the reverse bias is increased the potential across the depletion layer is

more. This exerts a force on the electrons in the outermost shell. Because of this force the electrons

are pulled away from the parent nuclei and become free electrons.

This ionization, which occurs due to electrostatic force of attraction, is known as Zener effect. It

results in large number of free carriers, which in turn increases the reverse saturation current

Procedure:

Forward Bias:

1. Connect the circuit as per the circuit diagram.

2. Vary the power supply in such a way that the readings are taken in steps of 0.1V in the voltmeter

till the needle of power supply shows 30V.

3. Note down the corresponding ammeter readings.

4. Plot the graph :V (vs) I.

5. Find the dynamic resistance r = ΔV / ΔI

Reverse Bias:

1. Connect the circuit as per the diagram

2. Vary the power supply in such a way that the readings are taken in steps of 0.1V in the

voltmeter till the needle of power supply shows 30V.

3. Note down the corresponding Ammeter readings I.

4. Plot a graph between V & I

5. Find the dynamic resistance r = ΔV / ΔI

6. Find the reverse voltage Vr at Iz=20 mA

8

Circuit Diagram:

Forward Bias:

Reverse Bias

Model Graph

9

Tabular Column

Forward Bias

S..No. VOLTAGE

(In Volts)

CURRENT

(In mA)

Reverse Bias

S..No. VOLTAGE

(In Volts)

CURRENT

(In mA)

10

RESULT:

Forward and Reverse bias characteristics of the zener diode was studied and

i. Forward bias dynamic resistance =400Ω

ii. Reverse bias dynamic resistance = 20kΩ

11

EXPT. NO:

DATE :

FULL WAVE RECTIFIER

Aim:

To study the operation of Full- Wave Rectifier with and without filter and to find its:

a. Percentage Regulation
b. Ripple Factor
c. Efficiency

Apparatus Required :

S.no Description Range Quantity

1 Diodes 1N4007 2

2 Resistor
1kΩ

1

3 Capacitor 100µf 1

4

Transformer with
Center TappedSecondary

(9 - 0 - 9) V

1

5
CRO 30MHz 1

6
Digital Multimeter/Digital

Voltmeter

(0-20V)

1

7 Bread Board - 1

8 Connecting Wires Single strand As per required

Operation:

The conversion of AC into pulsating DC is called Rectification. Electronic Devices

can convert ACpower into DC power with high efficiency. The full-wave rectifier consists of a

center-tapped transformer, which results in equal voltages above and below the center-tap. During

the positive half cycle, a positive voltage appears at the anode of D1 while a negative voltage

appears at the anode of D2. Due to this diode D1 is forward biased. It results a current Id1 through

the load R.

12

During the negative half cycle, a positive voltage appears at the anode of D2 and hence it is

forward biased, resulting a current Id2 through the load. At the same instant a negative voltage

appears at the anode of D1, reverse biasing it and hence it doesn’t conduct.

Ripple Factor :

Ripple factor is defined as the ratio of the effective value of AC components to the average

DC value.It is denoted by the symbol ' '.

VNL = Voltage across load resistance, when minimum current flows through it. VFL = Voltage

across load resistance, when maximum current flows through. For an ideal Full-wave rectifier, the

percentage regulation is 0 percent. The percentage of regulation isvery small for a practical full

wave rectifier.

Peak- Inverse - Voltage (PIV):

It is the maximum voltage that the diode has to withstand when it is reverse biased.
PIV = 2Vm

13

Full Wave Rectifier Circuit Diagram

Without Filter

With Filter

Procedure:

1. Connect the circuit as shown in the circuit diagram.

2. Connect the primary side of the transformer to AC mains and the secondary side to

rectifierinput.

3. Using a CRO, measure the maximum voltage Vm of the AC input voltage of the

rectifier andAC voltage at the output of the rectifier.

4. Using a DC voltmeter, measure the DC voltage at the load resistance.

5. Observe the Waveforms at the secondary windings of transformer and across load

resistance for a load of 1K .

6. Calculate the ripple factor (), percentage of regulation and efficiency () as per

the below given formulae.

14

Model Graph:

Tabulation

Without Filter:

Vm Vrms Vds Ripple factor Efficiency

With Filter

Vrms Vds Ripple factor Efficiency

15

Result :

Thus the characteristics of full wave rectifier were studied.

16

EXPT. NO:

DATE :

DESIGN OF ZENER DIODE REGULATOR

(ZENER DIODE AS VOLTAGE REGULATOR.)

Aim:

Measurement of percentage regulation by varying load resistor.

Apparatus Required:

S.No Description Range Quality

1 Resistor 1KΩ 1

2 Voltmeter 0-20V 2

3 Power Supply 0-15 V 1

4 Zener Diode 4148 1

5 Resister Load - -

Theory:

Zener diode is a P-N junction diode specially designed to operate in the reverse biased

mode. It is acting as normal diode while forward biasing. It has a particular voltage known as

break down voltage, at which the diode break downs while reverse biased. In the case of normal

diodes the diode damages at the break down voltage. But Zener diode is specially designed to operate

in the reverse breakdown region. The basic principle of Zener diode is the Zener breakdown.

When a diode is heavily doped, it’s depletion region will be narrow.

When a high reverse voltage is applied across the junction, there will be very strong electric

field at the junction. And the electron hole pair generation takes place. Thus heavy current flows.

This is known as Zener break down. So a Zener diode, in a forward biased condition acts as a

normal diode. In reverse biased mode, after the break down of junction current through diode

increases sharply. But the voltage across it remains constant. This principle is used in voltage

regulator using Zener diodes.

17

CIRCUIT DIAGRAM:

Graph:

Procedure:

Input Characteristics:

1. Varying the input voltage keeping load constant: Connect the circuit as showin in fig.1. Keep supply

control at minimum.

2. Keep the load RL at 750Ωs for Q-pont. Increase the input voltage VS in step of 1Volt and note V1 and

V2. Where V1 is the input and V2 is the output voltage across zener.

18

3. Plot the curves between input –output at load constant. Find out the δV1 and δV2 from the plot and

calculate the line regulation.

Output characteristics:

1. Varying the load keeping input voltage constant: Connect the circuit as showin in fig.1. Keep supply

control at minimum.

2. Keep load RL at 3000Ωs. Increase the input voltage V1 to 12 Vdc.

3. Decrease the load and note the voltage V2 with load value.

4. Plot the curves between load and output voltage at input constant. Find out the δV2 and VZ at Q point at

set load value from the input plot and calculate load regulation.

Tabulation:

Shunt regulation (Load regulation), Input voltage constant at 2.5 V

S.No Output Voltage

(V)

Load (Ω)

Shunt regulation (Line regulation), load constant at 2Ω

S.No Input Voltage

(V)

Output Voltage

(V)

19

RESULT:

Realization of zener diode by voltage regulator is verified

20

EXPT. NO:

DATE :

Aim:

COMMON EMITTER INPUT-OUTPUT CHARACTERISTICS.

To obtain the input and output characteristics of the given transistor in common emitter configuration.

Apparatus required:

Sl. No. Description Range Quantity

1 Regulated Power Supply (0-30)V 1

2 Ammeter (0-30)mA,(0-250)A Each 1

4 Voltmeter (0-1)V,(0-30)V Each 1

5 NPN Transistor 50V,1A,3W 1

6 Resistor 1kΩ 1

7 Connecting Wires - As per required

Theory:

A NPN function transistor consist of a silicon (or germanium) crystal in which a layer of

p – type silicon is sandwiched between two layers of N – type silicon. The arrow on emitter lead specifies

the direction of the current flow when the emitter – base function is forward biased. As the conductivity

of the BJT depends on both the majority and minority carriers it is called bipolar device. In CE

configuration, Emitter is common to both the Emitter and Base.

A transistor can be in any of the three configurations viz, Common base, Common

emitter and Common Collector .The transistor consists of three terminal emitter, collector and base.

The emitter layer is the source of the charge carriers and it is heavily doped with a moderate cross

sectional area. The collector collects the charge carries and hence has moderate doping and large

cross sectional area. The base region acts a path for the movement of the charge carriers. In order

to reduce the recombination of holes and electrons the base region is lightly doped and is of hollow

cross sectional area. Normally the transistor operates with the emitter base junction forward biased.

In transistor, the current is same in both junctions, which indicates that there is a transfer of

resistance between the two junctions which is known as transfer resistance of transistor.

21

Circuit Diagram: 100 KΩ

Precautions:

1. While performing the experiment do not exceed the ratings of the transistor. This

may lead to the transistor damage.

2. Connect voltmeter and ammeter in correct polarities as shown in the circuit diagram.

3. Do not switch ON the power supply unless you have checked the circuit

connections as per the circuit diagram.

4. Make sure while selecting the emitter, base and collector terminals of the transistor.

Procedure:

Input Characteristics:

1. Connect the circuit as per the circuit diagram.

2. Set VCE, vary VBE in regular interval of steps and note down the corresponding IB reading.

3. Repeat the above procedure for different values of VCE.

4. Plot the graph: VBE vs. IB for a constant VCE.

Output Characteristics:

1. Connect the circuit as per the circuit diagram.

2. Set IB, Vary VCE in regular interval of steps and note down the corresponding IC reading.

3. Repeat the above procedure for different values of IB.

4. Plot the graph: VCE vs. IC for a constant IB.

5. Switch of the power supply.

6. Disconnect the components.

22

Model graph:

Input Characteristics:

Vce= 1V

Vce= 2V

Vbe(v)

Is(m A)

Vbe(v)

Is(m A)

23

Output characteristics:

Ib= 5V

Ib= 10V

Vce(v)

Ic(mA)

Vce(v)

Ic(m A)

24

Result:

The transistor characteristics of a Common Emitter (CE) configuration were plotted.

25

EXPT. NO:

DATE :

Aim:

MOSFET DRAIN AND TRANSFER CHARACTERISTICS

To plot the Transfer and Drain characteristics of MOSFET and determine Transconductance and

output Resistance.

Apparatus Required:

S.No Description Range Quantity

1 MOSFET IRF 740 1

2 Resistor 560Ω 1

3 Voltmeter 0-15V,0-60V 1

4 RPS 0-15V, 0-30V 1

5 Ammeter 0-60mA 1

Theory:

A MOSFET (Metal oxide semiconductor field effect transistor) has three terminals called Drain,

Source and Gate. MOSFET is a voltage controlled device. It has very high input impedance and

works at high switching frequency. MOSFET’s are of two types 1) Enhancement type 2)

Depletion type.

Circuit Diagram:

26

Tabular Column:

A) Transfer Characteristics:

VDS1= 1 V VDS2= 2V

VGS (V) ID(mA) VGS (V) ID(mA)

B) Drain Characteristics :

VGS (V) ID(mA)

Calculation:

27

Procedure:

Transfer Characteristics:

1. Make the connections as per the circuit diagram.

2. Initially keep V1 and V2 at 0 V.

3. Switch ON the regulated power supplies. By varying V1, set VDS to some constant voltage

say 5V.

4. Vary V2 in steps of 0.5V, and at each step note down the corresponding values of VGS

and ID. (Note: note down the value of VGS at which ID starts increasing as the

threshold voltage).

5. Reduce V1 and V2 to zero.

6. By varying V1, set VDS to some other value say 10V.

7. Repeat step 4.

8. Plot a graph of VGS versus ID for different values of VDS.

Drain or Output Characteristics:

1. Make the connections as per the circuit diagram.

2. Initially keep V1 and V2 at zero volts.

3. By varying V2, set VGS to some constant voltage (must be more than Threshold voltage).

4. By gradually increasing V1, note down the corresponding value of VDS and ID.

(Note: Till the MOSFET jumps to conducting state, the voltmeter which is connected across

device as VDS reads approximately zero voltage. Further increase in voltage by V1 source

cannot be read by VDS, so connect multi meter to measure the voltage and tabulate the

readings in the tabular column).

5. Set VGS to some other value (more than threshold voltage) and repeat step 4.

6. Plot a graph of VDS versus ID for different values of VGS.

28

Result:

Thus the Transfer and Drain characteristics of MOSFET are plotted

29

EXPT. NO:

DATE :

FREQUENCY RESPONSE OF COMMON EMITTER AMPLIFIER

Aim:

To design and construct a Common Emitter Amplifier using voltage divider

bias andto determine the Frequency and bandwidth

Apparatus Required :

S.no Description Range Quantity

1 Transistor BC 107 1

2 Resistor
61kΩ, 10kΩ, 1kΩ,

4.7kΩ
1,1,1,2

3 Capacitor 10µf, 100µf 2,1

4 Signal Generator (0-3)MHz 1

5 CRO 30MHz 1

6
Regulated powersupply (0-30)V 1

7 Bread Board - 1

8 Connecting Wires - As per required

Theory:

A common emitter amplifier is type of BJT amplifier which increases the voltage level of the

applied input signal Vin at output of collector. The CE amplifier typically has a relatively high

input resistance (1 - 10 KΩ) and a fairly high output resistance. Therefore it is generally used to

drive medium to high resistance loads. It is typically used in applications where a small voltage

signal needs to be amplified to a large voltage signal like radio receivers. The input signal Vin

is applied to base emitter junction of the transistor and amplifier output Vo is taken across

collector terminal. Transistor is maintained at the active region by using the resistors R1,R2 and

Rc. A very small change in base current produces a much larger change in collector current.

The output Vo of the common emitter amplifier is 180 degrees out of phase with the applied

the input signal Vin.

30

Procedure:

1. Connect the circuit as per the circuit diagram

2. Determine the Q-point of the CE amplifier using DC analysis.

3. Determine Maximum input voltage that can be applied to CE amplifier using AC analysis.

4. Set the input voltage Vin=V MSH /2 and vary the input signal frequency from 0Hz to

1MHz in incremental steps and note down the corresponding output voltage Vo for at

least 20 different values for the considered range.

5. The voltage gain is calculated as Av = 20log (V0/Vi) dB

6. Find the Bandwidth and Gain-Bandwidth Product from Semi-log graph taking

Frequency on x-axis and gain in dBon y-axis., Bandwidth,

BW = f2-f1

Where, f1 lower cut-off frequency and f2 upper cut-off frequency

i) Set Vin = 0 by reducing the amplitude of the input signal

from signal generator

ii) Open circuit the capacitors since it blocks DC voltage

iii) Set VCC= +10v and measure the voltage drop across the Resistor VRC,

voltage across Collector- Emitter Junction VCE and Voltage drop across

base emitter junction. VBE

iv) Find the Q-point of the transistor and draw the DC load line.

Maximum signal handling capacity :

It is the process to find the maximum input voltage that can be handled by

the amplifier, so that it amplifies the input signal without anydistortion.

Procedure:

Apply input signal Vin = 20 mV of 1Khz frequency to the amplifier using the signal

generator between base emitter junction of the transistor. Find the sinusoidal output using

CRO across RL.

By increasing the amplitude of the input signal find maximum inputvoltage V MSH

across VBE at which the sinusoidal signal gets distorted during the process which can

be seen in the CRO. The amplitude obtained at this point is maximum voltage that

can be applied to the transistor for efficient operating of transistor.

31

Tabulation [Without Feedback] :

S. NO

FREQUENCY

[Hz]

OUTPUT

VOLTAGE

[VO] in Volts

GAIN = Vo/ Vi GAIN=

20 log Vo/Vi dB

32

Model Graph:

33

RESULT:

Thus the voltage and frequency response of a common emitter amplifier was

constructed and measured.

34

EXPT. NO:

DATE :

FREQUENCY RESPONSE OF COMMON SOURCE AMPLIFIER

Aim:

To determine frequency response and bandwidth using common source amplifier

Apparatus Required:

S.No. Description Range Quantity

1

Transistor

BFW10

1

2 Resistor
2kΩ,10kΩ,1kΩ Each 1

3 Capacitor
0.1 µf,10 µf,1 µf Each 1

4 signal Generator (0-3) MHz 1

5 CRO 30MHz 1

6 Regulated power supply (0-30) V 1

7 Bread Board - 1

8 Connecting Wires Single strand As per required

Theory :

There are three basic types of FET amplifier or FET transistor namely common source

amplifier, common gate amplifier and source follower amplifier. The common-source (CS)

amplifier may be viewed as a transconductance amplifier or as a voltage amplifier.

i) As a transconductance amplifier, the input voltage is seen as modulating the current going

to the load.

ii) As a voltage amplifier, input voltage modulates the amount of current flowing through

the FET, changing the voltage across the output resistance according to Ω's law.

However, the FET device's output resistance typically is not high enough for a reasonable

transconductance amplifier (ideally infinite), nor low enough for a decent voltage amplifier (ideally

zero). Another major drawback is the amplifier's limited high-frequency response.

http://en.wikipedia.org/wiki/Ohm%27s_law
http://en.wikipedia.org/wiki/Electronic_amplifier#Input_and_output_variables
http://en.wikipedia.org/wiki/Electronic_amplifier#Input_and_output_variables
http://en.wikipedia.org/wiki/Electronic_amplifier#Input_and_output_variables

35

Therefore, in practice the output often is routed through either a voltage follower

(common-drain or CD stage), or a current follower (common-gate or CG stage), to obtain more

favorable output and frequency characteristics

Procedure:

1. Connect the circuit as per the circuit diagram

2. Determine the Q-point of the CS amplifier using DC analysis.

3. Determine Maximum input voltage that can be applied to CE amplifier using AC analysis.

4. Set the input voltage Vin=V MSH /2 and vary the input signal frequency from 0Hz to 1MHz

in incremental steps and note down the corresponding output voltage Vo for atleast 20

different values for the considered range.

5. The voltage gain is calculated as Av = 20log (V0/Vi)

6. Find the Bandwidth and Gain-Bandwidth Product from Semi-log graph taking frequency on

x-axis and gain in dB on y-axis., Bandwidth, BW = f2-f1

where f1 - lower cut-off frequency and f2 - upper cut-off frequency

a. Dc Analysis:

It is the procedure to find the operating region of transistor

Steps:

i) Set Vin = 0 by reducing the amplitude of the input signal from signal generator

ii) Open circuit the capacitors since it blocks DC voltage

iii) Set VCC= +10v and measure the voltage drop across the Resistor VRC, voltage across Collector-

Emitter Junction VCE and Voltage drop across base emitter junction. VBE

iv) Find the Q-point of the transistor and draw the DC load line.

Maximum signal handling capacity:

It is the process to find the maximum input voltage that can be handled by the amplifier,

so that it amplifies the input signal without any distortion.

Procedure:

i. Apply input signal Vin = 1 V of 1Khz frequency to the CS amplifier using the signal

generator between base emitter junction of the transistor. Find the sinusoidal output using

CRO across RL.

http://en.wikipedia.org/wiki/Common-drain
http://en.wikipedia.org/wiki/Common-gate

36

ii. By increasing the amplitude of the input signal find maximum input voltage V MSH

across VBE at which the sinusoidal signal gets distorted during the process which can be

seen in the CRO. The amplitude obtained at this point is maximum voltage that can be

applied to the transistor for efficient operating of transistor.

Model graph :

37

TABULATION

Input voltage (Vin) = 50mV

S. NO

Frequency [Hz]

Output Voltage [VO]

in Volts

Gain= 20 log Vo/Vi

dB

38

`RESULT:

The common Source amplifier was constructed and input resistance and gain were determined.

39

EXPT. NO:

DATE :

FREQUENCY RESPONSE OF COMMON BASE AMPLIFIER

Aim:

To determine the frequency response and bandwidth using Common Base amplifier

Apparatus Required:

S.No. Description Range Quantity

1 Transistor BC 107 1

2 Resistor 47KΩ,68KΩ,4.7KΩ,
2.2KΩ,10KΩ

Each 1

3 Capacitor
10µF 3

4 signal Generator (0-3) MHz 1

5 CRO 30 MHz 1

6 Regulated power supply (0-30) V 1

7 Bread Board - 1

8 Connecting Wires Single strand as per required

Theory:

A common base amplifier is type of BJT amplifier which increases the voltage levelof

the applied input signal Vin at output of collector. The Common base amplifier typically has

good voltage gain and relatively high output impedance. But the Common base amplifier unlike

CE amplifier has very low input impedance which makes it unsuitable for most voltage

amplifier. It is typically used used as an active load for a cascode amplifier and also as a current

follower circuit.

Circuit Operation:

A Positive-Going Signal Voltage At The Input Of A CB Pushes The Transistor

Emitter InA Positive Direction While The Base Voltage Remains Fixed, Hence Vbe

Reduces. The Reduction In VBE Results In Reduction In VRC, Consequently VCE

Increases. The Rise In CollectorVoltage Effectively Rises The Output Voltage.

40

The Positive Going Pulse At The Input Produces A Positive-Going Output, Hence

The There Is No Phase Shift From Input To Output In CB Circuit. InThe Same Way The

Negative-Going Input Produces A Negative-Going Output.

Procedure:

1. Connect the circuit as per the circuit diagram

2. Determine the Q-point of the CB amplifier using DC analysis.

3. Determine Maximum input voltage that can be applied to CEamplifier using AC

analysis.

4. Set the input voltage Vin=V MSH /2 and vary the input signal frequency from 0Hz

to1MHz in incremental steps and note down the corresponding output voltage Vo

for at least 20 different values for the considered range.

5. The voltage gain is calculated as Av = 20log (V0/Vi)

6. Find the Bandwidth and Gain-Bandwidth Product from Semi-log graph taking

frequency on x-axis and gain in dB on y-axis., Bandwidth,

BW = f2-f1
Where , f1 lower cut-off frequencyand f2 upper cut-off frequency

DC Analysis:

It is the procedure to find the operating region of transistor

Steps:

i) Set Vin = 0 by reducing the amplitude of the input

signalfrom signal generator

ii) Open circuit the capacitors since it blocks DC voltage

iii) Set VCC= +10v and measure the voltage drop across the

Resistor VRC, voltage across Collector- Emitter Junction

VCE and Voltagedrop across base emitter junction. VBE

iv) Find the Q-point of the transistor and draw the DC load line.

Maximum signal handling capacity:

It is the process to find the maximum input voltage that can be handled

by theamplifier, so that it amplifies the input signal without any distortion

41

Procedure:

i. Apply input signal Vin = 20 mV of 1Khz frequency to the amplifier using the signal

generator between base emitter junction of the transistor. Find the sinusoidal output

using CRO across RL.

ii. By increasing the amplitude of the input signal find maximum input voltage V MSH

across VBE at which the sinusoidal signal gets distorted during the process which can be

seen in the CRO. The amplitude obtained at this point is maximum voltage that can be

applied to the transistor for efficient operating of transistor.

42

Model Graph:

Tabulation:

S. NO

FREQUENCY

[Hz]

OUTPUT VOLTAGE [VO]

in Volts

GAIN= 20 log

Vo/Vi dB

43

RESULT:

The Common base amplifier was constructed and input resistance and gain were determined.

44

EXPT.NO:

DATE:

FREQUENCY RESPONSE OF COMMON COLLECTOR AMPLIFIER

Aim:

To Design and Construct a Common collector Amplifier and to determine its Frequency

response and bandwidth

Apparatus Required:

S.No Description Range Quantity

1
Transistor BC 107 1

2
Resistor

10k Ω,1k Ω 2,1

3
Capacitor

10µF 2

4
Signal Generator 0-3MHz 1

5 CRO 0-30MHz 1

6
Regulated power supply 0-30 V 1

7
Bread Board - 1

8
Connecting Wires Single strand as required

Theory:

A common collector amplifier is a unity gain BJT amplifier used for impedance matching

and as a buffer amplifier.

Circuit Operation:

When a positive half-cycle of the input signal is applied to Base emitter junction of

transistorthe forward bias voltage Vbe is increased, which in turn increases the base current Ib

of transistor. Since emitter current Ie is directly proportional to Ib the voltage drop across the

Emitter Ve= IeRe is increased, hence, output voltage Vo is increased, thus, we get positive

half-cycle of the output. It means that a positive-going input signal results in a positive going

output signal and, consequently, the input and output signals are in phase with each other.

Similarly the negative half cycle of input signal produces negative going output signal.

45

Characteristics of a CC Amplifier

1. high input impedance (20-500 K Ω)

2. low output impedance (50-1000 Ω)

3. high current gain of (1 + β) i.e. 50 – 500

4. voltage gain of less than 1 (unity)

5. power gain of 10 to 20 dB

6. no phase reversal of the input signal

Procedure:

1. Connect the circuit as per the circuit diagram

2. Determine the Q-point of the CE amplifier using DC analysis.

3. Determine Maximum input voltage that can be applied to CE amplifier using AC analysis.

4. Set the input voltage Vin=V MSH /2 and vary the input signal frequency from 0Hz to 1MHz in

incremental steps and note down the corresponding output voltage Vo for at least 15 different values for

the considered range.

5. The voltage gain is calculated as Av = 20log (V0/Vin)

7. Find the Bandwidth and Gain-Bandwidth Product from Semi-log graph taking

frequency on x-axis and gain in dB

on y-axis., Bandwidth,

BW = f2-f1

Where f1 - lower cut-off frequency f2 - upper cut-off frequency

a. DC Analysis:

It is the procedure to find the operating region of transistor

Steps:

i) Set Vin = 0 by reducing the amplitude of the input signal
from signal generator

ii) Open circuit the capacitors since it blocks DC voltage

iii) Set VCC= +10v and measure the voltage drop across the Resistor

VRC, voltage across Collector- Emitter Junction VCE and Voltage

drop across base emitter junction. VBE

iv) Find the Q-point of the transistor and draw the DC load line.

Q point analysis:

It is the procedure to choose the operating point of transistor

46

b. Maximum signal handling capacity :

It is the process to find the maximum input voltage that can be handled by the

amplifier, so that it amplifies the input signal without anydistortion.

Procedure:

i. Apply input signal Vin = 1 V of 1Khz frequency to the CC amplifier using the signal generator

between base emitter junction of the transistor. Find the sinusoidal output using CRO across RL.

ii. By increasing the amplitude of the input signal find maximum input voltage V MSH across VBE at

which the sinusoidal signal gets distorted during the process which can be seen in the CRO. The

amplitude obtained at this point is maximum voltage that can

be applied to the transistor for efficient operating of transistor.

Circuit Diagram:

47

TABULATION

S. NO

FREQUENCY [Hz]

OUTPUT

VOLTAGE [VO]

in Volts

GAIN= 20 log Vo/Vi dB

48

RESULT:

The common collector amplifier was constructed and input resistance and

gain were determined.

49

EXPT.NO:

DATE:

FREQUENCY RESPONSE OF CASCODE AMPLIFIER

Aim:

To Design and Construct a Cascode Amplifier and to determine its:

a. DC Characteristics

b. Maximum Signal Handling Capacity

c. Gain of the amplifier

d. Bandwidth of the amplifier

e. Gain -Bandwidth Product

Apparatus Required:

S.no Description Range Quantity

1

Transistor

BC 107

1

2

Resistor

120 KΩ,270KΩ,25KΩ,
1KΩ,

1,1,1,3

3 Capacitor 10mf,0.01µf 1,2

4

Signal Generator

(0-3) MHz

1

5

CRO

30MHz

1

6 Regulated powersupply (0-30) V 1

7 Bread Board - 1

8
Connecting Wires Single strand As per required

Theory:

The cascode configuration has one of two configurations of multistage amplifier. In each

case the collector of the leading transistor is connected to the emitter of the following

transistor. The arrangement of the two transistors is shown in the circuit diagram. The

cascode amplifier consists of CE stage connected in series with CB stage. The

arrangement provides a relatively high input impedance with low voltage gain for the

first stage to ensure the input miller capacitance is at a minimum, whereas the following

CB stage provides an excellent high frequency response.

50

Features:

1. It provides high voltage gain and has high input impedance.

2. It provides high stability and has high output impedance

Procedure:

1. Connect the circuit as per the circuit diagram

2. Determine the Q-point of the CE amplifier using DC analysis.

3. Determine Maximum input voltage that can be applied to CE amplifier using AC analysis.

4. Set the input voltage Vin=V MSH /2 and vary the input signal frequency from 0Hz to

1MHz in incremental steps and note down the corresponding output voltage Vo for at

least 20 different valuesfor the considered range.

5. The voltage gain is calculated as Av = 20log (V0/Vi)

6. Find the Bandwidth and Gain-Bandwidth Product from Semi-log graph taking frequency

on x-axisand gain in dB on y-axis., Bandwidth, BW = f2-f1

Where f1 - lower cut-off frequencyf2 - upper cut-off frequency

Dc Analysis:

It is the procedure to find the operating region of transistor

Steps:

i) Set Vin = 0 by reducing the amplitude of the input signal from signal generator

ii) Open circuit the capacitors since it blocks DC voltage

iii) Set VCC= +10v and measure the voltage drop across the Resistor VRC,

voltage acrossCollector- Emitter Junction VCE and Voltage drop across base

emitter junction. VBE

iv) Find the Q-point of the transistor and draw the DC load line.

Q point analysis:

It is the procedure to choose the operating point of transistor

a. Maximum signal handling capacity:

It is the process to find the maximum input voltage that can be handled by the

amplifier, so thatit amplifies the input signal without any distortion.

Procedure:

i) Apply input signal Vin = 20 mV of 1Khz frequency to the amplifier using the signal

generator between base emitter junction of the transistor. Find the sinusoidal output

using CRO across RL.

51

ii) By increasing the amplitude of the input signal find maximum input voltage V MSH

across VBE at which the sinusoidal signal gets distorted during the process which can be

seen in the CRO. The amplitude obtained at this point is maximum voltage that can be

applied to the transistorfor efficient operating of transistor.

Circuit Diagram:

Model Graph:

52

Tabulation

S. NO

FREQUENCY

[Hz]

OUTPUT

VOLTAGE [VO]

in Volts

GAIN= 20 log Vo/Vi dB

53

RESULT:

The Cascode amplifier was constructed and input resistance and gain were determined.

54

EXPT.NO:

DATE:

CMRR measurement of Differential Amplifier

Aim:

To Design and Construct a Differential Amplifier using BJT and to determine its:
a. Transfer Characteristics
b. Gain of the amplifier in common mode

c. Gain of the amplifier in differential mode

d. CMRR (Common Mode Rejection Ratio)

Apparatus Required:

S.no Description Range Quantity

1 Transistor BC 107 2

2 Resistor 1kΩ,470Ω 2,1

3 Signal Generator (0-3)MHz 1

4 CRO 30MHz 1

5

Regulated

Power supply

(0-30)V

1

6 Bread Board - 1

7 Connecting Wires Single strand as required

Theory:

A differential amplifier is a type of electronic amplifier that amplifies the

differencebetween two voltages but does not amplify the particular voltages. The need

for differential amplifier arises in many physical measurements where response from D.C

to many MHZ isrequired. It is also used in input stage of integrated amplifier. The output

signal in differential amplifier is proportional to the difference between the twoinput

signals. Vo = Ad (V1 – V2).

Where V1, V2 are the input voltages and Ad is the differential gain. If V1 = V2, then output

voltage is zero. A non zero output voltage is obtained if V1 and V2are not equal.

http://en.wikipedia.org/wiki/Electronic_amplifier

55

i) The difference mode input voltage is defined as Vd = (V1-V2)

ii) The common mode input voltage is defined as the Vcm= (V1+V2)/2

iii) The CMRR is defined as the ratio of the differential gain Ad to common mode gain

Ac andis generally expressed in dB. CMRR= 20 log10 (Ad / Ac)

Procedure:

1. Connect the circuit as per the circuit diagram

2. Determine the Q-point of the Differential amplifier using DC analysis.

3. Determine Maximum input voltage that can be applied to amplifier using AC analysis.

4. Determine the Transfer characteristics of Differential amplifier by plotting the graph for

normalized differential input voltage [(Vb1 – Vb2) / VT] vs. Normalized collector current

[Ic / Io].

5. Calculate the voltage gain of differential amplifier for differential modeas

Ad = 20log (V0/Vi) , Where Vi = V1 – V2

6. Calculate the voltage gain of differential amplifier for Common mode as

AC = 20log (V0/Vi), Where Vi = (V1+ V2 / 2)

7. Find the Common mode rejection ratio of differential amplifier using the formula

given below. CMRR= 20 log10 (Ad/Ac)

Where Ad- Differential mode gain in dB ,Ac – Common Mode gain in dB

DC Analysis:

Steps

It is the procedure to find the operating region of transistor

i) Set Vin = 0 by reducing the amplitude of the input signal from signal

generator

ii) Open circuit the capacitors since it blocks DC voltage

iii) Set VCC= +10v and measure the voltage drop across the Resistor VRC,

voltage across Collector- Emitter Junction VCE and Voltage drop across base

emitter junction. VBE

iv) Find the Q-point of the transistor and draw the DC load line.

Q point analysis:

It is the procedure to choose the operating point of transistor

a. Maximum signal handling capacity:

It is the process to find the maximum input voltage that can be handled by the

amplifier, so that itamplifies the input signal without any distortion.

56

Procedure:

Apply input signal Vin = 20 mV of 1Khz frequency to the amplifier using the signal

generator between base emitter junction of the transistor. Find the sinusoidal output using

CRO across RL. By increasing the amplitude of the input signal find maximum input voltage

VMSH across VBE at which the sinusoidal signal gets distorted during the process

which can be seen in the CRO. The amplitude obtained at this point is maximum voltage

that can be applied to the transistor for efficient operating of transistor.

57

Tabulation

Differential mode voltage = 0.5 V
Common mode voltage = 5V

S.No Frequency Output Voltage Gain dB CMRR

D.M C.M D.M C.M

58

DC Transfer Characteristics:

S.No Input Voltage Output Current

Vin = (V1-V2) (V) I1 (mA) I2(mA)

Model Graph:

59

RESULT:

The Differential amplifier was constructed and input resistance and gain were determined.

60

EXPT.NO:

DATE:

CLASS A TRANSFORMER COUPLED POWER AMPLIFIER

Aim:
To construct a class A power amplifier and to determine the efficiency from its
output waveform.

Apparatus Required:

S.No Description Range Quantity

1 Transistor SL100 1

2 Resistor 100 Ω , 10 Ω, 560 Ω 2,1,1

3 Capacitor 2.2 µf, 5 µf 1,1

4

Transformer withCenter

Tapped Secondary

(9 - 0 - 9) V

1

5
CRO 30MHz 1

6
Function Generator

-
1

7 Regulated PowerSupply
0-30V 1

8 Digital Multimeter/Digital

Voltmeter (0-20V) 1

9 Bread Board - 1

10 Connecting Wires Single strand As per required

Theory:

Transistor power amplifiers handle large signals. If the current flows at all times duringthe

full cycle of the signal, the power amplifier is known as class A amplifier.

Obviously, for this to happen the power amplifier must be biased in such a way that no part

of the signal is cut off. The efficiency of class A amplifier is only 50%. But it provides less

power dissipation. Also there is no distortion in class A power amplifier.

Procedure:

1. Connect the circuit as per the circuit diagram.

2. Set the input and apply the input signal from the FG and observe the output.

3. Note down the collector current using ammeter.

4. Draw the input and output waveform.

61

5. By using specified formula, AC output power, DC input power and efficiency are

calculated.

Circuit Diagram Class A Power Amplifier

Model Graph

Tabulation:

 Voltage(V) Time(ms) Current(mA)

Input waveform 2 2ms 2

Output waveform 2 2ms 3

RESULT:

Thus the class A amplifier was designed and constructed also its efficiency was calculated.

62

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

EC3401 NETWORKS AND SECURITY

Semester - 04

LABORATORY MANUAL

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Vision

To excel in providing value based education in the field of Electronics and
Communication Engineering, keeping in pace with the latest technical developments
through commendable research, to raise the intellectual competence to match global
standards and to make significant contributions to the society upholding the ethical
standards.

Mission

 To deliver Quality Technical Education, with an equal emphasis on theoretical
and practical aspects.

 To provide state of the art infrastructure for the students and faculty to upgrade
their skills and knowledge.

 To create an open and conducive environment for faculty and students to carry
out research and excel in their field of specialization.

 To focus especially on innovation and development of technologies that is
sustainable and inclusive, and thus benefits all sections of the society.

 To establish a strong Industry Academic Collaboration for teaching and research,
that could foster entrepreneurship and innovation in knowledge exchange.

 To produce quality Engineers who uphold and advance the integrity, honour and
dignity of the engineering.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

1. To provide the students with a strong foundation in the required sciences in order
to pursue studies in Electronics and Communication Engineering.

2. To gain adequate knowledge to become good professional in electronic and
communication engineering associated industries, higher education and
research.

3. To develop attitude in lifelong learning, applying and adapting new ideas and
technologies as their field evolves.

4. To prepare students to critically analyze existing literature in an area of
specialization and ethically develop innovative and research oriented
methodologies to solve the problems identified.

5. To inculcate in the students a professional and ethical attitude and an ability to
visualize the engineering issues in a broader social context.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1: Design, develop and analyze electronic systems through application of relevant

electronics, mathematics and engineering principles.

PSO2: Design, develop and analyze communication systems through application of

fundamentals from communication principles, signal processing, and RF System Design
& Electromagnetics.

PSO3: Adapt to emerging electronics and communication technologies and develop
innovative solutions for existing and newer problems.

LIST OF EXPERIMENTS:

Experiments using C

1. Implement the Data Link Layer framing methods,

(i)Bit stuffing, (ii) Character stuffing

2. Implementation of Error Detection / Correction Techniques

(i)LRC, (ii) CRC, (iii) Hamming code

3. Implementation of Stop and Wait, and Sliding Window Protocols

4. Implementation of Go back-N and Selective Repeat Protocols.

5. Implementation of Distance Vector Routing algorithm (Routing Information Protocol)
(Bellman-Ford).

6. Implementation of Link State Routing algorithm (Open Shortest Path First) with 5 nodes
(Dijkstra's).

7. Data encryption and decryption using Data Encryption Standard algorithm.

8. Data encryption and decryption using RSA (Rivest, Shamir and Adleman) algorithm.

9. Implement Client Server model using FTP protocol.

Experiments using Tool Command Language

1. Implement and realize the Network Topology - Star, Bus and Ring using NS2.

2. Implement and perform the operation of CSMA/CD and CSMA/CA using NS2.

Program to implement Bit Stuffing
Aim:

To write a C program to implement Bit Stuffing.

#include<stdio.h>

#include<string.h>

int main()

{

 int a[20],b[30],i,j,k,count,n;

 printf("Enter frame size (Example: 8):");

 scanf("%d",&n);

 printf("Enter the frame in the form of 0 and 1 :");

 for(i=0; i<n; i++)

 scanf("%d",&a[i]);

 i=0;

 count=1;

 j=0;

 while(i<n)

 {

 if(a[i]==1)

 {

 b[j]=a[i];

 for(k=i+1; a[k]==1 && k<n && count<5; k++)

 {

 j++;

 b[j]=a[k];

 count++;

 if(count==5)

 {

 j++;

 b[j]=0;

 }

 i=k;

 }

 }

 else

 {

 b[j]=a[i];

 }

 i++;

 j++;

 }

 printf("After Bit Stuffing :");

 for(i=0; i<j; i++)

 printf("%d",b[i]);

 return 0;

}

OUTPUT for BIT STUFFING:

Enter frame size (Example: 8):12

Enter the frame in the form of 0 and 1 :0 1 0 1 1 1 1 1 1 0 0 1

After Bit Stuffing :0101111101001

Program to implement Character Stuffing
Aim:

To write a C program to implement Character Stuffing.

Program to implement Character Stuffing

#include<stdio.h>

#include<string.h>

main()

{

 char a[30], fs[50] = " ", t[3], sd, ed, x[3], s[3], d[3], y[3];

 int i, j, p = 0, q = 0;

 clrscr();

 printf("Enter characters to be stuffed:");

 scanf("%s", a);

 printf("\nEnter a character that represents starting delimiter:");

 scanf(" %c", &sd);

 printf("\nEnter a character that represents ending delimiter:");

 scanf(" %c", &ed);

 x[0] = s[0] = s[1] = sd;

 x[1] = s[2] = '\0';

 y[0] = d[0] = d[1] = ed;

 d[2] = y[1] = '\0';

 strcat(fs, x);

 for(i = 0; i < strlen(a); i++)

 {

 t[0] = a[i];

 t[1] = '\0';

 if(t[0] == sd)

 strcat(fs, s);

 else if(t[0] == ed)

 strcat(fs, d);

 else

 strcat(fs, t);

 }

 strcat(fs, y);

 printf("\n After stuffing:%s", fs);

 getch();

 }

Output:-

Enter characters to be stuffed: goodday

Enter a character that represents starting delimiter: d

Enter a character that represents ending delimiter: g

After stuffing: dggooddddayg.

IMPLEMENTATION OF ERROR DETECTION AND CORRECTION TECHNIQUE

Aim:

To write a C program to implement Error Detection and Correction Techniques.

Algorithm:

1. Get 4 bit data.

2. Generate the Generates Matrix.

3. Encode the data.

4. Create Parity check Matrix.

5. Enter the error data.

6. Calculate syndrome using eH
T
.

7. Decode the error data.

Program:

#include<stdlib.h>

#include<stdio.h>

#include<conio.h>

char data[5];

int encoded[8],edata[7],syndrome[3];

int hmatrix[3][7]={1,0,0,0,1,1,1,0,1,0,1,0,1,1,0,0,1,1,1,0,1};

char gmatrix[4][8]={"0111000","1010100","1100010","1110001"};

int main()

{

int i,j;

printf("hamming code - - encoding \n");

printf("enter 4 bit data:");

scanf("%s",data);

printf("generation matrix \n");

for(i=0;i<4;i++)

printf("\t %s \n",gmatrix[i]);

printf("encoded data:");

for(i=0;i<7;i++)

{

for(j=0;j<4;j++)

encoded[i]+=((data[j]-'0')*(gmatrix[j][i]-'0'));

encoded[i]=encoded[i]%2;

printf("%d",encoded[i]);

}

printf("\n hamming code - - decoding \n");

printf("enter encoded bits as received:");

for(i=0;i<7;i++)

scanf("%d",&edata[i]);

for(i=0;i<3;i++)

{

for(j=0;j<7;j++)

syndrome[i]=syndrome[i]+(edata[j]*hmatrix[i][j]);

syndrome[i]=syndrome[i]%2;

}

for(j=0;j<7;j++)

if((syndrome[0]==hmatrix[0][j])&&(syndrome[1]==hmatrix[1][j])&&

(syndrome[2]==hmatrix[2][j]))

break;

if(j==7)

printf("data is error free!!\n");

else

{

printf("error received a bit number %d of data \n",j+1);

edata[j]=!edata[j];

printf("the correct data should be :");

for(i=0;i<7;i++)

printf("%d",edata[i]);

}

}

OUTPUT:

Result:

Thus Error Detection and Correction Technique has been implemented.

Hamming code Implementation in C/C++

Pre-requisite: Hamming Code

Given a message bit in the form of an array msgBit[], the task is to find the Hamming Code of the given message

bit.

Examples:
Input: S = “0101”

Output:
Generated codeword:

r1 r2 m1 r4 m2 m3 m4

0 1 0 0 1 0 1

Explanation:
Initially r1, r2, r4 is set to „0‟.

r1 = Bitwise XOR of all bits position that has „1‟ in its 0th-bit position.

r2 = Bitwise XOR of all bits that has „1‟ in its 1st-bit position.

r3 = Bitwise XOR of all bits that has „1‟ in its 2nd-bit position.

Input: S = “0111”

Output:

Generated codeword:

r1 r2 m1 r4 m2 m3 m4

0 0 0 1 1 1 1

Approach: The idea is to first find the number of redundant bits which can be found by initializing r with 1 and

then incrementing it by 1 each time while 2
r
 is smaller than (m + r + 1) where m is the number of bits in the

input message. Follow the below steps to solve the problem:

 Initialize r by 1 and increment it by 1 until 2
r
 is smaller than m+r+1.

 Initialize a vector hammingCode of size r + m which will be the length of the output message.

 Initialize all the positions of redundant bits with -1 by traversing from i = 0 to r – 1 and

setting hammingCode [2
i
–

1] = -1. Then place the input message bits in all the positions

where hammingCode[j] is not -1 in order where 0 <= j < (r + m).

 Initialize a variable one_count with 0 to store the number of ones and then traverse from i = 0 to (r + m –

1).

 If the current bit i.e., hammingCode[i] is not -1 then find the message bit containing set bit

at log2(i+1)
th

 position by traversing from j = i+2 to r+m by incrementing one_count by 1 if (j & (1<<x)) is

not 0 and hammingCode[j – 1] is 1.

 If for index i, one_count is even, set hammingCode[i] = 0 otherwise set hammingCode[i] = 1.

 After traversing, print the hammingCode[] vector as the output message.

Below is the implementation of the above approach:

// C program for the above approach

#include <math.h>

https://www.geeksforgeeks.org/hamming-code-in-computer-network/
https://www.geeksforgeeks.org/introduction-to-arrays/

#include <stdio.h>

// Store input bits

int input[32];

// Store hamming code

int code[32];

int ham_calc(int, int);

void solve(int input[], int);

// Function to calculate bit for

// ith position

int ham_calc(int position, int c_l)

{

 int count = 0, i, j;

 i = position - 1;

 // Traverse to store Hamming Code

 while (i < c_l) {

 for (j = i; j < i + position; j++) {

 // If current boit is 1

 if (code[j] == 1)

 count++;

 }

 // Update i

 i = i + 2 * position;

 }

 if (count % 2 == 0)

 return 0;

 else

 return 1;

}

// Function to calculate hamming code

void solve(int input[], int n)

{

 int i, p_n = 0, c_l, j, k;

 i = 0;

 // Find msg bits having set bit

 // at x'th position of number

 while (n > (int)pow(2, i) - (i + 1)) {

 p_n++;

 i++;

 }

 c_l = p_n + n;

 j = k = 0;

 // Traverse the msgBits

 for (i = 0; i < c_l; i++) {

 // Update the code

 if (i == ((int)pow(2, k) - 1)) {

 code[i] = 0;

 k++;

 }

 // Update the code[i] to the

 // input character at index j

 else {

 code[i] = input[j];

 j++;

 }

 }

 // Traverse and update the

 // hamming code

 for (i = 0; i < p_n; i++) {

 // Find current position

 int position = (int)pow(2, i);

 // Find value at current position

 int value = ham_calc(position, c_l);

 // Update the code

 code[position - 1] = value;

 }

 // Print the Hamming Code

 printf("\nThe generated Code Word is: ");

 for (i = 0; i < c_l; i++) {

 printf("%d", code[i]);

 }

}

// Driver Code

void main()

{

 // Given input message Bit

 input[0] = 0;

 input[1] = 1;

 input[2] = 1;

 input[3] = 1;

 int N = 4;

 // Function Call

 solve(input, N);

}

Output:

The generated Code Word is: 0001111

IMPLEMENTATION OF STOP AND WAIT PROTOCOL USING C PROGRAM

AIM:

To write a „C‟ program to simulate a Stop and Wait protocol.

ALGORITHM:

Sender

1. Create a server socket using socket system call

2. If the receiver is ready, initialize sender‟s frame sequence.

3. Get data from user.

4. Send it to the receiver along with sequence number

5. Wait for acknowledgements.

6. If an acknowledgement is received, send the next frame of data.

7. Stop

Receiver

1. Indicate to sender .the readiness to accept frames.

2. Initialize receiver‟s expected frame sequence.

3. Accept the incoming frame

4. Send an acknowledgement.

5. Repeat step 3 and 4 until all frames are received in sequence.

6. Discard frame, thereby force the sender to retransmit

7. Stop.

PROGRAM:

SERVER:

#include<sys/socket.h>

#include<sys/types.h>

#include<stdlib.h>

#include<netinet/in.h>

#include<unistd.h>

#include<stdio.h>

#include<string.h>

void main()

{

struct sockaddr_in cli,serv;

int sockfd,connfd,len,i,n,flag,x;

char ms[10][50],ack[40];

len=sizeof(struct sockaddr);

sockfd=socket(AF_INET,SOCK_STREAM,0);

serv.sin_family=AF_INET;

serv.sin_port=9960;

serv.sin_addr.s_addr=INADDR_ANY;

bind(sockfd,(struct sockaddr*)&serv,sizeof(struct sockaddr));

listen(sockfd,5);

connfd=accept(sockfd,(struct sockaddr *)&cli,&len);

printf("Enter the limit\n");scanf("%d",&n);

printf("Enter the data\n");for(i=1;i<=n;i++)

{printf("%d",i);

scanf("%s",ms[i]);}//printf("Enter the num");//scanf("%d",x);

printf("End of Data");

for(i=1;i<=n;i++)

printf("%s",ms[i]);

flag=1;

for(i=1;i<=n;i++)

{

if(flag==1)

{

send(connfd,ms[i],sizeof(ms[i]),0);

flag=0;

}

recv(connfd,ack,sizeof(ack),0);

printf("%s",ack);

if((strcmp(ack,"yes"))==0)

flag=1;

else

{printf("Acknowlegment is not given\n");

flag=1;

continue;

}}

close(sockfd);

}

CLIENT:

#include<sys/types.h>

#include<netinet/in.h>

#include<unistd.h>

#include<stdio.h>

#include<stdlib.h>

#include<string.h>

void main()

{

int a[3];

struct sockaddr_in cli,serv;

int sockfd,c,i,n;

char msg[50][50],ac[10];

sockfd=socket(AF_INET,SOCK_STREAM,0);

cli.sin_family=AF_INET; cli.sin_port=9960; cli.sin_addr.s_addr=INADDR_ANY;

connect(sockfd,(struct sockaddr*)&cli,sizeof(struct sockaddr));

printf("Enter the limit\n");

scanf("%d",&n);

printf("The received data\n");

for(i=1;i<=n;i++) {recv(sockfd,msg[i],sizeof(msg[i]),0);

printf("%s",msg[i]);

printf("Enter the ack\n");

scanf("%s",ac);

send(sockfd,ac,sizeof(ac),0);

}

close(sockfd);

} OUTPUT:

SERVER:

sam@boss[share]$vi sandws.c

sam@boss[share]$cc sandws.c

sam@boss[share]$cc sandws.c

sam@boss[share]$./a.out

Enter the limit 4

Enter the data

1a

2b

3c

4d

End of Data

abcd

yes

yes

yes

yes

CLIENT:

Enter the limit4

The received data a

Enter the ack yes b

Enter the ack yes c

Enter the ack yes d

Enter the ack yes

RESULT:

Thus the Stop & Wait Protocol program was executed successfully.

IMPLEMENTATION OF SLIDING WINDOW PROTOCOL USING C PROGRAM AIM:

To write a program to simulate a sliding window protocol that uses Selective repeat and Go

back-ARQ.

ALGORITHM:

SERVER:

1) Create a server socket using socket function

socket(int family,int type,int protocol);

2) Assume the sending window size as 6 (m=3)

3) If the receiver is ready, initialize sender's frame sequence to 0

4) Get data from user.

5) Send it to the receiver along with sequence number

6) Increment sequence number by 1.

7) Repeat step 4-6 until all frames have been sent.

8) Wait for acknowledgement

9) If all acknowledgements have arrived then go to step 11.

10) Set sequence number to earliest outstanding frame for which there is no ACK . Go to step 4.

11) Stop

CLIENT:

1) Create a socket for client using socket function

int socket(int family,int type,int protocol);

2) Indicate to sender, the readiness to accept frames.

3) Initialize receiver's expected frame sequence to 0.

4) Accept the incoming frame

5) If frame's sequence == receiver's sequence then go to step 6

6) Send an acknowledgement

7) Repeat step 3-6 until all frames are received in sequence and go to step 8

8) Discard frame, thereby force the sender to retransmit. Go to step 3.

9) Stop

PROGRAM:

SERVER:

#include<sys/socket.h>

#include<sys/types.h>

#include<netinet/in.h>

#include<unistd.h>

#include<stdlib.h>

#include<stdio.h>

#include<string.h>

main()

{

int len,sockfd,connfd,i,n,c;

char rdata[10][100],rmsg[10][100],win[10],los[20],temp[10][100],ch[10],recmsg[10];

struct sockaddr_in serv,cli;

sockfd=socket(AF_INET,SOCK_STREAM,0);

serv.sin_family=AF_INET;

serv.sin_port=9960;

serv.sin_addr.s_addr=INADDR_ANY;

bind(sockfd,(struct sockaddr*)&serv,sizeof(struct sockaddr));

listen(sockfd,5);

len=sizeof(struct sockaddr);

connfd=accept(sockfd,(struct sockaddr*)&cli,&len);

read(connfd,win,sizeof(win));

sscanf(win,"%d",&n);

printf("%d",n);

for(i=1;i<=n;i++)

{

recv(connfd,rdata[i],sizeof(rdata[i]),0);

printf("the %d data send by the client is %s \n",i,rdata[i]);

}

printf("enter the lost data");

scanf("%s",&los);

write(connfd,los,sizeof(ch));

sscanf(ch,"%d",&c);

if(c==1)

{

recv(connfd,recmsg,sizeof(recmsg),0);

printf("the data received using selective repeat is %s",recmsg);

}

else

{

for(i=1;i<=n;i++)

{

recv(connfd,recmsg[i],sizeof(recmsg[i]),0);

strcpy(temp[i],rmsg[i]);

printf("the data recv is %s \n",temp[i]);

}

}

close(connfd);

close(sockfd);

}

CLIENT:

#include<sys/socket.h>

#include<sys/types.h>

#include<netinet/in.h>

#include<unistd.h>

#include<stdlib.h>

#include<stdio.h>

#include<string.h>

main()

{

int sockfd,amount,i,w,a,ch;

char data[10][100],lost[20],st[10],si[10],s,g,choice[10];

struct sockaddr_in serv,cli;

sockfd=socket(AF_INET,SOCK_STREAM,0);

cli.sin_family=AF_INET;

cli.sin_port=9960;

cli.sin_addr.s_addr=INADDR_ANY;

connect(sockfd,(struct sockaddr *)&cli,sizeof(struct sockaddr));

printf("enter the total amount of data to be send \n");

scanf("%d",&amount);

for(i=1;i<=amount;i++)

{

printf("enter the %d data to be send \n",i);

scanf("%s",data[i]);

}

printf("enter the window size");

scanf("%s",si);

send(sockfd,si,sizeof(si),0);

sscanf(si,"%d",&w);

for(i=0;i<w;i++)

{

send(sockfd,data[i],sizeof(data[i]),0);

}

read(sockfd,lost,sizeof(lost));

printf("lost frame is %s \n",lost);

sscanf(lost,"%d",&a);

printf("enter the choice \1.selective repeat \n 2.go back ARQ \n");

scanf("%s",choice);

send(sockfd,choice,sizeof(choice),0);

sscanf(choice,"%d",&ch);

switch(ch)

{

case 1:

send(sockfd,data[a],sizeof(data[a]),0);

break;

case 2:

for(i=a;i<=(w+(a-1));i++)

{

send(sockfd,data[i],sizeof(data[i]),0);

}

printf("the lost data is sent again \n");

break;

}

close(sockfd);

}

OUTPUT:

EC3401 NETWORKS AND SECURITY LAB

{

DEPARTMENT OF ECE

21

SERVER

sam@boss[sha]$./a.out

the 1 data sent by client is shali

the 2 data sent by the client is akshaya

the 3 data sent by the client is raji

enter the lost data 2

the data recv is shali

the data recv is akshaya

the data recv is raji

RESULT:

Thus Sliding Window Protocol is simulated using Selective repeat and Go back-

ARQ.

EC3401 NETWORKS AND SECURITY LAB

{

DEPARTMENT OF ECE

22

IMPLEMENTATION OF DISTANCE VECTOR ROUTING ALGORITHM

AIM:

To simulate a link failure and to observe distance vector routing protocol in

action.

PROGRAM:

#include<stdio.h>

#include<conio.h>

struct node

{

unsigned dist[20];

unsigned from[20];

}rt[10];

int main()

{

int dmat[20][20];

int n,i,j,k,count=0,dist;

clrscr();

printf("\n enter the number of nodes:");

scanf("%d",&n);

printf("enter the cost matrix:\n");

for(i=0;i<n;i++)

for(j=0;j<n;j++)

{

scanf("%d",&dmat[i][j]);

dmat[i][i]=0;

rt[i].dist[j]=dmat[i][j];

rt[i].from[j]=j;

}

do

{

count=0;

for(i=0;i<n;i++)

for(j=0;j<n;j++)

for(k=0;k<n;k++)

if(rt[i].dist[j]>dmat[i][k]+rt[k].dist[j])

{

rt[i].dist[j]=rt[i].dist[k]+rt[k].dist[j];

rt[i].from[j]=k;

count++;

}

}

while(count!=0);

EC3401 NETWORKS AND SECURITY LAB

{

DEPARTMENT OF ECE

23

for(i=0;i<n;i++)

{

printf("\n state value for router %d is \n",i+1);

for(j=0;j<n;j++)

{

printf("\n node %d via %d distance %d",i+1,rt[i].from[j]+1,rt[i].dist[j]);

}

}

printf("\n");

getch();

return 0;

}

RESULT:

Thus the Distance Vector Routing program was executed successfully.

EC3401 NETWORKS AND SECURITY LAB

{

DEPARTMENT OF ECE

24

AIM:

To simulate a link failure and to observe Link state routing protocol in action.

PROGRAM:

#include<stdio.h>

//#include<conio.h>

//#include<process.h>

 #include<stdlib.h>

#include<string.h>

#include<math.h>

#define IN 99

#define N 6

int dijkstra(int

cost[][N],int source,int

target); char

interface[6][6][20]={{"0","0","0","0","0","0"},{"0","0","192.1.1.1","0","198.1.1.1"

,"0"},{"0","192

.

1.1.2","0","0","0","200.1.1.1"},{"0","0","0","0","198.1.1.2","0"},{"0","192.

1.1.3","0","198.1.1.3", "

0","200.1.1.2"},{"0","0","200.1.1.3","0","200.1.1.4","0"}};

char *strrev(char *str)

char *p1,*p2; if(! str || ! *str) return str;

for(p1=str,p2=str+strlen(str)-1;p2>p1;++p1,--p2)

{

*p1^=*p2;

*p2^=*p1;

*p1^=*p2;

}

return str;

}

int main()

{

int cost[N][N],i,j,w,ch,co; char ip[10];

int source,target,x,y;

printf("\tThe shortest path algorithm (DIJKSTRA'S ALGORITHM in C \n\n");

for(i=1;i<N;i++)

for(j=1;j<N;j++) cost[i][j]=IN; for(x=1;x<N;x++)

{

for(y=x+1;y<N;y++)

{

printf("\nEnter the weight of the path between nodes %d and %d: ",x,y);

scanf("%d",&w); cost[x][y]=cost[y][x]=w;

}

printf("\n");

}

EC3401 NETWORKS AND SECURITY LAB

{

DEPARTMENT OF ECE

25

for(x=1;x<N;x++)

{

for(y=1;y<N;y++)

{ printf("%s: \t",interface[x][y]);

}

printf("\n");

}

printf("\nEnter the source: "); scanf("%d",&source); printf("\nEnter the target ");

scanf("%d",&target); co=dijsktra(cost,source,target);

printf("\nThe shortest path : %d\n",co); return 0;

}

int dijsktra(int cost[][N],int source,int target)

{

int dist[N],prev[N],selected[N]={0},i,m,min,start,d,j,x,y; char path[N];

int path1[N]; for(i=1;i<N;i++)

{

dist[i]=IN; prev[i]=-1;

}

start=source; selected[start]=1; dist[start]=0; while(selected[target]==0)

{

min=IN; m=0;

for(i=1;i<N;i++)

{

d=dist[start]+cost[start][i]; if(d<dist[i]&&selected[i]==0)

{

dist[i]=d; prev[i]=start;

}

if(min>=dist[i]&&selected[i]==0)

{

min=dist[i]; m=i;

}

}

start=m; selected[start]=1;

}

start=target; j=0;

while(start!=-1)

{

path1[j++]=start; start=prev[start];

}

path[j]='\0'; strrev(path); printf("%s",path);

printf("\n");

for(j=j-1;j>=0;j--)

{

printf("%d\t",path1[j]); if(j>0)

{

x=path1[j]; y=path1[j-1];

printf("%s\t%s\n",interface[x][y],interface[y][x]);

}

EC3401 NETWORKS AND SECURITY LAB

{

DEPARTMENT OF ECE

26

}

return dist[target];

}

RESULT:

Thus the Link State Routing program was executed successfully.

STUDY OF DATA ENCRYPTION AND DECRYPTION USING C PROGRAM

Experiment No: 10b Date:

Aim:

To write a C program to implement Encryption and Decryption

ALGORITHM:

1. Initialize the variables.

2. Enter the data to be encrypted.

3. Using Encrypt function, encrypt data and print it.

4. Using Decrypt function, decrypt data and print it.

EC3401 NETWORKS AND SECURITY LAB

{

DEPARTMENT OF ECE

27

Program: #include<stdio.h> #include<conio.h> #include<string.h>

void encrypt(char password[],int key)

{

unsigned int i; for(i=0;i<strlen(password);++i)

{

password[i]=password[i]-key;

}

}

void decrypt(char password[],int key)

{

unsigned int i; for(i=0;i<strlen(password);++i)

{

password[i]=password[i]+key;

}

}

int main()

{

char password[20]; printf("Enter the password:\n"); scanf("%s",password);

printf("Password=%s\n",password); encrypt(password, 0XFACA); printf("Encrypted

value=%s\n",password); decrypt(password, 0XFACA); printf("Decrypted

value=%s\n",password);

return 0;

} OUTPUT:

EC3401 NETWORKS AND SECURITY LAB

{

DEPARTMENT OF ECE

28

Another pgm :

#include<stdio.h> #include<conio.h> void main() {

int data[7],rec[7],i,c1,c2,c3,c;

printf ("this works for message of 4bits in size \n enter message bit one by one: "); scanf ("%d

%d %d %d",& data[0],&data[1],&data[2],&data[4]); data[6]=data[0]^data[2]^data[4];

data[5]=data[0]^data[1]^data[4]; data[3]=data[0]^data[1]^data[2];

printf("\n the encoded bits are given below: \n"); for (i=0;i<7;i++) {

printf("%d ",data[i]);

}

printf("\n enter the received data bits one by one: "); for (i=0;i<7;i++) {

scanf("%d",& rec[i]);

}

c1=rec[6]^rec[4]^rec[2]^rec[0]; c2=rec[5]^rec[4]^rec[1]^rec[0];

c3=rec[3]^rec[2]^rec[1]^rec[0]; c=c3*4+c2*2+c1 ;

if(c==0) {

printf ("\n congratulations there is no error: ");

} else {

printf("\n error on the position: %d\n the correct message is \n",c); if(rec[7-c]==0)

rec[7-c]=1; else rec[7-c]=0;

for (i=0;i<7;i++) { printf("%d ",rec[i]);

}

}

EC3401 NETWORKS AND SECURITY LAB

{

DEPARTMENT OF ECE

29

getch();

}

Output with error

Output without error

Result:

.

EC3401 NETWORKS AND SECURITY LAB

{

DEPARTMENT OF ECE

30

Implement Client Server model using FTP protocol

The entire process can be broken down into following steps:

TCP Server –

1. using create(), Create TCP socket.

2. using bind(), Bind the socket to server address.

3. using listen(), put the server socket in a passive mode, where it waits for the client

to approach the server to make a connection

4. using accept(), At this point, connection is established between client and server,

and they are ready to transfer data.

5. Go back to Step 3.

TCP Client –

1. Create TCP socket.

2. connect newly created client socket to server.

TCP Server:

#include <stdio.h>

#include <netdb.h>

#include <netinet/in.h>

#include <stdlib.h>

#include <string.h>

#include <sys/socket.h>

#include <sys/types.h>

#include <unistd.h> // read(), write(), close()

#define MAX 80

#define PORT 8080

#define SA struct sockaddr

// Function designed for chat between client and server.

void func(int connfd)

{

 char buff[MAX];

 int n;

 // infinite loop for chat

 for (;;) {

 bzero(buff, MAX);

 // read the message from client and copy it in buffer

 read(connfd, buff, sizeof(buff));

 // print buffer which contains the client contents

 printf("From client: %s\t To client : ", buff);

 bzero(buff, MAX);

 n = 0;

 // copy server message in the buffer

 while ((buff[n++] = getchar()) != '\n')

 ;

EC3401 NETWORKS AND SECURITY LAB

{

DEPARTMENT OF ECE

31

 // and send that buffer to client

 write(connfd, buff, sizeof(buff));

 // if msg contains "Exit" then server exit and chat ended.

 if (strncmp("exit", buff, 4) == 0) {

 printf("Server Exit...\n");

 break;

 }

 }

}

// Driver function

int main()

{

 int sockfd, connfd, len;

 struct sockaddr_in servaddr, cli;

 // socket create and verification

 sockfd = socket(AF_INET, SOCK_STREAM, 0);

 if (sockfd == -1) {

 printf("socket creation failed...\n");

 exit(0);

 }

 else

 printf("Socket successfully created..\n");

 bzero(&servaddr, sizeof(servaddr));

 // assign IP, PORT

 servaddr.sin_family = AF_INET;

 servaddr.sin_addr.s_addr = htonl(INADDR_ANY);

 servaddr.sin_port = htons(PORT);

 // Binding newly created socket to given IP and verification

 if ((bind(sockfd, (SA*)&servaddr, sizeof(servaddr))) != 0) {

 printf("socket bind failed...\n");

 exit(0);

 }

 else

 printf("Socket successfully binded..\n");

 // Now server is ready to listen and verification

 if ((listen(sockfd, 5)) != 0) {

 printf("Listen failed...\n");

 exit(0);

 }

 else

 printf("Server listening..\n");

 len = sizeof(cli);

EC3401 NETWORKS AND SECURITY LAB

{

DEPARTMENT OF ECE

32

 // Accept the data packet from client and verification

 connfd = accept(sockfd, (SA*)&cli, &len);

 if (connfd < 0) {

 printf("server accept failed...\n");

 exit(0);

 }

 else

 printf("server accept the client...\n");

 // Function for chatting between client and server

 func(connfd);

 // After chatting close the socket

 close(sockfd);

}

TCP Client:

#include <arpa/inet.h> // inet_addr()

#include <netdb.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <strings.h> // bzero()

#include <sys/socket.h>

#include <unistd.h> // read(), write(), close()

#define MAX 80

#define PORT 8080

#define SA struct sockaddr

void func(int sockfd)

{

 char buff[MAX];

 int n;

 for (;;) {

 bzero(buff, sizeof(buff));

 printf("Enter the string : ");

 n = 0;

 while ((buff[n++] = getchar()) != '\n')

 ;

 write(sockfd, buff, sizeof(buff));

 bzero(buff, sizeof(buff));

 read(sockfd, buff, sizeof(buff));

 printf("From Server : %s", buff);

 if ((strncmp(buff, "exit", 4)) == 0) {

 printf("Client Exit...\n");

 break;

 }

EC3401 NETWORKS AND SECURITY LAB

{

DEPARTMENT OF ECE

33

 }

}

int main()

{

 int sockfd, connfd;

 struct sockaddr_in servaddr, cli;

 // socket create and verification

 sockfd = socket(AF_INET, SOCK_STREAM, 0);

 if (sockfd == -1) {

 printf("socket creation failed...\n");

 exit(0);

 }

 else

 printf("Socket successfully created..\n");

 bzero(&servaddr, sizeof(servaddr));

 // assign IP, PORT

 servaddr.sin_family = AF_INET;

 servaddr.sin_addr.s_addr = inet_addr("127.0.0.1");

 servaddr.sin_port = htons(PORT);

 // connect the client socket to server socket

 if (connect(sockfd, (SA*)&servaddr, sizeof(servaddr))

 != 0) {

 printf("connection with the server failed...\n");

 exit(0);

 }

 else

 printf("connected to the server..\n");

 // function for chat

 func(sockfd);

 // close the socket

 close(sockfd);

}

Compilation –

Server side:

gcc server.c -o server

./server

Client side:

gcc client.c -o client

./client

Output –

Server side:

EC3401 NETWORKS AND SECURITY LAB

{

DEPARTMENT OF ECE

34

Socket successfully created..

Socket successfully binded..

Server listening..

server accept the client...

From client: hi

 To client : hello

From client: exit

 To client : exit

Server Exit...

Client side:

Socket successfully created..

connected to the server..

Enter the string : hi

From Server : hello

Enter the string : exit

From Server : exit

Client Exit...

Implement and realize the Network Topology - Star, Bus and Ring using NS2

NS2 programs are generally written using two major languages i.e C++ and TCL. NS2

supports both the types of Network i.e. wired and wireless networks. In wired networks,

nodes use wired channel where as in wireless channel, node transmission takes place through

EC3401 NETWORKS AND SECURITY LAB

{

DEPARTMENT OF ECE

35

wireless channels. Major aspect of any simulation is the creation of Nodes and topology. We

have focused here on all the types of topology and its respective codes for students to get an

idea about NS2 simulation. It‟s just a one way of our teaching to make you know few basics

of NS2. You can approach us for any particular concept or code in NS2.

Example 1: Formation of Bus Topology

#Creating five nodes
set node1 [$ns node]

setnode2 [$ns node]

set node3 [$ns node]

setnode4 [$ns node]

set node5 [$ns node]

#Creating Lan connection between the nodes
set lan0 [$ns newLan “$node1 $node2$node3 $node4 $node5” 0.7Mb 20ms LL Queue/FQ M

AC/Csma/Cd Channel]

#Creating a TCP agent and attaching it to node 1
set tcp0 [new Agent/TCP]

$tcp0 set class_ 1

$ns attach-agent $node1 $tcp0

#Creating a TCP Sink agent for TCP and attaching it to node 3
set sink0 [new Agent/TCPSink]

$ns attach-agent $node3 $sink0

#Connecting the traffic sources with the traffic sink
$ns connect $tcp0 $sink0

Creating a CBR traffic source and attach it to tcp0
set cbr0 [new Application/Traffic/CBR]

$cbr0 set packetSize_ 500

$ cbr0 set interval_ 0.05

$cbr0 attach-agent $tcp0

#Schedule events for the CBR agents
$ns at 0.5 “$cbr0 start time”

$ ns at 5.5 “$cbr0 stop time”

#Here we call the finish procedure after 10 seconds of simulation time
$ns at 10.0 “End”

#Finally run the simulation
$ns run

 Here, we have created four nodes and they are linked together using Bus topology. We

have given the overall code for all the parameters used in the construction of bus topology.

Example 2: Formation of Ring Topology

#Creating six nodes

setnode1 [$ns node]

set node2 [$ns node]

setnode3 [$ns node]

set node4 [$ns node]

setnode5 [$ns node]

set node6 [$ns node]

#Creating links between the nodes
$ ns duplex-link $node1 $node2 1Mb 15ms FQ

$ns duplex-link $node2 $node3 1Mb 15ms FQ

EC3401 NETWORKS AND SECURITY LAB

{

DEPARTMENT OF ECE

36

$ ns duplex-link $node3 $node4 1Mb 15ms FQ

$ns duplex-link $node4 $node5 1Mb 15ms FQ

$ ns duplex-link $node5 $node6 1Mb 15ms FQ

$ns duplex-link $node6 $node1 1Mb 15ms FQ\”Forms Ring Topology”

 Here, we have created six nodes and are connected using Ring topology. The code may

look similar to the early one, but it shows the difference in terms of its connectivity. All the

nodes are connected in a ring manner, in order to have high data transmission rates.

Example 3: Formation of Mesh Topology

#Creating four nodes
set node1 [$ns node]

setnode2 [$ns node]

set node3 [$ns node]

setnode4 [$ns node]

#Creating links between the nodes
$ ns duplex-link $node1 $node2 1Mb 20ms FQ

$ns duplex-link $node1 $node3 1Mb 20ms FQ

$ ns duplex-link $node1 $node4 1Mb 20ms FQ

$ns duplex-link $node2 $node3 1Mb 20ms FQ

$ ns duplex-link $node2 $node4 1Mb 20ms FQ

$ns duplex-link $node3 $node4 1Mb 20ms FQ\“Forms Mesh Topology”

Implement and perform the operation of CSMA/CD and CSMA/CA using NS2.

#Lan simulation

 set ns [new Simulator]

 #define color for data flows

 $ns color 1 Blue

 $ns color 2 Red

 #open tracefiles

 set tracefile1 [open out_node60.tr w]

 set winfile [open winfile w]

 $ns trace-all $tracefile1

 #open nam file

 set namfile [open out_node60.nam w]

 $ns namtrace-all $namfile

 #define the finish procedure

 proc finish {} {

 global ns tracefile1 namfile

 $ns flush-trace

 close $tracefile1

 close $namfile

EC3401 NETWORKS AND SECURITY LAB

{

DEPARTMENT OF ECE

37

 exec nam out_node60.nam &

 exit 0

 }

 #create sixty nodes

 set n0 [$ns node]

 set n1 [$ns node]

 set n2 [$ns node]

 set n3 [$ns node]

 set n4 [$ns node]

 set n5 [$ns node]

 set n6 [$ns node]

 set n7 [$ns node]

 set n8 [$ns node]

 set n9 [$ns node]

 set n10 [$ns node]

 set n11 [$ns node]

 set n12 [$ns node]

 set n13 [$ns node]

 set n14 [$ns node]

 set n15 [$ns node]

 set n16 [$ns node]

 set n17 [$ns node]

 set n18 [$ns node]

 set n19 [$ns node]

 set n20 [$ns node]

 set n21 [$ns node]

 set n22 [$ns node]

 set n23 [$ns node]

 set n24 [$ns node]

 set n25 [$ns node]

 set n26 [$ns node]

 set n27 [$ns node]

 set n28 [$ns node]

 set n29 [$ns node]

 set n30 [$ns node]

 set n31 [$ns node]

 set n32 [$ns node]

 set n33 [$ns node]

 set n34 [$ns node]

 set n35 [$ns node]

 set n36 [$ns node]

 set n37 [$ns node]

 set n38 [$ns node]

 set n39 [$ns node]

 set n40 [$ns node]

 set n41 [$ns node]

EC3401 NETWORKS AND SECURITY LAB

{

DEPARTMENT OF ECE

38

 set n42 [$ns node]

 set n43 [$ns node]

 set n44 [$ns node]

 set n45 [$ns node]

 set n46 [$ns node]

 set n47 [$ns node]

 set n48 [$ns node]

 set n49 [$ns node]

 set n50 [$ns node]

 set n51 [$ns node]

 set n52 [$ns node]

 set n53 [$ns node]

 set n54 [$ns node]

 set n55 [$ns node]

 set n56 [$ns node]

 set n57 [$ns node]

 set n58 [$ns node]

 set n59 [$ns node]

 set n60 [$ns node]

 $n1 color Red

 $n1 shape box

 #create links between the nodes

 $ns duplex-link $n0 $n2 2Mb 10ms DropTail

 $ns duplex-link $n1 $n2 2Mb 10ms DropTail

 $ns simplex-link $n2 $n3 0.3Mb 100ms DropTail

 $ns simplex-link $n3 $n2 0.3Mb 100ms DropTail

 $ns duplex-link $n10 $n21 2Mb 10ms DropTail

 $ns duplex-link $n30 $n22 2Mb 10ms DropTail

 $ns duplex-link $n8 $n21 2Mb 10ms DropTail

 $ns duplex-link $n9 $n23 2Mb 10ms DropTail

 $ns simplex-link $n20 $n30 0.3Mb 100ms DropTail

 $ns simplex-link $n20 $n31 0.3Mb 100ms DropTail

 $ns simplex-link $n26 $n32 0.3Mb 100ms DropTail

 $ns simplex-link $n23 $n33 0.3Mb 100ms DropTail

 $ns duplex-link $n7 $n24 2Mb 10ms DropTail

 $ns duplex-link $n6 $n25 2Mb 10ms DropTail

 $ns duplex-link $n4 $n26 2Mb 10ms DropTail

 $ns duplex-link $n47 $n27 2Mb 10ms DropTail

 $ns simplex-link $n21 $n34 0.3Mb 100ms DropTail

 $ns simplex-link $n21 $n35 0.3Mb 100ms DropTail

 $ns simplex-link $n21 $n36 0.3Mb 100ms DropTail

 $ns simplex-link $n22 $n37 0.3Mb 100ms DropTail

 $ns duplex-link $n45 $n28 2Mb 10ms DropTail

 $ns duplex-link $n36 $n28 2Mb 10ms DropTail

 $ns duplex-link $n35 $n29 2Mb 10ms DropTail

 $ns duplex-link $n53 $n30 2Mb 10ms DropTail

EC3401 NETWORKS AND SECURITY LAB

{

DEPARTMENT OF ECE

39

 $ns simplex-link $n21 $n39 0.3Mb 100ms DropTail

 $ns simplex-link $n30 $n31 0.3Mb 100ms DropTail

 $ns simplex-link $n42 $n34 0.3Mb 100ms DropTail

 $ns simplex-link $n53 $n43 0.3Mb 100ms DropTail

 $ns duplex-link $n54 $n31 2Mb 10ms DropTail

 $ns duplex-link $n55 $n32 2Mb 10ms DropTail

 $ns duplex-link $n59 $n33 2Mb 10ms DropTail

 $ns duplex-link $n44 $n34 2Mb 10ms DropTail

 $ns simplex-link $n52 $n53 0.3Mb 100ms DropTail

 $ns simplex-link $n22 $n13 0.3Mb 100ms DropTail

 $ns simplex-link $n12 $n23 0.3Mb 100ms DropTail

 $ns simplex-link $n2 $n44 0.3Mb 100ms DropTail

 $ns duplex-link $n26 $n35 2Mb 10ms DropTail

 $ns duplex-link $n14 $n36 2Mb 10ms DropTail

 $ns duplex-link $n12 $n37 2Mb 10ms DropTail

 $ns duplex-link $n11 $n45 2Mb 10ms DropTail

 $ns simplex-link $n2 $n47 0.3Mb 100ms DropTail

 $ns simplex-link $n2 $n49 0.3Mb 100ms DropTail

 $ns simplex-link $n2 $n56 0.3Mb 100ms DropTail

 $ns simplex-link $n2 $n50 0.3Mb 100ms DropTail

#set lan [$ns newLan "$n3 $n4 $n5" 0.5Mb 40ms LL

Queue/DropTail MAC/Csma/Cd Channel]

 set lan [$ns newLan "$n0

$n1 $n2 $n3 $n4 $n5 $n7

$n8 $n9 $n10 $n11 $n12

$n13 $n14 $n15 $n16

$n18 $n19 $n20 $n21

$n22 $n23 $n25 $n26

$n27 $n28 $n29 $n30

$n31 $n32 $n33 $n34

$n35 $n36 $n37 " 0.5Mb

40ms LL

Queue/DropTail

MAC/Csma/Cd Channel]

 #Give node position

 #$ns duplex-link-op $n0

$n2 orient right-down

 #$ns duplex-link-op $n1

$n2 orient right-up

 #$ns simplex-link-op $n2

$n3 orient right

 #$ns simplex-link-op $n3

$n2 orient left

EC3401 NETWORKS AND SECURITY LAB

{

DEPARTMENT OF ECE

40

 $ns duplex-link-op $n0

$n2 orient right-down

 $ns duplex-link-op $n1

$n2 orient right-down

 $ns simplex-link-op $n2

$n3 orient right-down

 $ns simplex-link-op $n3

$n2 orient right-down

 $ns duplex-link-op $n10

$n21 orient right-down

 $ns duplex-link-op $n30

$n22 orient right-down

 $ns duplex-link-op $n8

$n21 orient right-down

 $ns duplex-link-op $n9

$n23 orient right-down

 $ns simplex-link-op $n20

$n30 orient right-down

 $ns simplex-link-op $n20

$n31 orient right-down

 $ns simplex-link-op $n26

$n32 orient right-down

 $ns simplex-link-op $n23

$n33 orient right-down

 $ns duplex-link-op $n7

$n24 orient right-up

 $ns duplex-link-op $n6

$n25 orient right-up

 $ns duplex-link-op $n4

$n26 orient right-up

 $ns duplex-link-op $n47

$n27 orient right-up

 $ns simplex-link-op $n21

$n34 orient right-up

 $ns simplex-link-op $n21

$n35 orient right-up

 $ns simplex-link-op $n21

$n36 orient right-up

 $ns simplex-link-op $n22

$n37 orient right-up

 $ns duplex-link-op $n45

$n28 orient right

 $ns duplex-link-op $n36

$n28 orient right

 $ns duplex-link-op $n35

$n29 orient right

EC3401 NETWORKS AND SECURITY LAB

{

DEPARTMENT OF ECE

41

 $ns duplex-link-op $n53

$n30 orient right

 $ns simplex-link-op $n21

$n39 orient right

 $ns simplex-link-op $n30

$n31 orient right

 $ns simplex-link-op $n42

$n34 orient right

 $ns simplex-link-op $n53

$n43 orient right

 $ns duplex-link-op $n54

$n31 orient left

 $ns duplex-link-op $n55

$n32 orient left

 $ns duplex-link-op $n59

$n33 orient left

 $ns duplex-link-op $n44

$n34 orient left

 $ns simplex-link-op $n52

$n53 orient left

 $ns simplex-link-op $n22

$n13 orient left

 $ns simplex-link-op $n12

$n23 orient left

 $ns simplex-link-op $n2

$n44 orient left

 #set queue size of

link(n2-n3) to 20

 $ns queue-limit $n2 $n3

20

 #setup TCP connection

 set tcp [new

Agent/TCP/Newreno]

 $ns attach-agent $n0 $tcp

 set sink [new

Agent/TCPSink/DelAck]

 $ns attach-agent $n4

$sink

 $ns connect $tcp $sink

 $tcp set fid_ 1

 $tcp set packet_size_

1000

 #set ftp over tcp

connection

 set ftp [new

Application/FTP]

EC3401 NETWORKS AND SECURITY LAB

{

DEPARTMENT OF ECE

42

 $ftp attach-agent $tcp

 #setup a UDP connection

 set udp [new

Agent/UDP]

 $ns attach-agent $n1

$udp

 set null [new Agent/Null]

 $ns attach-agent $n5

$null

 $ns connect $udp $null

 $udp set fid_ 2

 #setup a CBR over UDP

connection

 set cbr [new

Application/Traffic/CBR]

 $cbr attach-agent $udp

 $cbr set type_ CBR

 $cbr set packet_size_

1000

 $cbr set rate_ 0.01Mb

 $cbr set random_ false

 #scheduling the events

 $ns at 0.1 "$cbr start"

 $ns at 0.3 "$ftp start"

 $ns at 90.0 "$ftp stop"

 $ns at 100.0 "$cbr stop"

 proc plotWindow

{tcpSource file} {

 global ns

 set time 0.1

 set now [$ns now]

 set cwnd [$tcpSource set

cwnd_]

 puts $file "$now $cwnd"

 $ns at [expr

$now+$time]

"plotWindow $tcpSource

$file"

 }

 $ns at 0.1 "plotWindow

$tcp $winfile"

 $ns at 100.0 "finish"

 $ns run

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

EC3461 COMMUNICATION SYSTEMS LABORATORY

Semester - 04

LABORATORY MANUAL

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Vision

To excel in providing value based education in the field of Electronics and
Communication Engineering, keeping in pace with the latest technical developments
through commendable research, to raise the intellectual competence to match global
standards and to make significant contributions to the society upholding the ethical
standards.

Mission

 To deliver Quality Technical Education, with an equal emphasis on theoretical
and practical aspects.

 To provide state of the art infrastructure for the students and faculty to upgrade
their skills and knowledge.

 To create an open and conducive environment for faculty and students to carry
out research and excel in their field of specialization.

 To focus especially on innovation and development of technologies that is
sustainable and inclusive, and thus benefits all sections of the society.

 To establish a strong Industry Academic Collaboration for teaching and research,
that could foster entrepreneurship and innovation in knowledge exchange.

 To produce quality Engineers who uphold and advance the integrity, honour and
dignity of the engineering.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

1. To provide the students with a strong foundation in the required sciences in order
to pursue studies in Electronics and Communication Engineering.

2. To gain adequate knowledge to become good professional in electronic and
communication engineering associated industries, higher education and
research.

3. To develop attitude in lifelong learning, applying and adapting new ideas and
technologies as their field evolves.

4. To prepare students to critically analyze existing literature in an area of
specialization and ethically develop innovative and research oriented
methodologies to solve the problems identified.

5. To inculcate in the students a professional and ethical attitude and an ability to
visualize the engineering issues in a broader social context.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1: Design, develop and analyze electronic systems through application of relevant

electronics, mathematics and engineering principles.

PSO2: Design, develop and analyze communication systems through application of

fundamentals from communication principles, signal processing, and RF System Design
& Electromagnetics.

PSO3: Adapt to emerging electronics and communication technologies and develop
innovative solutions for existing and newer problems.

LIST OF EXPERIMENTS:

1. AM- Modulator and Demodulator

2. FM - Modulator and Demodulator

3. Pre-Emphasis and De-Emphasis.

4. Signal sampling and TDM.

5. Pulse Code Modulation and Demodulation.

6. Pulse Amplitude Modulation and Demodulation.

7. Pulse Position Modulation and Demodulation and Pulse Width Modulation and
Demodulation.

8. Digital Modulation – ASK, PSK, FSK.

9. Delta Modulation and Demodulation.

10. Simulation of ASK, FSK, and BPSK Generation and Detection Schemes.

11. Simulation of DPSK, QPSK and QAM Generation and Detection Schemes.

12. Simulation of Linear Block and Cyclic Error Control coding Schemes.

CIRCUIT DIAGRAM:

OUTPUT:

1

EX.NO :

SIGNAL SAMPLING AND RECONSTRUCTION

DATE :

AIM:

To obtain the sampling of a signal and reconstruct the original signal from the samples.

APPARATUS REQUIRED:

Qualite Technologies Sampling Trainer kit - 1

Dual Trace Cathode Ray Oscilloscope - 1

CRO Probe - 2

THEORY:

Sampling of the signal is fundamental operation in signal processing. A continuous time

signal is first converted to discrete time signal by sampling process. The sufficient no. of samples of

the signal must be taken so that the original signal is represented in its samples completely. It should

be possible to recover or reconstruct the original signal completely from its samples. The no. of

samples to be taken depends on maximum signal frequency present in the signal. Sampling theorem

gives the complete idea about sampling and reconstruction

2

 Fig. Reconstruction circuit

TABULATION:

AMPLITUDE TIME PERIOD

INPUT SIGNAL

SAMPLING SIGNAL

SAMPLED OUTPUT

RECONSTRUCTED
OUTPUT

3

PROCEDURE:

1. Turn on the power to the trainer kit.

2. Apply the clock signal and the analog signal to the sampling circuit. And observe the output

signal in the CRO.

3. Apply the sampled output to the reconstructing circuit. Observe the output on the CRO.

4. Design the reconstructing circuit. Depending on sampling frequency, R & C values are

calculated using the relations Fs = 1/Ts, Ts = RC. Choosing an appropriate value for C, R can be

found using the relation R=Ts/C

RESULT:

Thus the sampling and reconstruction of the signal is obtained .

4

BLOCK DIAGRAM:

 Comparator

Input signal Multiplexer Demultiplexer

 LPF

TABULATION:

 Amplitude Time

TDM INPUT

X0

X1

X2

X3

TDM OUTPUT

Y0

Y1

Y2

Y3

5

AIM

To Study the Operation of Time Division Multiplexing and Demultiplexing using kit.

APPARATUS REQUIRED

TDM Trainer Kit-1.
Dual Trace CRO-1.
CRO Probe-2.

THEORY

Time-division multiplexing (TDM) is a method of transmitting and receiving independent

signals over a common signal path by means of synchronized switches at each end of the

transmission line so that each signal appears on the line only a fraction of time in an alternating

pattern.

TDM is used primarily for digital signals,but may be applied in analog multiplication in

which two or more signals or bit streams are transferred appearing simultaneously as sub-

channels in one communication channel, but are physically taking turns on the channel. The time

domain is divided into several recurrent time slots of fixed length, one for each sub-channel. A

sample byte or data block of sub-channel 1 is transmitted during time slot 1, sub-channel 2

during time slot 2, etc. One TDM frame consists of one time slot per sub-channel plus a

synchronization channel and sometimes error correction channel before the synchronization.

After the last sub-channel, error correction, and synchronization, the cycle starts all over again

with a new frame, starting with the second sample, byte or data block from sub-channel 1.

Demultiplexer performs the reverse process of Multiplexing and routes the separated
signals to their corresponding Receivers or Destinations.

EX.NO :

TIME DIVISION MULTIPLEXING AND DEMULTIPLEXING

DATE :

6

7

PROCEDURE:

1. Turn on the TDM Trainer Kit.
2. To give the Four input signals to the Multiplexer using Signal Generator.
3. Observe the Multiplexer (TDM) Output

4. Connect the TDM output to the Comparator. Observe the Comparator output. TDM

pulses are now converted in PWM pulses.

5. Connect the PWM pulses to TDM input of demultiplexer and note the frequency &

Amplitude. The PWM pulses corresponding to each channel are separated as four

streams.

6. Take one output and connect it to the low pass filter(LPF) and amplifier block. Observe
the output of the corresponding input.

7. Repeat this process for all inputs. This is the output of Demodulated TDM.

RESULT

Thus the Time division Multiplexing and Demultiplexing was studied and output wave

forms are obtained.

8

BLOCK DIAGRAM:

Tabulation

 Amplitude Time

INPUT SIGNAL

CARRIER SIGNAL

MODULATED SIGNAL

DEMODULATED SIGNAL

9

EX.NO :

AMPLITUDE MODULATION & DEMODULATION
DATE :

AIM

To generate amplitude modulation and demodulation signals.

APPARATUS REQUIRED

Amplitude modulation trainer Kit
Dual Trace CRO-1.
CRO Probe-2.

THEORY

Amplitude Modulation is defined as a process in which the amplitude of the carrier wave

c (t) is Varied linearly with the instantaneous amplitude of the message signal m (t).The
standard form of an Amplitude modulated (AM) wave is defined by

s(t) Ac [1 Ka m(t) cos(2fc t)]

Where a K is a constant called the amplitude sensitivity of the modulator.

The demodulation circuit is used to recover the message signal from the incoming AM wave at

the receiver. An envelope detector is a simple and yet highly effective device that is well suited

for the demodulation of AM wave, for which the percentage modulation is less than

100%.Ideally, an envelop detector produces an output signal that follows the envelop of the input

signal wave form exactly; hence, the name. Some version of this circuit is used in almost all

commercial AM radio receivers.

(E
max

E
min

)

The Modulation Index is defined as, m =
(Emax

Emin

)

Where Emax and Emin are the maximum and minimum amplitudes of the modulated

wave.

10

MODULATION CIRCUIT:

11

OUTPUT WAVEFORM:

12

TABULATION

 AMPLITUDE TIME

INPUT SIGNAL

CARRIER SIGNAL

MODULATED SIGNAL

DEMODULATED SIGNAL

13

RESULT

Thus the generation of Amplitude Modulation and demodulation was generated and output
waveforms are obtained.

14

BLOCK DIAGRAM:

TABULATION:

 AMPLITUDE TIME

INPUT SIGNAL

CARRIER SIGNAL

MODULATED SIGNAL

DEMODULATED SIGNAL

15

EX.NO :

FREQUENCY MODULATION & DEMODULATION

DATE :

 AIM

To generate Frequency modulation and demodulation signals.

APPARATUS REQUIRED

Frequency modulation trainer Kit
Dual Trace CRO-1.
CRO Probe-2.

THEORY

The process, in which the frequency of the carrier is varied in accordance with the

instantaneous amplitude of the modulating signal, is called "Frequency Modulation". The FM

signal is expressed as

s(t) Ac cos(2fc sin(2f mt)

Where

AC is amplitude of the carrier signal,

fc is the carrier frequency

 is the modulation index of the FM wave

16

FM MODULATION CIRCUIT:

FM DEMODULATION CIRCUIT

17

18

Output Waveform

Tabulation

SIGNAL AMPLITUDE TIME

INPUT SIGNAL

CARRIER SIGNAL

MODULATED SIGNAL

DEMODULATED SIGNAL

19

RESULT

Thus the generation of frequency Modulation and demodulation was generated and output
waveforms are obtained.

20

Block Diagram

I/P Signal

O/P Signal

TABULATION

 AMPLITUDE TIME

ANALOG OUTPUT

SERIAL DATA

DAC OUTPUT

FILTER OUTPUT

D/A

converter

Voltage

Amplifier

LPF

Shift

register

A/D

converter

Sample &

Hold

AF

generator

Shift

register

21

EX.NO :

PULSE CODE MODULATION
DATE :

AIM
To generate Pulse Code Modulated Signal and Demodulates to get the original signal.

APPARATUS REQUIRED

PCM Trainer Kit-1.
Dual Trace CRO-1.
CRO Probe.

THEORY

Pulse-code modulation (PCM) is a method used to digitally represent sampled analog

signals. It is the standard form of digital audio in computers, Compact Discs, digital telephony

and other digital audio applications. In a PCM stream, the amplitude of the analog signal is

sampled regularly at uniform intervals, and each sample is quantized to the nearest value within

a range of digital steps.

A PCM stream has two basic properties that determine the stream's fidelity to the original

analog signal: the sampling rate, which is the number of times per second that samples are

taken; and the bit depth, which determines the number of possible digital values that can be used

to represent each sample.

PROCEDURE

1. Turn on the trainer kit.
2. Get the modulated signal using trainer kit. Apply the modulated signal at the input
3. Observe the serial data and D/A output.
4. Note the demodulated output.
5. Compare the input and output signals

22

23

RESULT

Thus the pulse code modulationof the signal was generated and demodulates the original

signal and the output wave form obtained and verified

24

Block Diagram

Delta demodulated

signal

Tabulation

 Amplitude Time

ANALOG OUTPUT

SERIAL DATA

DAC OUTPUT

FILTER OUTPUT

Up

Converter

LPF

Clock Input

DAC

Filter Output

 AMP

25

EX.NO :

DELTA MODULATION AND DEMODULATION

DATE :

AIM
To Study the Operation of Delta Modulation and Demodulation.

APPARATUS REQUIRED

Delta modulation trainer Kit
Dual Trace CRO-1.
CRO Probe-2.

THEORY

A Delta modulation (DM or -modulation) is an analog-to- digital and digital-to- analog

signal conversion technique used for transmission of voice information where quality is not of

primary importance. DM is the simplest form of (DPCM) where the differences between

successive samples are encoded into n-bit data streams. In delta modulation, the transmitted data

are reduced to a 1-bit data stream. Its main features are:

 The analog signal is approximated with a series of segments

 Each segment of the approximated signal is compared to the original analog wave to
determine the increase or decrease in relative amplitude

 The decision process for establishing the state of successive bits is determined by this
comparison

 Only the change is sent, that is, only an increase or decrease of the signal amplitude from

the previous sample is sent whereas a no-change condition causes the modulated signal to

remain at the same 0 or 1 state of the previous sample.

To achieve delta modulation must use techniques, that is, the analog signal is sampled at a rate
several times higher than the.

26

27

RESULT

Thus the Delta modulation and Demodulation was studied and output wave forms are
obtained.

28

29

EX.NO : SIMULATION OF BPSK
 DATE :

AIM

To Simulate the BPSK using MATLAB coding.

APPARATUS REQUIRED

MATLAB V13

THEORY

BPSK (also sometimes called PRK, phase reversal keying, or 2PSK) is the simplest form of

phase shift keying (PSK). It uses two phases which are separated by 180° and so can also be

termed 2-PSK. It does not particularly matter exactly where the constellation points are

positioned, and in this figure they are shown on the real axis, at 0° and 180°. This modulation is

the most robust of all the PSKs since it takes the highest level of noise or distortion to make the

demodulator reach an incorrect decision. It is, however, only able to modulate at 1 bit/symbol (as

seen in the figure) and so is unsuitable for high data-rate applications.In the presence of an

arbitrary phase-shift introduced by the communications channel, the demodulator is unable to

tell which constellation point is which. As a result, the data is often differentially encoded prior

to modulation.BPSK is functionally equivalent to 2-QAM modulation.

30

Coding

clc;

clear all;

close all;

d=[1 0 1 1 0]; % Data sequence

b=2*d-1; % Convert unipolar to bipolar

T=1; % Bit duration

Eb=T/2; % This will result in unit amplitude waveforms

fc=3/T; % Carrier frequency

t=linspace(0,5,1000); % discrete time sequence between 0 and 5*T
(1000 samples)

N=length(t); % Number of samples

Nsb=N/length(d); % Number of samples per bit
dd=repmat(d',1,Nsb); % replicate each bit Nsb times

bb=repmat(b',1,Nsb); dw=dd'; % Transpose the rows and columns

dw=dw(:)'; % Convert dw to a column vector (colum by column)

and convert to a row vector

bw=bb';

bw=bw(:)'; % Data sequence samples

w=sqrt(2*Eb/T)*cos(2*pi*fc*t); % carrier waveform

bpsk_w=bw.*w; % modulated waveform

% plotting commands follow

subplot(4,1,1);

plot(t,dw); axis([0 5 -1.5 1.5])

subplot(4,1,2);

plot(t,bw); axis([0 5 -1.5 1.5])

subplot(4,1,3);
plot(t,w); axis([0 5 -1.5 1.5])

subplot(4,1,4);
plot(t,bpsk_w,'.'); axis([0 5 -1.5 1.5])
xlabel('time')

% Constellation plot for BPSK, QPSK and QAM

 clear all

 close all

 N = 8;

 BPSK_Const = [1 -1];

 QPSK_Const = [1 j -1 -j];

 QAM_Const = [1+j, 1-j, -1-j,-1+j];

 BPSK_Symb = randsrc(1,N,BPSK_Const);

31

 QPSK_Symb = randsrc(1,N,QPSK_Const);

 QAM_Symb = randsrc(1,N,QAM_Const);

 %without Noise

 scatterplot(BPSK_Symb)

figure

 scatterplot(QPSK_Symb)

figure

 scatterplot(QAM_Symb)

figure

% with noise

Noise = randn(1,N)

 BPSK_Symb = randsrc(1,N,BPSK_Const)+Noise;

 QPSK_Symb = randsrc(1,N,QPSK_Const)+Noise;

 QAM_Symb = randsrc(1,N,QAM_Const)+Noise;

 %without Noise

 scatterplot(BPSK_Symb)

figure

 scatterplot(QPSK_Symb)

figure

 scatterplot(QAM_Symb)

figure

32

Output

33

CONSTELLATION DIAGRAM:

34

35

RESULT

Thus the BPSK was simulated using MATLAB and output waveforms are obtained
output verified.

36

37

EX.NO :

SIMULATION OF QPSK DATE :

AIM

To Simulate the QPSK using MATLAB coding.

APPARATUS REQUIRED

MATLAB V13

THEORY

QPSK uses four points on the constellation diagram, equispaced around a circle. With

four phases, QPSK can encode two bits per symbol, shown in the diagram with Gray coding to

minimize the bit error rate (BER) — sometimes misperceived as twice the BER of BPSK.The

mathematical analysis shows that QPSK can be used either to double the data rate compared with

a BPSK system while maintaining thesame bandwidth of the signal, or to maintain the data-rate

of BPSK but halving the bandwidth needed. In this latter case, the BER of QPSK isexactly the

same as the BER of BPSK - and deciding differently is a common confusion when considering

or describing QPSK. The transmitted carrier can undergo numbers of phase changes.

Given that radio communication channels are allocated by agencies such as the Federal

Communication Commission giving a prescribed (maximum) bandwidth, the advantage of

QPSK over BPSK becomes evident: QPSK transmits twice the data rate in a given bandwidth

compared to BPSK - at the same BER. The engineering penalty that is paid is that QPSK

transmitters and receivers are more complicated than the ones for BPSK. However, with modern

electronics technology, the penalty in cost is very moderate.

As with BPSK, there are phase ambiguity problems at the receiving end, and differentially
encoded QPSK is often used in practice.

38

%Number_of_bit=1024;

 %data=randint(Number_of_bit,1);

figure(1)

stem(data, 'linewidth',3), grid on;

title(' Information before Transmiting ');
axis([0 11 0 1.5]);

data_NZR=2*data-1; % Data Represented at NZR form for QPSK

modulation

s_p_data=reshape(data_NZR,2,length(data)/2); % S/P convertion of data

br=10.^6; %Let us transmission bit rate 1000000

f=br; % minimum carrier frequency

T=1/br; % bit duration

t=T/99:T/99:T; % Time vector for one bit information

% QPSK modulation

y=[];

y_in=[];

y_qd=[];

for(i=1:length(data)/2)

y1=s_p_data(1,i)*cos(2*pi*f*t); % inphase component

y2=s_p_data(2,i)*sin(2*pi*f*t) ; % Quadrature component

y_in=[y_in y1]; % inphase signal vector

y_qd=[y_qd y2]; %quadrature signal vector

y=[y y1+y2]; % modulated signal vector

end
Tx_sig=y; % transmitting signal after modulation

tt=T/99:T/99:(T*length(data))/2;

figure(2)
subplot(3,1,1); plot(tt,y_in,'linewidth',3),

grid on;
title(' wave form for inphase component in QPSK modulation ');
xlabel('time(sec)');
ylabel(' amplitude(volt0');

Coding

% QPSK Modulation and Demodulation
clc;

clear all;
close all;

data=[0 1 0 1 1 1 0 0 1 1];

39

subplot(3,1,2); plot(tt,y_qd,'linewidth',3), grid on;
title(' wave form for Quadrature component in QPSK modulation '); xlabel('time(sec)');
ylabel(' amplitude(volt0'); subplot(3,1,3);
plot(tt,Tx_sig,'r','linewidth',3), grid on;

title('QPSK modulated signal (sum of inphase and Quadrature phase signal)'); xlabel('time(sec)');
ylabel(' amplitude(volt0');

% QPSK demodulation

Rx_data=[];

Rx_sig=Tx_sig; % Received signal for(i=1:1:length(data)/2)

% inphase coherent dector Z_in=Rx_sig((i-
1)*length(t)+1:i*length(t)).*cos(2*pi*f*t);

% above line indicat multiplication of received & inphase carred signal
Z_in_intg=(trapz(t,Z_in))*(2/T);% integration using trapizodial rull

if(Z_in_intg>0) % Decession Maker Rx_in_data=1;
else Rx_in_data=0;
end

% Quadrature coherent dector Z_qd=Rx_sig((i-
1)*length(t)+1:i*length(t)).*sin(2*pi*f*t);
%above line indicat multiplication ofreceived & Quadphase carred signal

Z_qd_intg=(trapz(t,Z_qd))*(2/T);%integration using trapizodial rull if (Z_qd_intg>0)%

Decession Maker
Rx_qd_data=1; else Rx_qd_data=0;

end

Rx_data=[Rx_data Rx_in_data Rx_qd_data]; % Received Data vector end

figure(3) stem(Rx_data,'linewidth',3) title('Information
after Receiveing '); axis([0 11 0 1.5]), grid on;

40

Output

41

RESULT

Thus the QPSK was simulated using MATLAB and output waveforms are obtained
output verified.

42

43

EX.NO :

PERFORMANCE EVALUATION OF QAM MODULATION

DATE:

AIM

To Simulate the QAM using MATLAB coding.

APPARATUS REQUIRED

MATLAB V13

THEORY

QAM is both an analog and a digital modulation scheme. It conveys two analog message

signals, or two digital bit streams, by changing (modulating) the amplitudes of two carrier

waves, using the amplitude-shift keying (ASK) digital modulation scheme or amplitude

modulation (AM) analog modulation scheme. The two carrier waves, usually sinusoids, are out

of phase with each other by 90 ° and are thus called quadrature carriers or quadrature

components — hence the name of the scheme. The modulated waves are summed, and the

resulting waveform is a combination of both phase-shift keying (PSK) and amplitude-shift

keying (ASK), or (in the analog case) of phase modulation (PM) and amplitude modulation. In

the digital QAM case, a finite number of at least two phases and at least two amplitudes are used.

PSK modulators are often designed using the QAM principle, but are not considered as QAM

since the amplitude of the modulated carrier signal is constant.

44

Coding:

M=input('Enter the value of M : '); Nsamp=input('Enter the value of Nsamp :

'); msg=[0:M-1 0]
modsig=qammod(msg,M);
txsig=rectpulse(modsig,Nsamp);
rxsig=txsig*exp(j*pi/180)
num=ones(Nsamp,1)/Nsamp;den=1;EbNo=[0:20]
ber=semianalytic(txsig,rxsig,'qam',M,Nsamp,num,den,EbNo);
bertheory=berawgn(EbNo,'qam',M);

figure;semilogy(EbNo,ber,'k*'); hold on;

semilogy(EbNo,bertheory,'yd'); xlabel('Eb/No');
ylabel('BER');
grid;

title('QAM BER Compared with Theoretical BER'); hold off;

45

OUTPUT OF QAM:

Enter the value of M: 16

Enter the value of Nsamp : 16

RESULT

Thus the performance evaluation of QAM was simulated using MATLAB and output
waveforms are obtained output verified.

46

NRZ(M) CONNECTION DIAGRAM:

47

EX.NO :

LINE CODING TECHNIQUES

 DATE :

AIM

To study and verify the operation of NRZ (M) coding and decoding.

APPARATUS REQUIRED

Line coding and decoding trainer kit, CRO and connecting probes

THEORY

In digital systems, the electrical waveforms are coded representations of the original

information. If the original information is an analog signal, this must be converted to a series of
discrete values that can be transmitted digitally. The process of converting the original
information into a data sequence is referred to as source coding.

The line coding is the process of converting source coded signals into standard digital

codes for the purpose of transmission over the channel. There are many possible ways of
assigning the waveforms into the digital data. Simplest form of coding is ON-

OFF, where a ‘1’ is transmitted by a pulse and a ‘0’ is transmitted by no pulse.
Generally the line coding is used in transmitter section while decoding in receiver section. The
line decoding is the process of converting standard digital codes into source coded waveforms.
Various line coding formats are

1. Unipolar RZ

2. Polar RZ

3. Polar NRZ

4. Bipolar NRZ

5. Bipolar RZ

6. Manchester coding

PROCEDURE:

1. Turn on the power to the trainer kit. Check the clock signal from the signal generator

section.

2. Switch OFF the trainer and patch the circuit as per the circuit diagram.

3. Switch ON the trainer, to set the bit pattern generator, press the thumb wheel switch

and set any decimal value.That corresponding BCD value of digital data will appear

on the data output terminal when the bit enable switch is energized. Check this BCD

output and clock by using CRO.

4. Patch the data output to the input of coding circuit.

5. Patch the clock pulse output to the input of coding circuit.

48

OUTPUT:

49

6. Connect the CRO CH1 at data input and CH2 at NRZ(M).

7. Observe the two chennal output is same as we studied theory about NRZ(M).

8. Connect the NRZ(M) data to the input of data shifting circuit connect CH2 to the

output of shifting circuit and verify the shifted output.

9. Then connect NRZ (M) data and shifted data to the input of EX-OR Gate. This EXOR

gives the decoded output.

10. Connect the CRO CH1 at the input data and CH2 at the output of EX-OR gate and

verify the input and output is same by changing the bit pattern.

RESULT

Thus the Line coding schemes are obtained and the output was verified.

50

51

EX.NO :

SIMULATION OF ASK, PSK & FSK
DATE :

AIM

To Simulate the ASK,PSK.FSK using MATLAB coding.

APPARATUS REQUIRED

MATLAB V13

THEORY

PSK is a digital modulation scheme which is analogues to phase modulation. In binary

phase shift keying two output phases are possible for a single carrier frequency one out of phase

represent logic 1 and logic 0. As the input digital binary signal change state the phase of output

carrier shift two angles that are 180
o
 out of phase.

ASK or ON-OFF key is the simplest digital modulation technique. In this method

there is only one unit energy carrier it is switched ON/OFF depending upon the input

binary sequence to transmit symbol 0 & 1. No pulse is transmitted output contains some

complete no of cycle of carrier frequency.

In digital data communication, binary code is transmitted by shifting a carrier frequency

between two preset frequencies. This type of transmission is called frequency shift keying

technique.

52

Coding:

clc; clear all; close all;
n=10000;

b=randint(1,n);

f1=1;f2=2; t=0:1/30:1-1/30; %ASK sa1=sin(2*pi*f1*t);
E1=sum(sa1.^2);
sa1=sa1/sqrt(E1); %unit energy sa0=0*sin(2*pi*f1*t);
%FSK

sf0=sin(2*pi*f1*t);

E=sum(sf0.^2);

sf0=sf0/sqrt(E);

sf1=sin(2*pi*f2*t);

E=sum(sf1.^2);

sf1=sf1/sqrt(E);
%PSK sp0=-sin(2*pi*f1*t)/sqrt(E1); sp1=sin(2*pi*f1*t)/sqrt(E1);

%MODULATION

ask=[];psk=[];fsk=[]; for i=1:n

if b(i)==1 ask=[ask sa1]; psk=[psk sp1]; fsk=[fsk sf1];
else

ask=[ask sa0]; psk=[psk sp0]; fsk=[fsk sf0];

end end figure(1)

subplot(411)
stairs(0:10,[b(1:10) b(10)],'linewidth',1.5) axis([0 10 -0.5 1.5])
title('Message Bits');grid on subplot(412) tb=0:1/30:10-1/30;
plot(tb, ask(1:10*30),'b','linewidth',1.5) title('ASK Modulation');grid on

subplot(413)

plot(tb, fsk(1:10*30),'r','linewidth',1.5) title('FSK
Modulation');grid on subplot(414)
plot(tb, psk(1:10*30),'k','linewidth',1.5) title('PSK
Modulation');grid on xlabel('Time');ylabel('Amplitude')
%AWGN
for snr=0:20 askn=awgn(ask,snr);

pskn=awgn(psk,snr); fskn=awgn(fsk,snr);

%DETECTION
A=[];F=[];P=[]; for i=1:n

%ASK Detection
if sum(sa1.*askn(1+30*(i-1):30*i))>0.5 A=[A 1];
else

A=[A 0]; end

%FSK Detection

53

if sum(sf1.*fskn(1+30*(i-1):30*i))>sum(sf0.*fskn(1+30*(i-1):30*i)) F=[F 1];
else

F=[F 0]; end
%PSK Detection
if sum(sp1.*pskn(1+30*(i-1):30*i))>0 P=[P 1];
else

P=[P 0]; end

end

%BER

errA=0;errF=0; errP=0; for i=1:n

if A(i)==b(i) errA=errA;
else errA=errA+1;
end

if F(i)==b(i) errF=errF;

else
errF=errF+1; end

if P(i)==b(i) errP=errP;
else errP=errP+1;
end end

BER_A(snr+1)=errA/n; BER_F(snr+1)=errF/n; BER_P(snr+1)=errP/n;

end

figure(2)

subplot(411)

stairs(0:10,[b(1:10) b(10)],'linewidth',1.5) axis([0 10 -0.5 1.5]);grid on
title('Received signal after AWGN Channel') subplot(412)
tb=0:1/30:10-1/30;

plot(tb, askn(1:10*30),'b','linewidth',1.5) title('Received ASK signal');grid on subplot(413)

plot(tb, fskn(1:10*30),'r','linewidth',1.5) title('Received FSK signal');grid on
subplot(414)
plot(tb, pskn(1:10*30),'k','linewidth',1.5) title('Received PSK signal');grid on figure(3)
semilogy(0:20,BER_A, 'b','linewidth',2) title('BER Vs SNR')
grid on; hold on
semilogy(0:20,BER_F,'r','linewidth',2) semilogy(0:20,BER_P, 'k','linewidth',2)
xlabel('Eo/No(dB)')
ylabel('BER') hold off
legend('ASK','FSK','PSK');

54

Message Bits

 1.5

 1

 0.5

 0

 -0.50 1 2 3 4 5 6 7 8 9 10

 ASK Modulation

 0.5

 0

 -0.50 1 2 3 4 5 6 7 8 9 10

 FSK Modulation

 0.5

 0

 -0.50 1 2 3 4 5 6 7 8 9 10

 PSK Modulation

A
m

p
lit

u
d
e

0.5

0

-0.50

 1 2 3 4 5 6 7 8 9 10

 Time

Received signal after AWGN Channel

1.5
1

0.5

0

-0.50 1 2 3 4 5 6 7 8 9 10
 Received ASK signal

1

0

-10 1 2 3 4 5 6 7 8 9 10
 Received FSK signal

1

0

-10 1 2 3 4 5 6 7 8 9 10
 Received PSK signal

1

0

-10 1 2 3 4 5 6 7 8 9 10

55

10
0

 BER Vs SNR

 ASK

 FSK

 PSK

 10
-1

B
E

R

10
-2

 10-3

 10
-4

 0 2 4 6 8 10 12 14 16 18

 Eo/No(dB)

RESULT

Thus the ASK,FSK& PSK was simulated using MATLAB and output waveforms are
obtained output verified.

56

57

EX.NO :

IMPLEMENTATION OF LINEAR BLOCK CODES
 DATE :

AIM

To Simulate the Linear Block Codes using MATLAB coding.

APPARATUS REQUIRED

MATLAB V13

THEORY:

In coding theory, a linear code is an error-correcting code for which any linear

combination of codewords is also a codeword. Linear codes are traditionally partitioned into block
codes and convolutional codes, although Turbo codes can be seen as a hybrid of these two types.

Linear codes allow for more efficient encoding and decoding algorithms than other codes

Linear codes are used in forward error correction and are applied in methods for
transmitting symbols (e.g., bits) on a communications channel so that, if errors occur in the
communication, some errors can be corrected or detected by the recipient of a message block.
The codewords in a linear block code are blocks of symbols which are encoded using more
symbols than the original value to be sent. A linear code of length n transmits blocks containing
n symbols. For example, the [7,4,3] Hamming code is a linear binary code which represents 4-
bit messages using 7-bit codewords. Two distinct codewords differ in at least three bits. As a
consequence, up to two errors per codeword can be detected and a single error can be corrected.

This code contains 2
4
=16 codewords.

58

Coding

clc;

clear all;

%input generator matrix g=input('Enter the generator matrix:')

disp('g=')

disp('The order of linear block code for given generator matrix is :') [n,k]=size(transpose(g))

for i=1:2^k for j=k:-1:1

if rem(i-1,2^(-j+k+1))>=2^(-j+k) u(i,j)=1;

else u(i,j)=0;

end end

end u;

disp('The possible code words are :') c=rem(u*g,2)

disp('The minimum hamming distance dm in for given block code is :')
d_min=min(sum((c(2:2^k,:))'))
%Cord word

r=input('Enter the received code word:') p=[g(:,n-k+2:n)];

h=[transpose(p),eye(n-k)]; disp('Hamming Code')
ht=transpose(h)

disp('Syndrome of a given code word is:') s=rem(r*ht,2)

for i=1:1:size(ht) if (ht(i,1:3)==s)

r(i)=1-r(i); break;

end end

disp('The error is in bit :') i

disp('The corrected code word is :') r

59

OUTPUT OF LINEAR BLOCK CODE :

Enter the generator matrix:[1 0 0 0 1 0 1;0 1 0 0 1 1 1;0 0 1 0 1 1 0;0 0 0 1 0 1 1]
g =

1 0 0 0 1 0 1

0 1 0 0 1 1 1

0 0 1 0 1 1 0

0 0 0 1 0 1 1
g=
The order of linear block code for given generator matrix is :
n = 7

k = 4
The possible code words are :
c =

0 0 0 0 0 0 0

0 0 0 1 0 1 1

0 0 1 0 1 1 0

0 0 1 1 1 0 1

0 1 0 0 1 1 1

0 1 0 1 1 0 0

0 1 1 0 0 0 1

0 1 1 1 0 1 0

1 0 0 0 1 0 1

1 0 0 1 1 1 0

1 0 1 0 0 1 1

1 0 1 1 0 0 0

1 1 0 0 0 1 0

1 1 0 1 0 0 1

1 1 1 0 1 0 0

1 1 1 1 1 1 1

The minimum hamming distance dm in for given block code is : d_min = 3
Enter the recevied code word:[1 0 0 0 1 0 0]
r = 1 0 0 0 1 0 0

Hamming Code

ht =

1 0 1

1 1 1

1 1 0

0 1 1

1 0 0

0 1 0
 0 0 1

60

Syndrome of a given code word is:
s =0 0 1

The error is in bit :

i = 7

The corrected code word is :

r = 1 0 0 0 1 0 1

61

RESULT

Thus the Linear Block Codes was Implemented & simulated by using MATLAB and
output waveforms are obtained output verified.

62

 Fig.11.1 COMMUNICATION LINK BLOCK DIAGRAM

63

EX.NO :

COMMUNICATION LINK SIMULATION
DATE :

Aim :

The main AIM is to learn the basic tools and concepts for simulating communication

systems using MATLAB.

Software Used:

 MATLAB 7.0

Program :

% Define the time interval

ts=0.00001; t= -0.1:ts:0.1;

% Define the functions m(t) and c(t)

m=exp(-100*abs(t)); c=cos(2*pi*1000*t);

% Performe the multiplication

g=m.*c;

% Perform full-wave rectification

y=abs(g);

% Create the filter

cutoff=1000; [a b]=butter(5,2*cutoff*ts);

% Get the output after the filter;

z=filter(a,b,y);

% Plot the input and output on the same graph

figure (1)

plot(t,m,t,z);

legend('Input Signal','Output Signal')

xlabel ('time') ;ylabel('amplitude')

title ('Case Study')

% Finding the FT of the signals

M=abs(fftshift(fft(m))); G=abs(fftshift(fft(g))); Y=abs(fftshift(fft(y)));

64

Z=abs(fftshift(fft(z)));

% Creating the vector for the frequency axis

f=[-length(t)/2:length(t)/2-1]/(length(t)*ts);

% Plotting all FT on one sheet, in a 2x2 matrix format

figure (2)

subplot (221)

plot(f,M)

subplot(222)

plot(f,G)

subplot (223)

plot(f,Y)

subplot(224)

plot(f,Z)

OUTPUT:

65

Result:

Thus the communication link was simulated and the outputs were generated.

66

67

EX.NO :

ZERO FORCING EQUALIZER

DATE :

Aim:

 To design the least mean square equalizer using MATLAB.

Apparatus Required:

 Matlab Version 6.5 and above.

 Theory:

Zero Forcing Equalizer refers to a form of linear equalization algorithm used in

communication systems which applies the inverse of the frequency response of the channel. The

Zero-Forcing Equalizer applies the inverse of the channel frequency response to the received

signal, to restore the signal after the channel. It has many useful applications. For example,

(MIMO) where knowing the channel allows recovery of the two or more streams which will be

received on top of each other on each antenna. The name Zero Forcing corresponds to bringing

down the intersymbol interference (ISI) to zero in a noise free case. This will be useful when ISI

is significant compared to noise.

68

69

CODING:

clear all;close all;echo on

T=1;N0=1;Fs=2/T;Ts=1/Fs;

t=-10*T:T/2:10*T;

x=1./(1+((0.5/T)*t).^2);

stem(t,x);

title(‘equalizer output’);

xlabel(‘time-’);

ylabel(‘amplitude-’);

X=[];

for m=-2:1:2

 for n=-2:1:2

 X(m+3,n+3)=1./(1+((0.5/T)*(m*T-n*T/2)).^2);

 end

end

%D=D+N0/2*eye(5)

K=inv(X)

c_opt=K*[0 0 1 0 0]'

equalized_x=filter(c_opt,1,[x 0 0])

figure

stem(equalized_x);equalized_x=equalized_x(3:length(equalized_x));

figure

stem(t,equalized_x);

for i=1:2:length(equalized_x);

downsampled_equalizer_output((i+1)/2)=equalized_x(i);

end;

figure

s=size(downsampled_equalizer_output)

t=linspace(-10*T,10*T,s(2))

stem(t,downsampled_equalizer_output)

RESULT:

Thus the Zero Forcing equalizer was designed and simulated using MATLAB, various
performances were obtained.

70

71

EX.NO :

EQUALIZATION-LMS ALGORITHM
DATE :

AIM

To Simulate the LMS Equalization Algorithm using MATLAB coding.

APPARATUS REQUIRED

MATLAB V13

THEORY

The realization of the causal Wiener filter looks a lot like the solution to the least squares

estimate, except in the signal processing domain. The least squares solution, for input matrix

and output vector is

The FIR least mean squares filter is related to the Wiener filter, but minimizing the error criterion of

the former does not rely on cross-correlations or auto-correlations. Its solution converges to the

Wiener filter solution. Most linear adaptive filtering problems can be formulated using the block

diagram above. That is, an unknown system is to be identified

and the adaptive filter attempts to adapt the filter to make it as close as possible to ,

while using only observable signals , and ; but , and are not

directly observable. Its solution is closely related to the Wiener filter.

Definition of symbols[

 is the number of the current input sample

 is the number of filter taps

 (Hermitian transpose or conjugate transpose)

 estimated filter; interpret as the estimation of the filter coefficients after n samples

72

OUTPUT:

73

Coding

clear all;
% s1
 [s1 s2]= RandStream.create('mrg32k3a','NumStreams',2);
 x = randn(s1,1,500); % Input to the filter
 b = fir1(31,0.5); % FIR system to be identified
 n = 0.1*randn(s2,1,500); % Observation noise signal
 d = filter(b,1,x)+n; % Desired signal
 mu = 0.008; % LMS step size
 h = adaptfilt.lms(32,mu);
 [y,e] = filter(h,x,d);
 subplot(2,1,1); plot(1:500,[d;y;e]);
 title('System Identification of an FIR filter');
 legend('Desired','Output','Error');
 xlabel('time index'); ylabel('signal value');
 subplot(2,1,2); stem([b.',h.Coefficients.']);
 legend('Actual','Estimated');
 xlabel('coefficient #'); ylabel('coefficient value'); grid on;

RESULT

Thus the LMS Equalization Algorithm was simulated using MATLAB and output waveforms are

obtained output verified.

74

CIRCUIT DIAGRM:

MODELGRAPH

75

EX.NO :

PULSE AMPLITUDE MODULATION

DATE :

AIM:

To generate PAM to observe the output waveform.

APPARATUS REQUIRED:

Sl. No Name of the Apparatus Range Quantity

1 Function generator 1

2 Diode 1N4007 2

3 Resistors,

3.3K ohms, 2

4 Bread Board,

 1

5 Power supply

 1

6 CRO 0-30MHz 1

7 Probe 2

8 Connecting Wires

 10

PROCEDURE:

1. Measure the amplitude of each pulse, no. of pulses in one cycle, frequency of pulses.

2. Vary the modulating input signal and observe its effect on the output.

3. Observe and compare the output waveform with input waveform/

4. See the input and output that are same in frequency, amplitude and phase and Draw

the waveform of the modulating signal, sampling signal, pulse amplitude a modulated

signal.

76

TABULATION:

Before modulation After modulation

Frequency of

sampling signal

Frequency of

modulating signal

Amplitude of

modulating signal

No. of pulses

in each cycle

Amplitude of

pulses

77

RESULT:

In this technique , the signal is sampled at regular intervals, and each sample is made

proportional to the amplitude of the signal at the instant of sampling

In PAM generation the amplitude of the carrier pulse varies.

78

CIRCUIT DIAGRAM :

MODEL GRAPH

79

EX.NO :

PULSE WIDTH MODULATION

DATE :

AIM:

 To generate PWM to observe the modulated output.

APPARATUS REQUIRED

Sl. No Name of the Apparatus Range Quantity

1 IC 555 1

2 Capacitors, 0.01 micro Farad. 1

3 Resistors,

3.9K ohms, 1

4 Bread Board,

 1

5 Power supply

 1

6 CRO 0-30MHz 1

7 Probe 2

8 Connecting Wires

 10

9 Function generator 1

 Procedure:

1. Circuit connections are given as per circuit diagram.

2. The input signal of frequency 1KHz and amplitude 1Vpp is fed to the circuit from

function generator.

3. The carrier signal’s amplitude and frequency are measured at OUTPUT 1

4. The PWM wave is observed on the CRO.

5. The width of each pulse and the number of pulses are measured.

80

Tabulation

Modulating signal
Amplitude Frequency

Carrier signal
Amplitude Frequency

PWM signal

No. of pulses

per cycle

Maximum

width of pulses

Minimum

width of pulses

Amplitude of

pulses

81

Result:

 Thus in PWM the width of the carrier signal changes in accordance with the

instantaneous amplitude of the modulating signal.

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

EC3462 LINEAR INTEGRATED CIRCUITS LABORATORY

Semester - 04

LABORATORY MANUAL

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Vision

To excel in providing value based education in the field of Electronics and
Communication Engineering, keeping in pace with the latest technical developments
through commendable research, to raise the intellectual competence to match global
standards and to make significant contributions to the society upholding the ethical
standards.

Mission

 To deliver Quality Technical Education, with an equal emphasis on theoretical
and practical aspects.

 To provide state of the art infrastructure for the students and faculty to upgrade
their skills and knowledge.

 To create an open and conducive environment for faculty and students to carry
out research and excel in their field of specialization.

 To focus especially on innovation and development of technologies that is
sustainable and inclusive, and thus benefits all sections of the society.

 To establish a strong Industry Academic Collaboration for teaching and research,
that could foster entrepreneurship and innovation in knowledge exchange.

 To produce quality Engineers who uphold and advance the integrity, honour and
dignity of the engineering.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

1. To provide the students with a strong foundation in the required sciences in order
to pursue studies in Electronics and Communication Engineering.

2. To gain adequate knowledge to become good professional in electronic and
communication engineering associated industries, higher education and
research.

3. To develop attitude in lifelong learning, applying and adapting new ideas and
technologies as their field evolves.

4. To prepare students to critically analyze existing literature in an area of
specialization and ethically develop innovative and research oriented
methodologies to solve the problems identified.

5. To inculcate in the students a professional and ethical attitude and an ability to
visualize the engineering issues in a broader social context.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1: Design, develop and analyze electronic systems through application of relevant

electronics, mathematics and engineering principles.

PSO2: Design, develop and analyze communication systems through application of

fundamentals from communication principles, signal processing, and RF System Design
& Electromagnetics.

PSO3: Adapt to emerging electronics and communication technologies and develop
innovative solutions for existing and newer problems.

LIST OF EXPERIMENTS:

DESIGN AND ANALYSIS OF THE FOLLOWING CIRCUITS

1. Series and Shunt feedback amplifiers-Frequency response, Input and output impedance

2. RC Phase shift oscillator and Wien Bridge Oscillator

3. Hartley Oscillator and Colpitts Oscillator

4. RC Integrator and Differentiator circuits using Op-Amp

5. Clippers and Clampers

6. Instrumentation amplifier

7. Active low-pass, High pass & Band pass filters

8. PLL Characteristics and its use as frequency multiplier, clock synchronization

9. R-2R ladder type D-A converter using Op-Amp

SIMULATION USING SPICE (Using Transistor):

1. Tuned Collector Oscillator

2. Twin -T Oscillator / Wein Bridge Oscillator

3. Double and Stagger tuned Amplifiers

4. Bistable Multivibrator

5. Schmitt Trigger circuit with Predictable hysteresis

6. Analysis of power amplifier

IC 741 - General Description:

The IC 741 is a high performance monolithic operational amplifier constructed using

the planar epitaxial process. High common mode voltage range and absence of latch-up tendencies

make the IC 741 ideal for use as voltage follower. The high gain and wide range of operating

voltage provides superior performance in integrator, summing amplifier and general feed back

applications.

Pin Configuration:

Block Diagram of Op-Amp:

Features:

1. No frequency compensation required.

2. Short circuit protection

3. Offset voltage null capability

4. Large common mode and differential voltage ranges

5. Low power consumption

6. No latch-up

SPECIFICATIONS:-

1. Voltage gain A = typically 2,00,000

2. Input resistance RL = Ω, practically 2MΩ

3. Output resistance R =0, practically 75Ω

4. Bandwidth = Hz. It can be operated at any frequency

5. Common mode rejection ratio =

(Ability of op amp to reject noise voltage)

6. Slew rate + V/μsec

(Rate of change of O/P voltage with respect to applied I/P)

7. When V1 = V2, VD=0

8. Input offset voltage (Rs ≤ 10KΩ) max 6 mv

9. Input offset current = max 200nA

10. Input bias current : 500nA

11. Input capacitance : typical value 1.4pF

12. Offset voltage adjustment range : ± 15mV

13. Input voltage range : ± 13V

14. Supply voltage rejection ratio : 150 μV/V

15. Output voltage swing: + 13V and – 13V for RL > 2KΩ

16. Output short-circuit current: 25mA

17. supply current: 28mA

18. Power consumption: 85mW

19. Transient response: rise time= 0.3 μs Overshoot= 5%

APPLICATIONS:-

1. AC and DC amplifiers.

2. Active filters.

3. Oscillators.

4. Comparators.

5. Regulators., etc.,

1

2 6RC

AIM:

To design RC Phase Shift and Wien Bridge Oscillator using Op-amp IC 741 and

to test its performance.

APPARATUS REQUIRED:

S.NO COMPONENTS / EQUIPMENT RANGE QUANTITY

1. IC 741 - - - 01

2.

RESISTORS
1.5KΩ 3.3KΩ, 33KΩ, EACH 03

10 KΩ 22 KΩ, 1MΩ, EACH 01

3. CAPACITORS 0.1μf 03

4. DIGITAL TRAINER KIT - - - 01

5. CATHODE RAY OSCILLOSCOPE (0-30)MHz 01

6. CONNECTING WIRES - - - FEW

DESIGN PROCEDURE:

Design a RC phase shift oscillator to oscillate at 200Hz.

1. Select fo = 200Hz.

2. Assume C = 0.1μf & determine R from fo.

fo = = R = = 3.3K.
2 6 foc

3. To prevent the loading of amp because it is necessary that R1>>10R.

Therefore R1=10R=33K.

4. At this frequency the gain must be atleast 29 (i.e.) Rf / R1 =29.

Therefore Rf = 29R1.

Rf = 29 (33K) = 957KΩ.

Therefore use Rf = 1MΩ.

RC PHASE SHIFT AND WIEN BRIDGE OSCILLATOR

USING OP-AMP

EXP.NO:

RC PHASE SHIFT OSCILLATOR:-

CIRCUIT DIAGRAM:-

TABULATION:.

OBSERVED OUTPUT WAVEFORM

Design Frequency

(Hz)

Amplitude

(volts)

Time period

(ms)

Frequency

(Hz)

MODEL GRAPH:

Vout

OUTPUT Time (ms)

WIEN BRIDGE OSCILLATOR:-

CIRCUIT DIAGRAM:-

TABULATION:

OBSERVED OUTPUT WAVEFORM
Design Frequency

(Hz)
Amplitude

(volts)
Time period

(ms)

Frequency

(Hz)

MODEL GRAPH:

Vout

OUTPUT Time (ms)

PROCEDURE- (RC PHASE SHIFT):-

1. Select the given frequency of oscillation f0 = 200Hz.

2. Assume either R or C to find out the other using formula f0 =
1

.

2 6RC
3. The gain is selected such that Rf / R1 = 29K. Assume Rf or R1 to find the other.

4. Connect the circuit as per as the circuit diagram.

5. Measure the amplitude frequency of the output signal plot the graph.

DESIGN PROCEDURE:

(i) Select frequency f0 = 1 KHz.

(ii) Use f0 =
1

, A = 1+ (Rf / R1) = 3. To find R & Rf.

2RC
(iii) Therefore Rf = 2R1 & assume C = 0.1μf & find R from

R =
1

= 1.59KΩ.

2foC

(iv) Assume R1 = 10K & find Rf from Rf = 2R1

Therefore Rf = 20K ≡ 22KΩ

PROCEDURE:

1. Select the given frequency of oscillation f0 = 1 KHz.

2. Assume either R or C to find out the other using formula

value of other components as given in design procedure.

3. Connect the circuit as per as the circuit diagram.

4. Measure the amplitude and frequency of the output

signal to plot the graph.

RESULT:

1

. Also determine the

2RC

Thus RC Phase Shift and Wien Bridge Oscillator were designed and tested usingop-amp IC 741.

HARTLEY OSCILLATOR AND COLPITTS OSCILLATOR
EXP.NO: USING OP-AMP

AIM:

To design Hartley Oscillator and Colpitts Oscillator using Op-amp IC 741 and

to test its performance.

APPARATUS REQUIRED:

 S.NO COMPONENTS / EQUIPMENT RANGE QUANTITY

1. IC 741 - - - 01

2.

RESISTORS
1KΩ 10KΩ, 33KΩ, EACH 03

10 KΩ 22 KΩ, 1MΩ, EACH 01

3. CAPACITORS 100 pF, 400pF 03

4. POWERSUPPLY 0-30V 01

5. BREAD BOARD - - - 01

6. CATHODE RAY OSCILLOSCOPE (0-30)MHz 01

7 CONNECTING WIRES - - - FEW

PROCEDURE- (HARTLEY):-

1. Assume either C or L to find out the other using formula f0 =
1

.

2 LTC

2. The gain is selected such that R1 / R2 = 10. Assume R2 or R1 to find the other.

3. Connect the circuit as per as the circuit diagram.

4. Find the frequency of oscillation f0 using above value and practical verification.

5. Measure the amplitude frequency of the output signal plot the graph.

DESIGN PROCEDURE: (HARTLEY):-

R 100 103
Gain of the Amplifier G 2

R R

100 103

R 10K
10

For Hartley oscillator, the frequency of oscillations is given by

fo = 1/ (2π √ (Leq C))

Where Leq = L1 + L2

Leq = 1.0 × 10-6 + 0.1 × 10-6

Leq = 1.1 × 10-6

The given capacitor value is C = 1 × 10-9 F

Therefore, fo = 1/ (2π √ (1.1 × 10-6 × 1 × 10-9)

= 4.799 MHz.

HARTLEY OSCILLATOR OSCILLATOR:-CIRCUIT DIAGRAM:-

TABULATION:.

OBSERVED OUTPUT WAVEFORM

Design Frequency

(Hz)

Amplitude

(volts)

Time period(ms)

Frequency(Hz)

MODEL GRAPH:

COLPITTS OSCILLATOR OSCILLATOR:-CIRCUIT DIAGRAM:-

2 LCeq

TABULATION:.

OBSERVED OUTPUT WAVEFORM

Design Frequency

(Hz) Amplitude

(volts)

Time period(ms) Frequency(Hz)

MODEL GRAPH:

PROCEDURE:

1. Assume either C or L to find out the other using formula f0 =
1

.

2. The gain is selected such that R1 / R2 = 10. Assume R2 or R1 to find the other.

3. Connect the circuit as per as the circuit diagram.

4. Find the frequency of oscillation f0 using above value and practical verification.

5. Measure the amplitude frequency of the output signal plot the graph.

DESIGN PROCEDURE: (HARTLEY):-

f = 1/ (2π√ (LCeq))

Where Ceq = C1 C2 / (C1 + C2)

But in given data, C1= C2 = 0.001µF

Therefore, Ceq = (0.001× 10-6 × 0.001× 10-6) / (C0.001× 10-6 + 0.001× 10-6)

= 5 × 10-10 F

f = 1/ (2π√ (5 × 10-6 × 5 × 10-10))

= 3. 183 MHz

The new value of frequency, f = 2 × 3. 183

= 6.366 MHz

Therefore the operating frequency equation becomes

6.366 × 106 = 1/ (2π√ (L × 5 × 10-10))

L = 1.25 µH

RESULT:

Thus Hartley Oscillator and Colpitts Oscillator were designed and tested usingop-

amp IC 741.

EXP.NO: INTEGRATOR AND DIFFERENTIATOR USING OP-AMP

AIM:

To design an Integrator and Differentiator using op-amp IC 741 and to test their characteristics

& Performance.

APPARATUS REQUIRED:

 S.NO COMPONENTS / EQUIPMENT RANGE QUANTITY

1. IC 741 - - - 01

2.

RESISTORS

100 Ω, 1.5KΩ Each 02

10KΩ, 15KΩ Each 01

3.

CAPACITOR

0.1μf, 0.01μf Each 01

0.001μf, 05

4. DIGITAL TRAINER KIT - - - 01

5. SIGNAL GENERATOR (0-3)MHz 01

6. CATHODE RAY OSCILLOSCOPE (0-30)MHz 01

7. CONNECTING WIRES - - - FEW

PROCEDURE:

1. From the given frequency fa & fb, the values of Rf, Cf, R1 & Rcomp are calculated as givenin

the design procedure.

2. Connect the circuit as shown in the circuit diagram.

3. Apply the sinusoidal input as the constant amplitude to the inverting terminal of op-amp.

4. Gradually increase the frequency & observe the output amplitude.

5. Calculate the gain with respect to frequency & plot its graph.

PROCEDURE: DIFFERENTIATOR

1. Select fa equal to the highest frequency of the input signal to be differentiated. Calculatethe

component values of C1 & Rf.

2. Choose fb = 20fa & calculate the values of R1 & Cf, so that R1C1=Rf Cf.

3. Connect the components as shown in the circuit diagram.

4. Apply a sinusoidal & square wave input to the inverting terminal of op-amp through R1C1.

5. Observe the shape of the output signal for the given input in CRO.

6. Note down the reading and plot the graph of input versus output wave for both cases.

INTEGRATOR:- CIRCUIT DIAGRAM:-

TABULATION:

Input Output

Amplitude

Time Period

MODELGRAPH: SINE WAVEFORM

MODELGRAPH: SQUARE WAVEFORM

 Input Output

Amplitude

Time period

DIFFERENTIATOR:-CIRCUIT DIAGRAM:

MODEL GRAPH:

(ii)FOR SINE WAVE INPUT

TABULATION:

Input Output

Amplitude

Time period

TABULATION:

Input Output

Amplitude

Time period

MODEL GRAPH: SQUARE WAVEFORM

RESULT:

Thus an Integrator and Differentiator using op-amp are designed and their performance

was successfully tested using op-amp IC 741.

AIM:

To design a Clipper and Clamper using op-amp IC 741 and to test their characteristics &

Performance.

APPARATUS REQUIRED:

S.NO COMPONENTS / EQUIPMENT RANGE QUANTITY

1. IC 741 - 01

2. RESISTORS
10KΩ. 06

22KΩ 01

3. DIGITAL TRAINER KIT - - - 01

4. SIGNAL GENERATOR (0-3)MHz 02

5. CATHODE RAY OSCILLOSCOPE (0-30)MHz 01

6. CONNECTING WIRES - - - FEW

PROCEDURE:

Clipper:

1. Connect the clipper circuit, set the function generator to 20 Vp-p, 1 kHz, sine wave

2. Connect the oscilloscope to Vo.

3. Vary the Vbias according to these values (2, 3, 5, 7, 9)

4. Plot the output waveform seen in the oscilloscope for each value.

Clamper:

1. Connect the clamper circuit, set the function generator to 20 Vp-p, 1 kHz, sine wave.

2. Connect the oscilloscope to Vo.

3. Vary the Vbias according to these values (2, 3, 5, 7, 9).

4. Plot the output waveform seen in the oscilloscope for each value.

CLIPPER AND CLAMPER EXP.NO:

CIRCUIT DIAGRAM:POSITIVE CLIPPER

TABULATION:

 Input Output

Amplitude

Time period

MODEL GRAPH: POSITIVE CLIPPER

CIRCUIT DIAGRAM: NEGATIVE CLIPPER

TABULATION:

 Input Output

Amplitude

Time period

MODEL GRAPH: NEGATIVE CLIPPER

CIRCUIT DIAGRAM:POSITIVE CLAMPER

TABULATION:

 Input Output

Amplitude

Time period

MODEL GRAPH: POSITIVE CLAMPER

CIRCUIT DIAGRAM: NEGATIVE CLIPPER

TABULATION:

 Input Output

Amplitude

Time period

MODEL GRAPH: NEGATIVE CLIPPER

RESULT:

Thus a Clipper and Clamper was constructed and tested using op-amp IC 741.

AIM:

To construct and test the CMRR (Common Mode Rejection Ratio) of a 3 op-amp

instrumentation amplifier using op-amp IC741.

APPARATUS REQUIRED:

S.NO COMPONENTS / EQUIPMENT RANGE QUANTITY

1. IC 741 03

2. RESISTORS
1KΩ. 06

22KΩ 01

3. DIGITAL TRAINER KIT - - - 01

4. SIGNAL GENERATOR (0-3)MHz 02

5. CATHODE RAY OSCILLOSCOPE (0-30)MHz 01

6. CONNECTING WIRES - - - FEW

PROCEDURE:

1. Select the entire resistor with same value of resistance R. Let RG be the gain varyingresistor with

different values of resistance. For simplicity, let RG be a constant value.

2. Connect the circuit as shown in the circuit diagram.

3. Give the input V1 & V2 to the non-inverting terminals of first & secondOp-amp respectively.

4. By varying the value of RG, measure the output voltage for common mode and differential mode

operation. Since RG is selected as constant value, provide different inputvalue of V1 & V2.

5. Calculate the differential mode gain Ad and common mode gain Ac to calculate the

INSTRUMENTATION AMPLIFIER EXP.NO:

CIRCUIT DIAGRAM:

TABULATION:

COMMON MODE GAIN CALCULATION - AC

S.No

RG

(KΩ)

V1

(Volts)

V2

(Volts)

Vo

(Volts)

Ac =
Vo

V1 V2

2

1.

2.

3.

4.

5.

DIFFERENTIAL MODE GAIN - AD & CMRR CALCULATION.

S.No

RG (KΩ)

V1

(Volts)

V2

(Volts)

Vo

(Volts)
Ad =

Vo

V1 V2

CMRR =

20 log (
Ad)(dB)

Ac

1.

2.

3.

4.

5.

RESULT:

Thus a 3 op-amp instrumentation amplifier was constructed and CMRR is tested

using op-amp IC 741.

EXP.NO: ACTIVE LOW PASS, HIGH PASS AND BAND PASS

FILTER USING OP-AMP

AIM:

To design an Active Low Pass, High Pass and Band Pass Filter using op-amp and to test

their performance

APPARATUS REQUIRED:

 S.NO COMPONENTS / EQUIPMENT RANGE QUANTITY

1. IC 741 - - - 02

2.

RESISTORS

1.5 KΩ 02

10KΩ 01

22KΩ 04

3. CAPACITORS 0.1μf, 0.01μf 01

4. DIGITAL TRAINER KIT - - - 01

5. SIGNAL GENERATOR (0-3)MHz 01

6. CATHODE RAY OSCILLOSCOPE (0-30)MHz 01

7. CONNECTING WIRES - - - FEW

DESIGN PROCEDURE: (ACTIVE HPF):

Design a HPF at cutoff frequency fL of 1KHZ & P.B gain of 2. Follow the same procedureas

LPF & interchange the R & C position with capacitor first & resistor in parallel to capacitor where

the other end connected to ground.

In high pass filter Theoretical gain is given as
Vo

=
Af (f / f L)

Vin 1 (f / f)2

H

PROCEDURE - (LPF & HPF):

1. Connect the circuit as shown in the circuit diagram.

2. Select the corresponding cut-off frequency (higher or lower) and determine the value ofC

& R. select the value of R1 & Rf depending on desired passband gain Af..

3. Apply a constant voltage input sinusoidal signal to the non-inverting terminal of op-amp.

4. Tabulate the output voltage Vo with respect to different values of input frequency.

5. Calculate passband gain and plot the graph of frequency versus voltage gain & check the

graph to get approximately the same characteristic as shown in the model graph.

LOWPASS FILTER:-

CIRCUIT DIAGRAM:-

TABULATION:

S.No
Frequency(Hz) Output Voltage

(Volts)
Gain = 20 log (V0 /Vin)

(dB)

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

MODEL GRAPH:

CIRCUIT DIAGRAM - (HIGH PASS FILTER):-

TABULATION:

S.No

Frequency(Hz) Output Voltage
(Volts)

Gain = 20 log (V0 /Vin)

(dB)

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

MODEL GRAPH:

CIRCUIT DIAGRAM: (BANDPASS FILTER)

TABULATION:

S.No

Frequency(Hz) Output Voltage
(Volts)

Gain = 20 log (V0 /Vin)

(dB)

1

2

3

4

5

6

7

8

MODEL GRAPH:

PROCEDURE:

1. Select the lower and higher cut-off frequency and calculate the value of R & C for thegiven

frequencies.

2. Design for LPF & HPF separately and then combine the circuit by first placing the HPF

followed by a LPF (i.e.) HPF in series with LPF.

3. Connect the circuit as shown in the circuit diagram.

4. Apply a constant voltage input sinusoidal signal to the non-inverting terminal of op-amp.

5. Tabulate the output voltage Vo with respect to different values of input frequency.

6. Calculate passband gain and plot the graph of frequency versus voltage gain & check the

graph to get approximately the same characteristic as shown in the model graph.

RESULT:

Thus an Active Lowpass, High pass and Band Pass Filters are designed and tested usingop-

amp IC 741.

PLL IC 565

THEORY

The Signetics SE/NE 560 series is monolithic phase locked loops. The SE/NE 560, 561,

562, 564, 565, & 567 differ mainly in operating frequency range, power supply requirements and

frequency and bandwidth adjustment ranges. The device is available as 14 Pin DIP package and as

10-pin metal can package. Phase comparator or phase detector compare the frequency of input

signal fs with frequency of VCO output fo and it generates a signal which is function of difference

between the phase of input signal and phase of feedback signal which is basically a

d.c voltage mixed with high frequency noise. LPF remove high frequency noise voltage. Outputis

error voltage. If control voltage of VCO is 0, then frequency is center frequency (fo) and modeis

free running mode. Application of control voltage shifts the output frequency of VCO from fo to f.

On application of error voltage, difference between fs & f tends to decrease and VCO is said to be

locked. While in locked condition, the PLL tracks the changes of frequency of input signal.

Block Diagram of IC 565

PROCEDURE:

1. Determine the component values using the design procedure given here.

2. Connect the components as shown in the circuit diagram.

3. Note down the readings of output waveform with respect to input signal.

Pin Configuration:

Specifications:

1. Operating frequency range : 0.001 Hz to 500 KHz

2. Operating voltage range : ±6 to ±12V

3. Inputs level required for tracking : 10mV rms minimum to 3v (p-p) max.

4. Input impedance : 10 KΩ typically

5. Output sink current : 1mA typically

6. Drift in VCO center frequency : 300 PPM/oC typically(fout) with temperature

7. Drif in VCO centre frequency with : 1.5%/V maximumsupply voltage

8. Triangle wave amplitude : typically 2.4 VPP at ± 6V

9. Square wave amplitude : typically 5.4 VPP at ± 6V

10. Output source current : 10mA typically

11. Bandwidth adjustment range : <±1 to >± 60%Center frequency fout =

1.2/4R1C1 Hz

= free running frequencyFL = ± 8 fout/V Hz

V = (+V) – (-V)

f = ± f
c L 3 1/ 2

Applications:

2(3.6)x10 xC2

1. Frequency multiplier

2. Frequency shift keying (FSK) demodulator

3. FM detector

CIRCUITDIAGRAM

NE 565 PLL connection diagram

DESIGN PROCEDURE:-

If C= 0.01μF and the frequency of input trigger signal is 2KHz, output pulse width of 555

in Monostable mode is given by

1.1RAC = 1.2T =1.2/f RA= 1.2/(1.1Cf)=54.5KΩ

fIN=fOUT/NUnder locked conditions,

fOUT = NfIN = 2fIN = 4KHz

EXP.NO:
PLL CHARACTERISTICS AND FREQUENCY

MULTIPLIER USING PLL

AIM:

To design & test the characteristics of PLL and to construct and test frequency multiplier

using PLL IC565.

APPARATUS REQUIRED:

 S.NO COMPONENTS / EQUIPMENT VALUE QUANTITY

1 IC 565 - - - 01

2 IC 555 - - - 01

3

RESISTORS

12KΩ, 54.5 KΩ, 6.8K

Each one

4

CAPACITORS

0.01μF 4

0.1 μf, 10μf, 1 μf EACH 01

5 DIGITAL TRAINER KIT - - - 01

6 REGULATED POWER SUPPLY (0 -30V), 1A 1

7 CATHODE RAY OSCILLOSCOPE (0 – 30MHz) 1

8 CONNECTING WIRES - - - FEW

THEORY:

The frequency divider is inserted between the VCO and the phase comparator of PLL. Since the output

of the divider is locked to the input frequency fIN, the VCO is actually running at a multiple of the input

frequency .The desired amount of multiplication can be obtained by selecting a proper divide– by – N network

,where N is an integer. To obtain the output frequency fOUT=2fIN, N = 2 is chosen. One must determine the

input frequency range and then adjust the free running frequency fOUT of the VCO by means of R1 and C1 so

that the output frequency of the divider is midway within the predetermined input frequency range. The output

of the VCO now should be 2fIN . The output of the VCO should be adjusted by varying potentiometer R1. A

small capacitor is connected between pin7 and pin8 to eliminate possible oscillations. Also, capacitor C2 should

be large enough to stabilize the VCO frequency

PLL as Frequency Multiplier

(a) : Input

(b) : PLL output under locked conditions without 555

(c) : Output at pin4 of 565 with 555 connected in the feedback

SAMPLE READINGS:

PARAMETER INPUT OUTPUT

Amplitude (Vp-p)

Frequency (KHz)

PROCEDURE:-

1. The circuit is connected as per the circuit diagram.

2. Apply a square wave input to the pin2 of the 565

3. Observe the output at pin4 of 565 under locked condition.

4. Give the output of 565 to the pin2 of 555 IC.

5. Observe the output of 555 at pin3.

6. Now give the output of 555 as feedback to the pin5 of the 565.

7. Observe the frequency of output signal fo at pin4 of 565 IC.

8. Plot the waveforms in graph.

RESULT:

Thus the PLL characteristics are designed and tested and Frequency multiplier using IC565

is constructed and tested.

EXP.NO: R-2R LADDER TYPE D- A CONVERTER USING OP-AMP

AIM:

To design a 4-bit R-2R ladder type DAC using OP-AMP.

APPARATUS REQUIRED:

 S.NO COMPONENTS / EQUIPMENT VALUE QUANTITY

1 IC 741 - - - 01

2 RESISTOR 22K, 10K 05, 04

3 DIGITAL MULTIMETER METER

4 DIGITAL TRAINER KIT - - - 01

5 REGULATED POWER SUPPLY (0 -30V), 1A 1

6 CATHODE RAY OSCILLOSCOPE (0 – 30MHz) 1

7 CONNECTING WIRES - - - FEW

THEORY:

In R-2R ladder network only two values of resistors are required. Consider 4bit DAC, where

switch position d1,d2,d3,d4 corresponding to binary words.

PROCEDURE:

1. Connections are made as per the circuit diagram.

2. The inputs are given through b0,b1,b2,b3.

3. The inputs are given from (0-15)V and observe the outputs in voltmeter.

4. The graph is drawn.

CIRCUIT DIAGRAM:

TABULATION:

Decimal

Equivalent Binary

Practical

Voltage

(V)

Theoretical

Voltage

(V)
b3

b2

b1

b0

DESIGN PROCEDURE:

Vo = -Rf (b3/2R + b2/4R + b1/8R + b0/16R)VrefRf = R

Vo = -Vref (b3/2 + b2/4 + b1/8 + b0/16)Assume R = 10K

2R = 22K

RESULT:

Thus the 4-bit R-2R ladder type DAC is designed and its outputs are verified.

CONTENT

BEYOND THE

SYLLABUS

EXP.NO:

INVERTING, NON-INVERTING AND DIFFERENTIAL

AMPLIFIERS USING OP-AMP

AIM:

To design the Inverting, Non-Inverting and Differential Amplifiers using

Op-amp IC741 and test their performance.

APPARATUS REQUIRED:

NON-INVERTING AMPLIFER:-CIRCUIT DIAGRAM:-

TABULATION:

S.NO COMPONENTS / EQUIPMENT RANGE QUANTITY

1. IC 741 01

2. RESISTORS
1KΩ, 33KΩ EACH 01

10KΩ, 100 KΩ. EACH 02

3. DIGITAL TRAINER KIT - - - 01

4. SIGNAL GENERATOR (0-3)MHz 01

5. CATHODE RAY OSCILLOSCOPE (0-30)MHz 01

6. CONNECTING WIRES - - - FEW

 Input Output

Amplitude

Time Period

MODEL GRAPH:

Vin

INPUT

Time (ms)

OUTPUT

Vout

Time (ms)

INVERTING AMPLIFIER:-CIRCUIT DIAGRAM:-

Rf=1K,10K,33K,100K.

R1=10K

+15v

2 - 7

Signal
Generator +

~
in

-

IC 741

3 + 4
6

-15v

+

CRO

-

TABULATION:

Input Output

Amplitude

Time Period

V

MODEL GRAPH:

Vin INPUT

Time (ms)

Vout OUTPUT

Time (ms)

PROCEDURE-(INVERTING & NON-INVERTING AMPLIFIER):-

1. Select R1 as a constant value and choose a value of Rf.

2. Connect the circuit as per as the circuit diagram.

3. Apply the constant amplitude input voltage to the circuit.

4. Measure the output voltage amplitude for different value of Rf from CRO.

5. Calculate the practical gain for different value of Rf & compare it with theoretical gain.

6. Practical gain & theoretical gain should be approximately equal.

7. Plot the graph of the input wave versus output wave for any one practical case.

DIFFERENTIAL AMPLIFIER:-CIRCUIT DIAGRAM:-

Rf=R2=100K

+15v

R1=10k 2 - 7

IC 741

+
+ R1=10K 3 + 4

6

R2=100K
Vin 1 Vin 2

-
-

-15v

0

TABULATION:

V

+

-

VO

S.No

Vin1

(Volts)

Vin2

(Volts)

Vin2 - Vin1

(Volts)

V0

(Volts)

Theoretical Gain

A = -Rf / R1

Practical Gain

A=V0 / (Vin2 - Vin1)

PROCEDURE:

1. Select the value of R1, R2, R3 & Rf such that R1=R2 and R3=Rf.

2. Connect the circuit as per as the circuit diagram.

3. Provide constant input voltage Vin1 to Non-inverting terminal of op-amp through R1 &

constant input voltage Vin2 to inverting terminal of op-amp through R2.

4. Measure the output voltage using CRO.

5. Calculate the theoretical gain and compare it with practical gain.

6. Practical gain & theoretical gain should be approximately equal.

7. Plot the graph of the input wave versus output wave for any one practical case.

RESULT:

Thus the Inverting, Non-Inverting and Differential Amplifiers are designed and

their performance was successfully tested using op-amp IC 741.

AIM:

To design and test the power supply voltage regulator using LM317 and LM723 ICs.

APPARATUS REQUIRED:

S.NO COMPONENTS / EQUIPMENT RANGE QUANTITY

1. LM317 and LM723 - - - EACH 01

2.

RESISTORS
30Ω, 100Ω, 1KΩ,

3.3KΩ, 220Ω,

EACH 01

3. DIGITAL TRAINER KIT - - - 01

4. ANALOG VOLTMETER (0-10)V 01

5. DUAL POWER SUPPLY (0-30)V 01

PIN DIAGRAM:

DC POWER SUPPLY USING LM317 AND LM723 EXP.NO:

CIRCUIT DIAGRAM - (LM723):

HI Vref=5V
Vin (0-30) V

HI

R1=1K

R4=100E
Vo

R2=3.3K

R3=33E

C=220pf

TABULATION:

S.NO

INPUT VOLTAGE

(Volts)

OUTPUT VOLTAGE

(Volts)

1.

2.

3.

4.

5.

6.

7.

8.

5

IC 723 2

7

3

6 10

11 12

13 4

MODEL GRAPH:

CHARACTERISTICS OF THE LM317HVK:

The LM317HVK will provide a regulated output current of upto 1.5A,Provided that if is not

subjected to a power dissipation of more than about 15W.This means it should be electrically

isolated from, and fastened to, a large heat sink such as the metal chassis of the power supply.

The LM317 requires a minimum “dropout” voltage of 3v across its input and output

terminals or it will drop out of regulation. Thus the upper limit of Vo is 3V below the minimum

input voltage from the unregulated supply.

It is good practice to connect bypass capacitors .This reduces the ripple voltage from the

rectifier.

The LM317HVK protects itself against over heating, too much internal power dissipation

and too much current. When the chip temperature reaches 175 degrees, the 317 shuts down. If

the product of output current and input-to-output voltage exceeds 15 to 20W, or if currents greater

than about 1.5A are required the LM317 also shuts down. When the overload condition isremoved

the Operation is resumed. All these features are made possible by the remarkable internal circuitry

of LM317.

Along with the simple 3 pin fixed regulators; a number of adjustable or programmable devices

are available. Some devices also include features such as programmable current limiting. It is also

possible to configure multiple regulators so that they track or follow each other.

DESIGN PROCEDURE: (IC723)

Given :

Vref = 5vVo = 4v

We know that

Vo = Vref (R2/ (R1+R2))4R1+4R2=5R2

R2=4R1

Let R1=1k R2=4K ≈ 3.3KΩ

PIN DIAGRAM:

CIRCUIT DIAGRAM - (LM317):

3 2

1

MODEL GRAPH:

TABULATION:

S.NO

INPUT VOLTAGE

(Volts)

OUTPUT VOLTAGE

(Volts)

PROCEDURE:

1) Connections are made as per the circuit diagram.

2) The reference voltage of 5v is set and the input voltage is varied between (0-30) v

3) The corresponding output is taken using voltmeter.

4) The readings are tabulated and the graph is plotted.

RESULT:

The 723 & 317 IC voltage regulators are designed and the regulation of supply voltage was

tested.

Circuit diagram:

vcc 1 0 dc 10v
R1 1 3 40k
R2 3 0 4k
R3 4 0 4.7k
R4 5 3 1k
C1 4 0 1u
C2 1 2 1u
L1 1 2 1mh
L2 0 5 1mh
K L1 L2 0.9999
Q1 2 3 4 Q2N2222
.tran 0 1ms
.op
.model Q2N2222 NPN(Is=3.108f Xti=3 Eg=1.11 Vaf=131.5 Bf=217.5 Ne=1.541
+ Ise=190.7f Ikf=1.296 Xtb=1.5 Br=6.18 Nc=2 Isc=0 Ikr=0 Rc=1
+ Cjc=14.57p Vjc=.75 Mjc=.3333 Fc=.5 Cje=26.08p Vje=.75
+ Mje=.3333 Tr=51.35n Tf=451p Itf=.1 Vtf=10 Xtf=2 Rb=10)
.probe
.end

 AIM: To simulate and analyze the Tuned Collector Oscillator using PSPICE.

SOFTWARE REQUIRED:

 OrCAD software.

PROCEDURE:

 1. Open PSPICE A/D windows

2. Create a new circuit file

3. Enter the program representing the nodal interconnections of various components

4. Run the program

5. Observe the response through all the elements in the output file

6. Observe the required outputs (Graphs) in output window.

Output waveform:

Result

 Tuned Collector Oscillator has been simulated and analyzed by Pspice.

TUNED COLLECTOR OSCILLATOR USING PSPICE EXP.NO:

Circuit diagram

.lib eval lib
Vcc 1 0 dc 15v
vin 2 0 ac 20mv
c1 2 3 1u
r1 1 3 40k
c5 1 4 1.3u
l1 1 4 20m
r3 3 0 4.7k
r4 5 0 1.2k
ce 5 0 10u
c2 4 6 10u
r5 6 0 4.7k
r6 1 6 40k
r7 8 0 1.2k
c3 8 0 10u
c4 7 9 1u
r8 9 0 1k
c6 1 7 1.3u
l2 1 7 20m
q1 4 3 5 Q2N2222
q2 7 6 8 Q2N2222
.ac dec 10 10 10khz
.op
.probe
.model Q2N2222 NPN(Is=3.108f Xti=3 Eg=1.11 Vaf=131.5 Bf=217.5 Ne=1.541
+ Ise=190.7f Ikf=1.296 Xtb=1.5 Br=6.18 Nc=2 Isc=0 Ikr=0 Rc=1
+ Cjc=14.57p Vjc=.75 Mjc=.3333 Fc=.5 Cje=26.08p Vje=.75
+ Mje=.3333 Tr=51.35n Tf=451p Itf=.1 Vtf=10 Xtf=2 Rb=10)
.end

AIM: To simulate and analyze the Stagger Tuned Amplifier using PSPICE.

SOFTWARE REQUIRED:

 OrCAD software.

PROCEDURE:

 1. Open PSPICE A/D windows

2. Create a new circuit file

3. Enter the program representing the nodal interconnections of various components

4. Run the program

5. Observe the response through all the elements in the output file

6. Observe the required outputs (Graphs) in output window.

Output waveform

Result

 Stagger Tuned Oscillator has been simulated and analyzed by Pspice.

STAGGER TUNED AMPLIFIER USING PSPICE EXP.NO:

Circuit diagram

.lib eval.lib
vcc 6 0 dc 12v
vin 1 0 sin(0 6v 1khz)
rc1 6 3 9.68k
rc2 6 5 7.5k
rb2 3 4 53.94k
r1 4 0 50k
re 2 0 4.3k
c1 3 4 0.1u
q1 3 1 2 Q2N2222
q2 5 4 2 Q2N2222
.op
.tran 0 5ms
.model Q2N2222 NPN(Is=3.108f Xti=3 Eg=1.11 Vaf=131.5 Bf=217.5 Ne=1.541
+ Ise=190.7f Ikf=1.296 Xtb=1.5 Br=6.18 Nc=2 Isc=0 Ikr=0 Rc=1
+ Cjc=14.57p Vjc=.75 Mjc=.3333 Fc=.5 Cje=26.08p Vje=.75
+ Mje=.3333 Tr=51.35n Tf=451p Itf=.1 Vtf=10 Xtf=2 Rb=10)
.probe
.end

 AIM: To simulate and analyze the Schmitt Trigger using PSPICE.

SOFTWARE REQUIRED:

 OrCAD software.

PROCEDURE:

 1. Open PSPICE A/D windows

2. Create a new circuit file

3. Enter the program representing the nodal interconnections of various components

4. Run the program

5. Observe the response through all the elements in the output file

6. Observe the required outputs (Graphs) in output window.

Output waveform

Result

 Schmitt Trigger has been simulated and analyzed by Pspice.

SCHMITT TRIGGER USING PSPICE EXP.NO:

Circuit diagram

.lib eval.lib
vcc 1 0 dc 15v
IS 6 0 PWL(0US 0MA 10US 0.1MA 20US 0.1MA 50US 0.1MA 10MS 0MA) r12 4 3 30k
r2 3 2 1k
r3 2 0 1k
r4 4 5 10k
c1 5 6 0.01u
r5 6 0 10k
c2 6 0 0.01u
r6 1 6 66k
r7 6 0 10k
r8 1 7 2.2k
c3 7 8 10u
r9 1 8 33k
r10 8 0 10k
r11 1 9 2.2k
r13 10 0 1k
c4 10 0 100u
c5 9 4 10u
q1 7 6 2 Q2N2222
q2 9 8 10 Q2N2222
.tran 0 1
.op
.model Q2N2222 NPN(Is=3.108f Xti=3 Eg=1.11 Vaf=131.5 Bf=217.5 Ne=1.541
+ Ise=190.7f Ikf=1.296 Xtb=1.5 Br=6.18 Nc=2 Isc=0 Ikr=0 Rc=1
+ Cjc=14.57p Vjc=.75 Mjc=.3333 Fc=.5 Cje=26.08p Vje=.75
+ Mje=.3333 Tr=51.35n Tf=451p Itf=.1 Vtf=10 Xtf=2 Rb=10)
.probe
.end

AIM: To simulate and analyze the Wein Bridge Oscillator using PSPICE.

SOFTWARE REQUIRED:

 OrCAD software.

PROCEDURE:

 1. Open PSPICE A/D windows

2. Create a new circuit file

3. Enter the program representing the nodal interconnections of various components

4. Run the program

5. Observe the response through all the elements in the output file

6. Observe the required outputs (Graphs) in output window.

Output waveform

Result

 Wein Bridge Oscillator has been simulated and analyzed by Pspice.

WEIN BRIDGE OSCILLATOR USING PSPICE EXP.NO:

Circuit diagram

.lib eval.lib
vcc 1 0 dc 12v
vbb 0 2 dc 12v
v1 4 0 pulse (0 5v 0 0.001ms 0.001ms 0.5ms 1ms)
v2 6 0 pulse (5 0v 0 0.001ms 0.001ms 0.5ms 1ms)
r1 1 3 1k
r2 1 5 1k
r3 3 6 5k
r4 5 4 5k
r5 4 2 10k
r6 6 2 10k
c1 3 6 .01u
c2 5 4 .01u
q1 3 4 0 Q2N2222
q2 5 6 0 Q2N2222
.tran 0.1ms 10ms
.op
.probe
.model Q2N2222 NPN(Is=3.108f Xti=3 Eg=1.11 Vaf=131.5 Bf=217.5 Ne=1.541
+ Ise=190.7f Ikf=1.296 Xtb=1.5 Br=6.18 Nc=2 Isc=0 Ikr=0 Rc=1
+ Cjc=14.57p Vjc=.75 Mjc=.3333 Fc=.5 Cje=26.08p Vje=.75
+ Mje=.3333 Tr=51.35n Tf=451p Itf=.1 Vtf=10 Xtf=2 Rb=10)
.end

 AIM: To simulate and analyze the Bistable Multivibrator using PSPICE.

SOFTWARE REQUIRED:

 OrCAD software.

PROCEDURE:

 1. Open PSPICE A/D windows

2. Create a new circuit file

3. Enter the program representing the nodal interconnections of various components

4. Run the program

5. Observe the response through all the elements in the output file

6. Observe the required outputs (Graphs) in output window.

Output waveform

Result

 Bistable Multivibrator has been simulated and analyzed by Pspice.

BISTABLE MULTIVIBRATOR USING PSPICE EXP.NO:

Circuit Diagram

VS 1 0 SIN (0 5MV 10KHZ)
VCC 5 0 15V
CB 1 2 10UF
CC 3 6 10UF
CE 4 0 100UF
R1 5 2 2.7K
R2 2 0 605
RC 5 3 100
RE 4 0 25
RL 6 0 47
Q1 3 2 4 SL100
.MODEL SL100 NPN
.TRAN 0.1MS 0.5MS
.PROBE
.END

 AIM: To simulate and analyze the Class A Power Amplifier using PSPICE.

SOFTWARE REQUIRED:

 OrCAD software.

PROCEDURE:

 1. Open PSPICE A/D windows

2. Create a new circuit file

3. Enter the program representing the nodal interconnections of various components

4. Run the program

5. Observe the response through all the elements in the output file

6. Observe the required outputs (Graphs) in output window.

Output waveform

Result

 Class A Power Amplifier has been simulated and analyzed by Pspice.

CLASS A POWER AMPLIFIER USING PSPICE EXP.NO:

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

EC3492 DIGITAL SIGNAL PROCESSING

Semester - 04

LABORATORY MANUAL

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Vision

To excel in providing value based education in the field of Electronics and
Communication Engineering, keeping in pace with the latest technical developments
through commendable research, to raise the intellectual competence to match global
standards and to make significant contributions to the society upholding the ethical
standards.

Mission

 To deliver Quality Technical Education, with an equal emphasis on theoretical
and practical aspects.

 To provide state of the art infrastructure for the students and faculty to upgrade
their skills and knowledge.

 To create an open and conducive environment for faculty and students to carry
out research and excel in their field of specialization.

 To focus especially on innovation and development of technologies that is
sustainable and inclusive, and thus benefits all sections of the society.

 To establish a strong Industry Academic Collaboration for teaching and research,
that could foster entrepreneurship and innovation in knowledge exchange.

 To produce quality Engineers who uphold and advance the integrity, honour and
dignity of the engineering.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

1. To provide the students with a strong foundation in the required sciences in order
to pursue studies in Electronics and Communication Engineering.

2. To gain adequate knowledge to become good professional in electronic and
communication engineering associated industries, higher education and
research.

3. To develop attitude in lifelong learning, applying and adapting new ideas and
technologies as their field evolves.

4. To prepare students to critically analyze existing literature in an area of
specialization and ethically develop innovative and research oriented
methodologies to solve the problems identified.

5. To inculcate in the students a professional and ethical attitude and an ability to
visualize the engineering issues in a broader social context.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1: Design, develop and analyze electronic systems through application of relevant
electronics, mathematics and engineering principles.

PSO2: Design, develop and analyze communication systems through application of
fundamentals from communication principles, signal processing, and RF System Design
& Electromagnetics.

PSO3: Adapt to emerging electronics and communication technologies and develop
innovative solutions for existing and newer problems.

LIST OF EXPERIMENTS:

1. Generation of elementary Discrete-Time sequences

2. Linear and Circular convolutions

3. Auto correlation and Cross Correlation

4. Frequency Analysis using DFT

5. Design of FIR filters (LPF/HPF/BPF/BSF) and demonstrates the filtering operation

6. Design of Butterworth and Chebyshev IIR filters (LPF/HPF/BPF/BSF)
and demonstrate the filtering operations

7. Study of architecture of Digital Signal Processor

8. Perform MAC operation using various addressing modes

9. Generation of various signals and random noise

10. Design and demonstration of FIR Filter for Low pass, High pass, Band pass and Band
stop filtering

11. Design and demonstration of Butter worth and Chebyshev IIR Filters for Low pass, High
pass, Band pass and Band stop filtering

12. Implement an Up-sampling and Down-sampling operation in DSP Processor

1

EXP. NO: 1 GENERATION OF ELEMENTARY DISCRETE-TIME SEQUENCES

DATE:

AIM:

To generate basic sequences such as Unit impulse, Unit step, Ramp, Exponential, Sine sequence & Cosine

Sequence using MATLAB Programs.

APPARATUS REQUIRED:

1. Personal Computer

2.MATLAB Software

ALGORITHM:

1. Start the program.

2. Get the N point values from the user.

3. Assign the range of the time axis.

4. Give the title for the x axis and y axis for the program.

5. Plot the data sequence as a discrete values or continuous as per our requirements.

THEORY:

i. Unit Step Sequence:

The Unit Step Sequence is designed as unit step means that the amplitude of U(t) = 1

U(n) = 1 ; n 0

= 0 ; n < 0

ii. Ramp Sequence:

The ramp sequence is defined as

Ur(n) = n ; n 0

= 0 ; n < 0

iii .Exponential Sequence:

Exponential sequence is defined as

g(n) = an ; n 0

0 ; n < 0

When the values of a > 1 the sequence grows exponentially and when the value is 0 < a < 1 the sequence

2

decay‟s exponentially. Note also that a < 0 the discrete time exponential signal takes attenuating signal.

iv. Cosine signal:

A discrete cosine signal is given by

X(n) = A cos (on +)

Where o is the frequency and is the phase using bulers identity

we can write Acos (on +) = A/2 ej ejon + A/2 e-j e –jon .Since ejon2 = 1st the energy signal is

infinite and the average power of the signal is 1

v. Sinusoidal signal:

A continuous time sinusoidal signal is given by

x(t) = A sin (rt +)

Where „A‟ is amplitude & r is the frequency in rad/sec and are the phase angle radians. The analog

sinusoidal signal has the following properties

i) The signal is periodic satisfy the condition

x(t+T) = x(t)

ii) For different value of frequencies the continuous time sinusoidal signals are themselves different.

PROCEDURE:

 Start the MATLAB software and create new M-file.

 Type the program in the file.

 Save and compile the program.

 Give the input data.

 Observe the output waveform.

 Thus the graph is to be plotted.

PROGRAM:

Discrete Time Signals:

%Unit step sequence:

n=input ('Enter the n value');

t=0:1: n-1;

3

y=ones (1,n);

subplot (2,2,1);

stem (t,y);

xlabel ('n-->');

ylabel ('Amplitude');

title ('Unit step signal');

%Generation of sine sequence:

n=0:0.01:pi;

y=sin (2*pi*n);

subplot (2,2,2)

stem (n,y);

xlabel ('n->');

ylabel ('Amplitude');

title ('Sine sequence');

%Generation of cosine sequence:

n=0:0.01: pi;

y=cos (2*pi*n);

subplot (2,2,3);

stem (n,y);

xlabel ('x(n)');

ylabel ('Amplitude');

title ('Cosine sequence');

%Exponential sequence:

n=input ('Enter the length');

t=0: n;

a=input ('Enter the a value');

y=exp (a*t);

subplot (2,2,4);

stem (t,y);

xlabel ('Time');

ylabel('Amplitude');

title('Exponential sequence');

4

%Ramp signal:

clc;

l=input('Enter the length of the sequence');

n=0:l;

r=n;

stem(n,r);

disp(r);

title('Ramp sequence');

xlabel('Time');

ylabel('Amplitude');

%Impulse signal:

n=input ('Enter the n value');

t=0:1: n-1;

y= (1, zeros(1,n-1));

subplot (2,2,5);

stem (t,y);

xlabel ('n-->');

ylabel ('Amplitude');

title ('Impulse signal');

Continuous Time Signals:

%Unit step sequence:

n=input ('Enter the n value');

t=0:1: n-1;

y=ones (1,n);

subplot (2,2,1);

plot (t,y);

xlabel ('n-->');

ylabel ('Amplitude');

title ('Unit step signal');

%Generation of sine sequence:

t=0:0.01:pi;

y=sin (2*pi*t);

subplot (2,2,2)

5

e
d
u t i l
p
m
A

plot (t,y);

xlabel ('n->');

ylabel ('Amplitude');

title ('Sine sequence');

%Generation of cosine sequence:

t=0:0.01: pi;

y=cos (2*pi*t);

subplot (2,2,3);

plot (t,y);

xlabel ('x(n)');

ylabel ('Amplitude');

title ('Cosine sequence');

%Exponential sequence:

n=input ('Enter the length');

t=0: n;

a=input ('Enter the a value');

y=exp (a*t);

subplot (2,2,4);

plot (t,y);

xlabel ('Time');

ylabel('Amplitude');

title('Exponential sequence');

OUTPUT:

Enter the n value = 5

Unit step signal

1

0.5

0
0 1 2 3 4

n-->

6

Cosine sequence
1

0.5

0

-0.5

-1
0 1 2 3 4

x(n)

Sine sequence
1

0.5

0

-0.5

-1
0 1 2 3 4

n->

OUTPUT:

Enter the length 5

Enter the a value 5

Exponential sequence

6

4

2

0
0 2 4 6

time

A
m

p
li

tu
d

e

A
m

p
li

tu
d

e
A

m
p

li
tu

d
e

7

OUTPUT:

Enter the length of the sequence 6

ramp sequence

6

5

4

3

2

1

0

0 1 2 3 4 5 6

time

RESULT:

Thus the basic sequences of Unit impulse, Unit step, Ramp, Exponential and Sine Sequence & Cosine

Sequence are generated using MATLAB Programs.

a
m

p
li
tu

d
e

8

EXP. NO: 2 LINEAR CONVOLUTION AND CIRCULAR CONVOLUTION

DATE:

AIM:

To perform Linear Convolution and Circular Convolution of two discrete sequences using MATLAB.

APPARATUS REQUIRED:

Personal Computer

MATLAB Software

ALGORITHM:

1. Start the program.

2. Get the input values from the user.

3. Assign the range of the time axis.

4. Give the title for the x axis and y axis for the program.

5. Plot the data sequence as a discrete values or continuous as per our requirements.

THEORY:

The linear convolution of two sequence x(n) of L no of samples and h(n) of M no of samples

produce a result y(n) which contains N= L + M – 1 . If is a sequence which is periodic with N samples. Linear

convolution can be used to find the response of a filter.

In the case of circular convolution if x(n) contains L no of samples and h(n) has N no of samples and

that L > M, then we perform circular convolution between the two using N = Max (L, M) by adding L, M no

of zero samples to the sequence h(n) . So that both sequence are periodic with N. Circular cannot be used to

find the response of a linear filter without zero padding.

PROCEDURE:

 Start the MATLAB software and create new M-file.

 Type the program in the file.

 Save & compile the program.

 Give the input data.

 Observe the output waveform.

 Thus the graph is to be plotted.

9

PROGRAM:

%Linear convolution:

clc;

x=input ('Enter the input sequence');

n1=length(x);

subplot (2,2,1);

Stem(x);

title (' Input sequence');

xlabel ('n->');

ylabel ('Amplitude');

h=input ('Enter the impulse sequence');

n2=length (h);

subplot (2,2,2);

stem (h);

title (' Impulse sequence');

xlabel ('n->');

ylabel ('Amplitude');

y=conv(x, h);

n=1:n1+n2-1;

subplot (2,2,3);

stem (n,y);

Disp(y);

title ('Convoluted sequence');

xlabel ('n->');

ylabel ('Amplitude');

OUTPUT

Enter the input sequence [5 4 3 2]

Enter the impulse sequence [4 3 2 5]

Output is 20 31 34 50 32 19 10

10

PROGRAM

%Circular convolution

clc;

X1=input ('Enter the first sample');

X2=input ('Enter the second sample');

l1=length(x1);

l2=length(x2);

x1s=fft(x1);

Disp (x1s);

x2s=fft(x2);

Disp (x2s);

x3s=x1s.*x2s;

y=ifft (x3s);

Disp(y);

Subplot (3, 1, 1);

n=0:1:l1-1;

Stem (n, x1);

Title ('First input sample');

11

Xlabel ('Time');

Ylabel ('Amplitude');

Subplot (3, 1, 2);

n=0:1:l2-1;

Stem (n, x2);

Title (Second input sample');

Xlabel ('Time');

Ylabel ('Amplitude');

Subplot (3, 1, 3);

Stem (n, y);

Title ('Circular convolution');

Xlabel ('Time');

Ylabel ('Amplitude');

OUTPUT:

Enter the first sample [1 2 3 4]

Enter the second sample [5 6 7 8]

Output is 66 68 66 60

12

first input sample

4

2

0

0 0.5 1 1.5 2 2.5 3

time

second input sample

10

5

0

0 0.5 1 1.5 2 2.5 3

time

circular convolution

100

50

0

0 0.5 1 1.5 2 2.5 3

time

RESULT:

Thus the linear convolution and circular convolution programs were performed and verified using

MATLAB.

a
m

p
lit

u
d
e

a
m

p
lit

u
d
e

a
m

p
lit

u
d
e

13

EXP.NO:3 AUTO CORRELATION AND CROSS CORRELATION

DATE:

AIM:

To implement auto-correlation and cross-correlation functions using MATLAB.

APPARATUS REQUIRED:

Personal Computer

MATLAB Software

ALGORITHM:

1. Start the program.

2. Get the input values from the user.

3. Assign the range of the time axis.

4. Give the title for the x axis and y axis for the program.

5. Plot the data sequence as a discrete values or continuous as per our requirements.

PROCEDURE:

 Start the MATLAB software and create new M-file.

 Type the program in the file.

 Save and compile the program.

 Give the input data.

 Observe the output waveform.

 Thus the graph is to be plotted.

PROGRAM:

% Cross correlation

clc;

clear all; close all;

x=input ('Enter the first sequence');

h=input('Enter the second sequence');

y=xcorr(x,h);

subplot(3,1,1);

stem(x);

xlabel('x');

ylabel('Amplitude');

title('x sequence');

subplot(3,1,2);

14

stem(h);

xlabel('h');

ylabel('Amplitude');

title('h sequence');

subplot(3,1,3);

stem(y);

xlabel('y');

ylabel('amplitude');

title(' y sequence');

OUTPUT (Cross Correlation):

Enter the first sequence [1 2 3 4]

Enter the second sequence

The resultant signal is

Y= 1.0 4.0

[4 3 2 1]

10.0

20.0

25.0

24.00

16.00

%Auto correlation

clc;

clear all; close all;

x=input ('Enter the t sequence');

y=xcorr(x,x);

15

subplot(2,1,1);

stem(x);

xlabel('x');

ylabel('Amplitude');

title('x sequence');

subplot(2,1,2);

stem(y);

xlabel('y');

ylabel('Amplitude');

title(' y sequence');

disp('The resultant signal is');

OUTPUT (Auto Correlation):

Enter the sequence = [1 2 3 4]

The resultant signal is Y= 4 11 20 30 20 11 4

RESULT:

Thus the auto-correlation and cross-correlation functions are generated using MATLAB.

16

EXP. NO: 4 FREQUENCY ANALYSIS USING DFT

DATE:

AIM

To write a program for frequency analysis using DFT.

APPARATUS REQUIRED:

Personal Computer

MATLAB Software

ALGORITHM:

1. Start the program.

2. Get the input values from the user.

3. Assign the range of the time axis.

4. Give the title for the x axis and y axis for the program.

5. Plot the data sequence as a discrete values or continuous as per our requirements.

THEORY:

DFT is used for analyzing discrete-time finite-duration signals in the frequency domain

Let x[n]be a finite-duration sequence of length N such that x[n]=0, 0<n<N-1outside.

The DFT pair of is:

 1 N 1
kn

X [k]
N
 x(n) WN , 0 k N 1

 n0

 1 N 1
kn

X [k]
N
 x(n) WN , 0 k N 1

PROGRAM:

 n0

N=input('type length of DFT= ');

T=input('type sampling period= ');

freq=input('type the sinusoidal freq= ');

k=0:N-1;

f=sin(2*pi*freq*1/T*k);

F=fft(f);

stem(k,abs(F));

17

grid on;

xlabel('k');

ylabel('X(k)');

INPUT:

type length of DFT=32

type sampling period=64

type the sinusoidal freq=11

OUTPUT:

RESULT

Thus the Frequency Analysis of the signal using DFT is obtained using MATLAB.

18

EXP.NO: 5A DESIGN OF FIR FILTER USING RECTANGULAR WINDOW

DATE:

AIM

To design the FIR low pass, High pass, Band pass and Band stop filters using rectangular window and

find out the response of the filter by using MATLAB.

APPARATUS REQUIRED

Personal Computer

MATLAB Software

ALGORITHM

1. Start the program.

2. Get pass band ripple and stop band ripple.

3. Get Pass band and stop band frequency.

4. Get sampling frequency.

5. Calculate the order of the filter.

6. Find the window Coefficient.

7. Plot the magnitude and phase response.

THEORY

The rectangular window (sometimes known as the boxcar or Dirichlet window) is the simplest

window, equivalent to replacing all but N values of a data sequence by zeros, making it appear as though the

waveform suddenly turns on and off:

W(n)= 1.

Other windows are designed to moderate these sudden changes because discontinuities have

undesirable effects on the discrete-time Fourier transform (DTFT) and/or the algorithms that produce samples

of the DTFT.

The rectangular window is the 1st order B-spline window as well as the 0th power cosine window.

PROCEDURE

 Start the MATLAB software and create new M-file.

 Type the program in the file.

19

 Save & compile the program.

 Give the input data.

 Observe the output waveform.

 Thus the graph is to be plotted.

PROGRAM:

clc;

clear all;

close all;

rp=input('Pass band ripple=');

rs=input('Stop band ripple=');

fs=input('Stop band frequency in rad/sec=');

fp=input('Pass band frequency in rad/sec=');

f=input('Sampling frequency in rad/sec=');

wp=2*fp/f;

ws=2*fs/f;

num=-20*log10(sqrt(rp*rs))-13;

dem=14.6*(fs-fp)/f;

n=ceil(num/dem)

n1=n+1;

if(rem(n,2)~=0);

n1=n;

n=n-1;

end

y=boxcar(n1);

%LOW PASS FILTER

b=fir1(n,wp,'low',y);

[h,o]=freqz(b,1,256);

m=20*log10(abs(h));

subplot(2,2,1);

plot(o/pi,m);

ylabel('Gain in db >');

xlabel('Normalized frequency --- >');

20

title('LOW PASS FILTER')

b=fir1(n,wp,'high',y);

[h,o]=freqz(b,1,256);

m=20*log10(abs(h));

subplot(2,2,2);

plot(o/pi,m);

ylabel('Gain in db >');

%HIGH PASS FILTER

xlabel('Normalized frequency --- >');

title('HIGH PASS FILTER')

wn=[wp,ws];

b=fir1(n,wp,'band',y);

[h,o]=freqz(b,1,256);

subplot(2,2,3);

plot(o/pi,m);

ylabel('Gain in db --- >');

xlabel('Normalized frequency --- >');

title('BAND PASS FILTER')

%BAND PASS FILTER

b=fir1(n,wn,'stop',y);

[h,o]=freqz(b,1,256);

m=20*log10(abs(h));

subplot(2,2,4);

plot(o/pi,m);

ylabel('Gain in db >');

%BAND STOP FILTER

xlabel('Normalized frequency --- >');

title('BAND STOP FILTER')

OUTPUT

Pass band ripple=0.03

Stop band ripple=0.04

21

Stop band frequency in rad/sec=1200

Pass band frequency in rad/sec=600

Sampling frequency in rad/sec=4000

RESULT

Thus the design of FIR low pass, high pass, band pass and band stop filters were obtained for

Rectangular Window using MATLAB.

22

EXP.NO: 5B DESIGN OF FIR FILTER USING HAMMING WINDOW

DATE:

AIM:

To design the FIR low pass, High pass, Band pass and Band stop filters for Hamming window by

using MATLAB.

APPARATUS REQUIRED:

Personal Computer

MATLAB Software

ALGORITHM:

1. Start the program.

2. Get pass band ripple and stop band ripple.

3. Get Pass band and stop band frequency.

4. Get sampling frequency.

5. Calculate the order of the filter.

6. Find the window Coefficient.

7. Plot the magnitude and phase response.

THEORY:

HAMMING WINDOW:

The filters response can be obtained by

WH (n) = 0.54+0.46cos2n/N-1 ; –(N-1)/2 n N -1/2

= 0 ; 0

The frequency response is

WH (ejw) = 0.54sinwn/2/sinw/2+0.23sin (wn/2-n/n-1)/sin (w/2-/n-1) +0.23sin (wn/2+n/n-1)/sin (w/2-/n-1)

PROCEDURE:

 Start the MATLAB software and create new M-file.

 Type the program in the file.

 Save & compile the program.

 Give the input data.

 Observe the output waveform.

23

 Thus the graph is to be plotted.

PROGRAM:

clc;

clear all;

close all;

rp=input('Pass band ripple=');

rs=input('Stop band ripple=');

fs=input('Stop band frequency in rad/sec=');

fp=input('Pass band frequency in rad/sec=');

f=input('Sampling frequency in rad/sec=');

wp=2*fp/f;

ws=2*fs/f;

num=-20*log10(sqrt(rp*rs))-13;

dem=14.6*(fs-fp)/f;

n=ceil(num/dem)

n1=n+1;

if(rem(n,2)~=0);

n1=n;

n=n-1;

end

y=hamming(n1);

%LOW PASS FILTER

b=fir1(n,wp,'low',y);

[h,o]=freqz(b,1,256);

m=20*log10(abs(h));

subplot(2,2,1);

plot(o/pi,m);

ylabel('Gain in db >');

xlabel('Normalized frequency --- >');

title('LOW PASS FILTER')

%HIGH PASS FILTER

b=fir1(n,wp,'high',y);

24

[h,o]=freqz(b,1,256);

m=20*log10(abs(h));

subplot(2,2,2);

plot(o/pi,m);

ylabel('Gain in db --- >');

xlabel('Normalized frequency --- >');

title('HIGH PASS FILTER')

%BAND PASS FILTER

wn=[wp,ws];

b=fir1(n,wp,'band',y);

[h,o]=freqz(b,1,256);

subplot(2,2,3);

plot(o/pi,m);

ylabel('Gain in db --- >');

xlabel('Normalized frequency --- >');

title('BAND PASS FILTER')

%BAND STOP FILTER

b=fir1(n,wn,'stop',y);

[h,o]=freqz(b,1,256);

m=20*log10(abs(h));

subplot(2,2,4);

plot(o/pi,m);

ylabel('Gain in db --- >');

xlabel('Normalized frequency --- >');

title('BAND STOP FILTER')

OUTPUT:

Pass band ripple =0.03

Stop band ripple =0.04

Stop band frequency in rad/sec =1200

Pass band frequency in rad/sec =600

Sampling frequency in rad/sec =4000

25

RESULT:

Thus the design of FIR low pass, high pass, bands pass and band stop filters for Hamming Window was

obtained using MATLAB.

26

EXP. NO: 6A IIR FILTER USING BUTTERWORTH FILTER APPROXIMATION

DATE:

AIM:

To design the IIR low pass, High pass, Band pass and Band stop filters using Butterworth

approximation and find out the response of the filter by using MATLAB.

APPARATUS REQUIRED:

Personal Computer

MATLAB Software

ALGORITHM:

1. Start the program.

2. Get pass band ripple and stop band ripple.

3. Get Pass band and stop band frequency.

4. Calculate the order of the filter.

5. Plot the band pass and band stop filter.

THEORY:

Butterworth Filter:

 The magnitude response of butter worth filter decreases maintain as the frequency increases 0 to .

 The filter transition band is more in butter worth filter.

 The poles on the butter worth filter are lie on a circle.

 For the same specification the no. of files create disadvantage.

PROCEDURE:

 Start the MATLAB software and create new M-file.

 Type the program in the file.

 Save & compile the program.

 Give the input data.

 Observe the output waveform.

 Thus the graph is to be plotted.

27

PROGRAM:

clear all;

clc;

close all;

format long

rp=input('enter the pass band ripple');

rs=input('enter the stop band ripple');

wp=input('enter the pass band frequency ');

ws=input('enter the stop band frequency ');

[n1,w1]=buttord(wp,ws,rp,rs);

[num,den]=butter(n1,w1);

[num1,den1]=butter(n,w1,'stop');

[g,w]=freqz(num,den);

[g1,w1]=freqz(num1,den1);

m=20*log10(abs(g));

m1=20*log10(abs(g1));

title('Gain response of Butterworth filter');

Subplot(2,1,1);

Plot(w/pi,m);

Ylabel('gain in db?>');

Xlabel('omega/pi');

title('Bandpass filter');

Subplot(2,1,2);

Plot(w/pi,m1);

Ylabel('gain in db?>');

Xlabel('omega/pi');

title('Bandreject filter');

OUTPUT:

enter the pass band ripple 10

enter the stop band ripple 30

enter the pass band frequency [0.2 0.8]

28

enter the stop band frequency [0.4 0.7]

RESULT:

Thus the design of IIR band pass and band stop filters using Butterworth method was executed using

MATLAB.

29

EXP. NO: 6B IIR FILTER USING CHEBYSHEV FILTER APPROXIMATION

DATE:

AIM:

To design the IIR Band pass and Band stop filters using Chebyshev approximation and find out the

response of the filter by using MATLAB.

APPARATUS REQUIRED:

Personal Computer

MATLAB Software

ALGORITHM:

1. Start the program.

2. Get pass band ripple and stop band ripple.

3. Get Pass band and stop band frequency.

4. Calculate the order of the filter.

5. Plot the band pass and band stop filter.

THEORY:

Chebyshev Filter:

 The magnitude response of the chebyshev filter exhibits ripple in the pass band or stop band according

to the type.

 The transition band is less as compare to butter worth filter.

 The poles on a chebyshev filter are lie on ellipse.

 The order of chebyshev filter is less than that of butter worth.

PROCEDURE:

 Start the MATLAB software and create new M-file.

 Type the program in the file.

 Save & compile the program.

 Give the input data.

 Observe the output waveform.

 Thus the graph is to be plotted.

30

PROGRAM:

clear all;

clc;

close all;

format long

rp=input('enter the pass band ripple');

rs=input('enter the stop band ripple');

wp=input('enter the pass band frequency ');

ws=input('enter the stop band frequency ');

[n1,w1]=cheb1ord(wp,ws,rp,rs);

[num,den]=cheby1(n1,rp,w1);

[num1,den1]=cheby1(n1,rs,w1,'stop');

[g,w]=freqz(num,den);

[g1,w1]=freqz(num1,den1);

m=20*log10(abs(g));

m1=20*log10(abs(g1));

title('Gain response of chebyshev filter');

Subplot(2,1,1);

plot(w/pi,m);

Ylabel('gain in db?>');

Xlabel('omega/pi');

title('Bandpass filter');

Subplot(2,1,2);

plot(w/pi,m1);

Ylabel('gain in db?>');

Xlabel('omega/pi');

title('Bandreject filter');

OUTPUT:

enter the pass band ripple 1

enter the stop band ripple 2

enter the pass band frequency [0.3 0.8]

enter the stop band frequency [0.2 0.9]

31

RESULT:

Thus the MATLAB program for IIR filter using Chebyshev approximation for the sequence was

performed.

32

EXP.NO:7 STUDY OF ARCHITECTURE OF DIGITAL SIGNAL PROCESSOR

DATE:

AIM:

To study the various architecture of digital signal processor TMS320C50 Kit.

Introduction:

The hardware experiments in the DSP lab are carried out on the Texas Instruments TMS320C6713 DSP

Starter Kit (DSK), based on the TMS320C6713 floating point DSP running at 225 MHz The basic clock cycle

instruction time is 1/(225 MHz)= 4.44 nanoseconds. During each clock cycle, up to eight instructions can be

carried out in parallel, achieving up to 8×225 = 1800 million instructions per second (MIPS).

The DSK board includes a 16MB SDRAM memory and a 512KB Flash ROM. It has an on-board 16-bit

audio stereo codec (the Texas Instruments AIC23B) that serves both as an A/D and a D/A converter. There are

four 3.5 mm audio jacks for microphone and stereo line input, and speaker and head-phone outputs. The AIC23

codec can be programmed to sample audio inputs at the following sampling rates: fs = 8, 16, 24, 32, 44.1, 48,

96 kHz

The ADC part of the codec is implemented as a multi-bit third-order noise-shaping delta-sigma

converter that allows a variety of oversampling ratios that can realize the above choices of fs. The

corresponding oversampling decimation filters act as anti-aliasing pre-filters that limit the spectrum of the input

analog signals effectively to the Nyquist interval [−fs/2, fs/2]. The DAC part is similarly implemented as a

multi-bit second-order noise-shaping delta-sigma converter whose oversampling interpolation filters act as

almost ideal reconstruction filters with the Nyquist interval as their pass band.

The DSK also has four user-programmable DIP switches and four LEDs that can be used to control and

monitor programs running on the DSP. All features of the DSK are managed by the Code Composer Studio

(CCS). The CCS is a complete integrated development environment (IDE) that includes an optimizing C/C++

compiler, assembler, linker, debugger, and program loader.

The CCS communicates with the DSK via a USB connection to a PC. In addition to facilitating all

programming aspects of the C6713 DSP, the CCS can also read signals stored On the DSP memory, or the

SDRAM, and plot them the following block diagram depicts the overall operations involved in all of the

hardware experiments in the DSP lab. Processing is interrupt-driven at the sampling rate fs, as explained below.

33

Fig: Interrupt processing

The AIC23 codec is configured (through CCS) to operate at one of the above sampling rates fs. Each

collected sample is converted to a 16-bit two‟s complement short data type in integer C). The codec actually

samples the audio input in stereo, that is, it collects two samples for the left and right channels.

Architecture

The ‟54x DSPs use an advanced, modified Harvard architecture that maximizes processing power by

maintaining one program memory bus and three data memory buses. These processors also provide an

arithmetic logic unit (ALU) that has a high degree of parallelism, application-specific hardware logic, on-chip

memory, and additional on-chip peripherals.

These DSP families also provide a highly specialized instruction set, which is the basis of the

operational flexibility and speed of these DSPs. Separate program and data spaces allow simultaneous access to

program instructions and data, providing the high degree of parallelism. Two reads and one write operation can

be performed in a single cycle.

Instructions with parallel store and application-specific instructions can fully utilize this architecture. In

addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of

arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. Also

included are the control mechanisms to manage interrupts, repeated operations, and function calls.

34

1. Central Processing Unit (CPU)

The CPU of the ‟54x devices contains:

 A 40-bit arithmetic logic unit (ALU)

 Two 40-bit accumulators

 A barrel shifter

 A 17-bit multiplier/adder

 A compare, select, and store unit (CSSU)

35

2 Arithmetic Logic Unit (ALU)

The ‟54x devices perform 2s-complement arithmetic using a 40-bit ALU and two 40-bit accumulators

(ACCA and ACCB). The ALU also can perform Boolean operations. The ALU can function as two 16-bit

ALUs and perform two 16-bit operations simultaneously when the C16 bit in status register 1 (ST1) is set.

3 Accumulators

The accumulators, ACCA and ACCB, store the output from the ALU or the multiplier / adder block; the

accumulators can also provide a second input to the ALU or the multiplier / adder. The bits in each

accumulator are grouped as follows:

 Guard bits (bits 32–39)

 A high-order word (bits 16–31)

 A low-order word (bits 0–15)

Instructions are provided for storing the guard bits, the high-order and the low-order accumulator words in data

memory, and for manipulating 32-bit accumulator words in or out of data memory. Also, any of the

accumulators can be used as temporary storage for the other.

4 Barrel Shifter

The ‟54x‟s barrel shifter has a 40-bit input connected to the accumulator or data memory (CB, DB) and

a 40-bit output connected to the ALU or data memory (EB). The barrel shifter produces a left shift of 0 to 31

bits and a right shift of 0 to 16 bits on the input data. The shift requirements are defined in the shift-count field

(ASM) of ST1 or defined in the temporary register (TREG), which is designated as a shift-count register.

This shifter and the exponent detector normalize the values in an accumulator in a single cycle. The

least significant bits (LSBs) of the output are filled with 0s and the most significant bits (MSBs) can be either

zero-filled or sign-extended, depending on the state of the sign-extended mode bit (SXM) of ST1. Additional

shift capabilities enable the processor to perform numerical scaling, bit extraction, extended arithmetic, and

overflow prevention operations

5 Multiplier/Adder

The multiplier / adder performs 17 17-bit 2s-complement multiplication with a 40-bit accumulation

in a single instruction cycle. The multiplier / adder block consists of several elements: a multiplier, adder,

signed/unsigned input control, fractional control, a zero detector, a rounder (2s-complement),

overflow/saturation logic, and TREG. The multiplier has two inputs: one input is selected from the TREG, a

data-memory operand, or an accumulator; the other is selected from the program memory, the data memory, an

accumulator, or an immediate value.

36

The fast on-chip multiplier allows the ‟54x to perform operations such as convolution, correlation, and

filtering efficiently. In addition, the multiplier and ALU together execute multiply/accumulate (MAC)

computations and ALU operations in parallel in a single instruction cycle. This function is used in determining

the Euclid distance, and in implementing symmetrical and least mean square (LMS) filters, which are required

for complex DSP algorithms.

6 Compare, Select, and Store Unit (CSSU)

The compare, select, and store unit (CSSU) performs maximum comparisons between the

accumulator‟s high and low words, allows the test/control (TC) flag bit of status register 0 (ST0) and the

transition (TRN) register to keep their transition histories, and selects the larger word in the accumulator to be

stored in data memory. The CSSU also accelerates Viterbi-type butterfly computation with optimized on-chip

hardware.

7 Program Control

Program control is provided by several hardware and software mechanisms: The program controller

decodes instructions, manages the pipeline, stores the status of operations, and decodes conditional operations.

Some of the hardware elements included in the program controller are the program counter, the status and

control register, the stack, and the address-generation logic. Some of the software mechanisms used for

program control include branches, calls, conditional instructions, a repeat instruction, reset, and interrupts.

The ‟54x supports both the use of hardware and software interrupts for program control. Interrupt

service routines are vectored through a reloadable interrupt vector table. Interrupts can be globally

enabled/disabled and can be individually masked through the interrupt mask register (IMR). Pending interrupts

are indicated in the interrupt flag register (IFR). For detailed information on the structure of the interrupt vector

table, the IMR and the IFR, see the device-specific data sheets.

8 Status Registers (ST0, ST1)

The status registers, ST0 and ST1, contain the status of the various conditions and modes for the ‟54x

devices. ST0 contains the flags (OV, C, and TC) produced by arithmetic operations and bit manipulations in

addition to the data page pointer (DP) and the auxiliary register pointer (ARP) fields. ST1 contains the various

modes and instructions that the processor operates on and executes.

9 Auxiliary Registers (AR0–AR7)

The eight 16-bit auxiliary registers (AR0–AR7) can be accessed by the central arithmetic logic unit

(CALU) and modified by the auxiliary register arithmetic units (ARAUs). The primary function of the

37

auxiliary registers is generating 16-bit addresses for data space. However, these registers also can act as

general-purpose registers or counters.

10 Temporary Register (TREG)

The TREG is used to hold one of the multiplicands for multiply and multiply/accumulate instructions. It

can hold a dynamic (execution-time programmable) shift count for instructions with a shift operation such as

ADD, LD, and SUB. It also can hold a dynamic bit address for the BITT instruction. The EXP instruction

stores the exponent value computed into the TREG, while the NORM instruction uses the TREG value to

normalize the number. For ACS operation of Viterbi decoding, TREG holds branch metrics used by the

DADST and DSADT instructions.

11 Transition Register (TRN)

The TRN is a 16-bit register that is used to hold the transition decision for the path to new metrics to

perform the Viterbi algorithm. The CMPS (compare, select, max, and store) instruction updates the contents of

the TRN based on the comparison between the accumulator high word and the accumulator low word.

12 Stack-Pointer Register (SP)

The SP is a 16-bit register that contains the address at the top of the system stack. The SP always points

to the last element pushed onto the stack. The stack is manipulated by interrupts, traps, calls, returns, and the

PUSHD,PSHM, POPD, and POPM instructions. Pushes and pops of the stack predecrement and post

increment, respectively, all 16 bits of the SP.

13 Circular-Buffer-Size Register (BK)

The 16-bit BK is used by the ARAUs in circular addressing to specify the data block size.

14 Block-Repeat Registers (BRC, RSA, REA)

The block-repeat counter (BRC) is a 16-bit register used to specify the number of times a block of code

is to be repeated when performing a block repeat. The block-repeat start address (RSA) is a 16-bit register

containing the starting address of the block of program memory to be repeated when operating in the repeat

mode. The 16-bit block-repeat end address (REA) contains the ending address if the block of program memory

is to be repeated when operating in the repeat mode.

38

15 Interrupt Registers (IMR, IFR)

The interrupt-mask register (IMR) is used to mask off specific interrupts individually at required times.

The interrupt-flag register (IFR) indicates the current status of the interrupts.

16 Processor-Mode Status Register (PMST)

The processor-mode status register (PMST) controls memory configurations of the ‟54x devices.

17 Power-Down Modes

There are three power-down modes, activated by the IDLE1, IDLE2, and IDLE3 instructions. In these

modes, the ‟54x devices enter a dormant state and dissipate considerably less power than in normal operation.

The IDLE1 instruction is used to shut down the CPU.

The IDLE2 instruction is used to shut down the CPU and on-chip peripherals. The IDLE3 instruction is

used to shut down the ‟54x processor completely. This instruction stops the PLL circuitry as well as the CPU

and peripherals.

RESULT:

Thus, the architecture of DSP processor TMS320C50 was studied.

39

EXP. NO: 8 MAC OPERATIONS USING VARIOUS ADDRESSING MODES

DATE:

AIM:

To write an assembly language program for MAC operations using various addressing modes of

Processor.

TOOLS REQURIED:

 DSP hardware.

 TMS320C5X-starter kit.

 RS232 cable.

PROCEDURE:

 Start the Process.

 In the C50 debugger software.

 Project-> New project Save project (.dbj)

 File New file

 Type the program Save file (.asm)

 Project add file to project (asm file)

 Project add file to project (micro 50)

 Project build

 Serial Port settings Auto detect

 Serial Load program filename.asc

 SerialCommunication window

 Reset kit.

 SD input addressender

 Give the input data

 Reset kit

 Go C000 enter

 Reset kit

 SD output address enter

 Stop the Process.

40

PROGRAM

ADDITION

INP1 .SET 0H

INP2 .SET 1H

OUT .SET 2H

.MMREGS

.TEXT

START:

LD #140H,DP

RSBX CPL

NOP

NOP

NOP

NOP

 LD INP1, A

ADD INP2, A

STL A, OUT

H: B H

INPUT:

A000H 0004H

A001H 0004H

OUTPUT:

A002H

0008H

SUBTRACTION:

INP1 .SET 0H

INP2 .SET 1H

OUT .SET 2H

.MMREGS

.TEXT

START:

LD #140H,DP

41

RSBX CPL

NOP

NOP

NOP

NOP

 LD INP1, A

SUB INP2, A

STL A, OUT

H: B H

INPUT:

A000H 0004H

A001H 0002H

OUTPUT:

A002H

0002H

MULTIPLICATION

INP1 .SET 0H

INP2 .SET 1H

OUT .SET 2H

.MMREGS

.TEXT

START:

LD #140H, DP

RSBX CPL

RSBX FRCT

NOP

NOP

NOP

NOP

LD #00H, A

LD 00H, T

MPY 01H, A

42

H:

STL

STH

B

A, 02H

A, 03H

H

INPUT:

A000H 0004H

A001H 0002H

OUTPUT:

A002H

0008H

DIVISION

DIVID

.SET

0H

DIVIS .SET 1H

OUT .SET 2H

.MMREGS

.TEXT

START:

STM #140H, ST0

RSBX CPL

RSBX FRCT

NOP

NOP

NOP

NOP

LD DIVID, A

RPT #0FH

SUBC DIVIS, A

STL A, OUT

H: B H

INPUT:

A000H 000AH

A001H 0002H

43

OUTPUT:

A002H 0005H

RESULT

Thus, the MAC operations of various addressing modes were performed by using DSP processor.

44

EXP. NO: 9 FIR FILTER IMPLEMENTATION

DATE:

AIM:

To implement the FIR Filter using DSP Processor.

TOOLS REQURIED:

 DSP hardware.

 TMS320C5X-starter kit.

 RS232 cable.

ALGORITHM:

 Get the sum of terms to design the filter.

 Specify the value of angular frequency from 0 to and plots divided into 0.01 division.

 Using FIR function get the design of filter.

 Finally adjust the value and execute the program.

THEORY:

 In signal processing, a finite impulse response (FIR) filter is a filter whose impulse response (or

response to any finite length input) is of finite duration, because it settles to zero in finite time.

 Infinite impulse response (IIR) filters, which may have internal feedback and may continue to respond

indefinitely (usually decaying).

 The impulse response of Nth-order discrete-time FIR filter lasts for N + 1 samples, and then settles to

zero.

o FIR is non recursive structure without response of FIR filter depends only on present and past

input samples.

PROCEDURE:

 Start the program by clicking view click the workspace.

 Click the serial go to the port settings.

 Before auto detect reset the kit& click ok to continue.

 Click project new. Save the file &all files will be DSP project.

 Click assembly file & save the file as “.asm”.

 In left hand side, right click project & add file to project.

 In left hand side, right click command file & add file to project.

 Click built in project for the compile of program. Click ok to continue.

45

 In serial select the load program, download file will open and browse it. Click ok to continue.

 In serial communication window type „sd’ space starting address, enter the input value.

 After entering the data execute the program.

 Click enter to verify the output

%FIR LOW PASS FILTER:

.mmregs

.text

B START

CTABLE:

.word 0196H

.word 017EH

.word 0EBH

.word 00H

.word 0FEFFH

.word 0FE37H

.word 0FDEDH

.word 0FE44H

.word 0FF35H

.word 083H

.word 01D3H

.word 02B9H

.word 02DEH

.word 0218H

.word 07EH

.word 0FE6CH

.word 0FC72H

.word 0FB36H

.word 0FB4CH

.word 0FD0FH

.word 084H

.word 0552H

.word 0ACBH

46

.word 0100CH

.word 0142FH

.word 01675H

.word 01675H

.word 0142FH

.word 0100CH

.word 0ACBH

.word 0552H

.word 084H

.word 0FD0FH

.word 0FB4CH

.word 0FB36H

.word 0FC72H

.word 0FE6CH

.word 07EH

.word 0218H

.word 02DEH

.word 02B9H

.word 01D3H

.word 083H

.word 0FF35H

.word 0FE44H

.word 0FDEDH

.word 0FE37H

.word 0FEFFH

.word 00H

.word 0EBH

.word 017EH

.word 0196H

Move the Filter coefficients

from program memory to data memory

START:

LAR AR0,#0200H

47

MAR *,AR0

RPT #33H

BLKP CTABLE,*+

SETC CNF

Input data and perform convolution

ISR: LDP #0AH

IN 0,6H

IN 0,4H

NOP

NOP

NOP

NOP

LAR AR1,#0300H

LACC 0

AND #0FFFH

SUB #800H

MAR *,AR1

SACL *

LAR AR1,#333H

ZAP

RPT #33H

MACD 0FF00H,*-

APAC

LAR AR1,#0300H

SACH * ;give as sach *,1 incase of overflow

LACC *

ADD #800H

SFR ;remove if o/p is less amplitude

SACL *

OUT *,4

NOP

B ISR

.end

48

%FIR HIGH PASS FILTER:

* Filter type: high pass filter

* Filter Order: 52

* Cutoff frequency in KHz = 3.000000

.mmregs

.text

B

TABLE:

START

.word 0FCD3H

.word 05H

.word 0FCB9H

.word 087H

.word 0FD3FH

.word 01ADH

.word 0FE3DH

.word 0333H

.word 0FF52H

.word 04ABH

.word 0FFF8H

.word 0595H

.word 0FFACH

.word 0590H

.word 0FE11H

.word 047CH

.word 0FB0BH

.word 029DH

.word 0F6BAH

.word 0AEH

.word 0F147H

.word 01CH

.word 0E9FDH

.word 04C5H

.word 0D882H

49

.word 044BCH

.word 044BCH

.word 0D882H

.word 04C5H

.word 0E9FDH

.word 01CH

.word 0F147H

.word 0AEH

.word 0F6BAH

.word 029DH

.word 0FB0BH

.word 047CH

.word 0FE11H

.word 0590H

.word 0FFACH

.word 0595H

.word 0FFF8H

.word 04ABH

.word 0FF52H

.word 0333H

.word 0FE3DH

.word 01ADH

.word 0FD3FH

.word 087H

.word 0FCB9H

.word 05H

.word 0FCD3H

* Move the Filter coefficients

* from program memory to data memory

START:

MAR *,AR0

LAR AR0,#0200H

RPT #33H

50

BLKP CTABLE,*+

SETC CNF

* Input data and perform convolution

ISR: LDP #0AH

LACC #0

SACL 0

OUT 0,05 ;pulse to find sampling frequency

IN 0,06H

LAR AR7,#0 ;change value to modify sampling freq.

MAR *,AR7

BACK: BANZ BACK,*-

IN 0,4

NOP

NOP

NOP

NOP

MAR *,AR1

LAR AR1,#0300H

LACC 0

AND #0FFFH

SUB #800H

SACL *

LAR AR1,#333H

MPY #0

ZAC

RPT #33H

MACD 0FF00H,*-

APAC

LAR AR1,#0300H

SACH * ;give as sach *,1 incase of overflow

LACC *

ADD #800H

SACL *

51

OUT *,4

.end

LACC #0FFH

SACL 0

OUT 0,05

NOP

B ISR

% FIR BAND PASS FILTER:

* Filter type: bandpass filter

* Filter Order: 52

* lower Cutoff frequency in KHz = 3.000000Hz

* upper Cutoff frequency in KHz = 5.000000Hz

.mmregs

.text

B START

CTABLE:

.word 024AH

.word

010FH

 .word

.word

.word

.word

.word

0FH

0FFECH

0C6H

0220H

0312H

.word

02D3H

.word

012FH

 .word

.word

.word

.word

.word

0FEBDH

0FC97H

0FBCBH

0FCB0H

0FE9EH

52

.word 029H

.word 0FFDCH

.word 0FD11H

.word 0F884H

.word 0F436H

.word 0F2A0H

.word 0F58AH

.word 0FD12H

.word 075FH

.word 01135H

.word 01732H

.word 01732H

.word 01135H

.word 075FH

.word 0FD12H

.word 0F58AH

.word 0F2A0H

.word 0F436H

.word 0F884H

.word 0FD11H

.word 0FFDCH

.word 029H

.word 0FE9EH

.word 0FCB0H

.word 0FBCBH

.word 0FC97H

.word 0FEBDH

.word 012FH

.word 02D3H

.word 0312H

.word 0220H

.word 0C6H

.word 0FFECH

53

.word 0FH

.word 010FH

.word 024AH

* Move the Filter coefficients

* from program memory to data memory

START:

MAR *,AR0

LAR AR0,#0200H

RPT #33H

BLKP CTABLE,*+

SETC CNF

ISR: LDP #0AH

LACC #0

SACL 0

OUT 0,05 ;pulse to find sampling frequency

IN 0,06H

LAR AR7,#0 ;change value to modify sampling freq.

MAR *,AR7

BACK: BANZ BACK,*-

IN 0,4

NOP

NOP

NOP

NOP

MAR *,AR1

LAR AR1,#0300H

LACC 0

AND #0FFFH

SUB #800H

SACL *

LAR AR1,#333H

MPY #0

ZAC

RPT #33H

54

MACD 0FF00H,*-

APAC

LAR AR1,#0300H

SACH * ;give as sach *,1 incase of overflow

LACC *

ADD #800H

SACL *

OUT *,4

LACC #0FFH

SACL 0

OUT 0,05

NOP

B ISR

.end

% FIR BAND REJECT FILTER:

* Filter Order: 52

* lower Cutoff frequency in KHz = .000000Hz

* upper Cutoff frequency in KHz = .000000Hz

.mmregs

.text

B START

CTABLE:

.word 0FEB9H

.word 14EH

.word 0FDA1H

.word 155H

.word 0FE1BH

.word 282H

.word 0FEAFH

.word 2ACH

.word 0FD35H

.word 8DH

55

.word 0F9D9H

.word 0FE07H

.word 0F7CCH

.word 0FEE2H

.word 0FA2FH

.word 4BAH

.word 1AH

.word 25CH

.word 420H

.word 1008H

.word 89H

.word 0D61H

.word 0F3F2H

.word 0AF9H

.word 0DB7EH

.word 045DFH

.word 045DFH

.word 0DB7EH

.word 0AF9H

.word 0F3F2H

.word 0D61H

.word 89H

.word 1008H

.word 420H

.word 25CH

.word 1AH

.word 4BAH

.word 0FA2FH

.word 0FEE2H

.word 0F7CCH

.word 0FE07H

.word 0F9D9H

.word 8DH

56

.word 0FD35H

.word 2ACH

.word 0FEAFH

.word 282H

.word 0FE1BH

.word 155H

.word 0FDA1H

.word 14EH

.word 0FEB9H

START:

MAR *,AR0

LAR AR0,#0200H

RPT #33H

BLKP CTABLE,*+

SETC CNF

ISR: LDP #0AH

LACC #0

SACL 0

OUT 0,05 ;pulse to find sampling frequency

IN 0,06H

LAR AR7,#0 ;change value to modify sampling freq.

MAR *,AR7

BACK: BANZ BACK,*-

IN 0,4

NOP

NOP

NOP

NOP

MAR *,AR1

LAR AR1,#0300H

LACC 0

AND #0FFFH

SUB #800H

57

SACL *

LAR AR1,#333H

MPY #0

ZAC

RPT #33H

MACD 0FF00H,*-

APAC

LAR AR1,#0300H

SACH * ;give as sach *,1 incase of overflow

LACC *

ADD #800H

SACL *

OUT *,4

LACC #0FFH

SACL 0

OUT 0,05

NOP

B ISR

.end

RESULT:

Thus the FIR Filter was implemented using DSP Processor.

58

EXP. NO: 10 IIR FILTER IMPLEMENTATION

DATE:

AIM:

To implement the IIR Filter using DSP Processor.

TOOLS REQURIED:

 DSP hardware.

 TMS320C5X-starter kit.

 RS232 cable.

ALGORITHM:

 Get the sum of terms to design the filter.

 Specify the value of angular frequency from 0 to and plots divided into 0.01 division.

 Using IIR function gets the design of filter.

 Finally adjust the value and execute the program.

THEORY:

 In signal processing, a finite impulse response (FIR) filter is a filter whose impulse response (or

response to any finite length input) is of finite duration, because it settles to zero in finite time.

 Infinite impulse response (IIR) filters, which may have internal feedback and may continue to respond

indefinitely (usually decaying).

 The impulse response of Nth-order discrete-time FIR filter lasts for N + 1 samples, and then settles to

zero.

o FIR is non recursive structure without response of FIR filter depends only on present and past

input samples.

PROCEDURE:

 Start the program by clicking view click the workspace.

 Click the serial go to the port settings.

 Before auto detect reset the kit& click ok to continue.

 Click project new. Save the file &all files will be DSP project.

 Click assembly file & save the file as “.asm”.

 In left hand side, right click project & add file to project.

 In left hand side, right click command file & add file to project.

59

 Click built in project for the compile of program. Click ok to continue.

 In serial select the load program, download file will open and browse it. Click ok to continue.

 In serial communication window type „sd’ space starting address, enter the input value.

 After entering the data execute the program.

 Click -enter- to verify the output.

PROGRAM FOR IIR FILTER:

%Low Pass Filter

.MMREGS

.TEXT

TEMP .SET 0

INPUT .SET 1

T1 .SET 2

T2 .SET 3

T3 .SET 4

;

K .SET 315eh

M .SET 4e9fh

;cut-off freq is 1Khz. = Fc

;sampling frequency is 100 æs (ie) 0.1ms.

; a = 2 * (355/113) * 1000 = 6283.18/1000 = 6.28 ;; divide by 1000 for secs

; K = aT/(1+aT) = 6.28*0.1 / (6.28*0.1+1) = 0.3857

; M = 1/(1+aT) = 1 / (6.28*0.1+1) = 0.61425

;convert to Q15 format

; K = K * 32767 = 12638.23 = 315Eh

; M = M * 32767 = 20127.12 = 4E9Fh

;Sampling Rate is 100 æs & Cut off Frequency is 1 Khz

LDP #100H

LACC #0

SACL T1

SACL T2

60

SACL TEMP

OUT TEMP,4 ;CLEAR DAC BEFORE START TO WORK

LOOP:

LACC #0

SACL TEMP

OUT TEMP,5 ;OUTPUT LOW TO DAC2 TO CALCULATE TIMING;

IN TEMP,06 ;SOC;

LAR AR7,#30h ;CHANGE VALUE TO MODIFY SAMPLING FREQ

;sampling rate 100ms.

MAR *,AR7

BACK: BANZ BACK,*-

;

IN INPUT,4 ;INPUT DATA FROM ADC1

NOP

NOP

;

LACC INPUT

AND #0FFFH

SUB #800h

SACL INPUT

;

LT INPUT

MPY #K

PAC

SACH T1,1

;;;CALL MULT ---- MULTIPLICATION TO BE DONE WITH K

;;RESULT OF MULT IN T1

;

LT T2 ;PREVIOUS RESULT IN T2

MPY #M

PAC

SACH T3 ,1

;;;CALL MULT ---- MULTIPLICATION TO BE DONE WITH M

61

;;RESULT OF MULT IN T3+

LACC T1

ADD T3

SACL T2

ADD #800h

SACL TEMP

OUT TEMP,4 ;OUTPUT FILTER DATA TO DAC1

LACC #0FFH

SACL TEMP

OUT TEMP,5 ;OUTPUT HIGH TO DAC2 TO CALCULATE TIMING

B LOOP

%High Pass Filter:

.MMREGS

.TEXT

START:

LDP #100H

LACC #00H

SACL 00H

SACL 01H

SACL 02H

SACL 03H

SACL 04H

SACL 05H

LOOP:
LACC #00H

SACL 00H

IN 0,06H

LAR AR7,#30H

MAR *,AR7

BACK: BANZ BACK,*-

; LT 01H

; MPY #0FFFFB5DEH

62

; PAC

; SACH 05H,1

IN 0,04H

NOPS

NOP

NOP

NOP

LT 01H

; MPY #0FFFFB5DEH

MPY #4A22H

; MPY #315EH

PAC

SACH 05H,1

LACC 00H

AND #0FFFH

XOR #800H

SUB #800H

SACL 00H

SACL 01H

ZAP

LT 00H

; DMOV 00H

; LTD 00H

MPY #4A22H

; MPY #315EH

PAC

SACH 02H,1

LT 03H

MPY #1446H

; MPY #4E9FH

PAC

SACH 04H,1

63

LACC 02H

ADD 04H

SUB 05H

SACL 03H

ADD #800H

SACL 00H

; OUT 00H,1AH

OUT 0,04H

B LOOP

NOP

NOP

H: B H

%Band Pass Filter:

.MMREGS

.TEXT

START:

LDP #100H

NOP

NOP

NOP

LACC #00H

LAR AR0,#00FFH

LAR AR1,#8000H

MAR *,AR1

LOOP:
SACL *+,AR0

BANZ LOOP,AR1

LOOP1:

LACC #00H

SACL 00H

64

IN 0,06H

LAR AR7,#30H

MAR *,AR7

BACK: BANZ BACK,*-

IN 0,04H

NOP

NOP

NOP

NOP

LT 04H

MPY #2FC4H

; MPY #05F8H

PAC

SACH 24H,0

; SACH 24H,4

LT 03H

MPY #99B2H

; MPY #1336H

PAC

SACH 23H,0

; SACH 23H,4

LT 02H

MPY #0DB29H

; MPY #1B65H

PAC

SACH 22H,0

; SACH 22H,4

LT 01H

MPY #99B2H

; MPY #1336H

65

PAC

SACH 21H,0

; SACH 21H,4

LACC 03H

SACL 04H

LACC 02H

SACL 03H

LACC 01H

LACC 02H

LACC 00H

AND #0FFFH

XOR #800H

SUB #800H

SACL 00H

SACL 01H

ZAP

; DMOV 03H

; DMOV 02H

; DMOV 01H

LT 00H

MPY #2FC4H

; MPY #05F8H

PAC

SACH 20H,0

; SACH 20H,4

;

LT 73H

MPY #2A22H

; MPY #0544H

PAC

SACH 63H,0

66

; SACH 63H,4

LT 72H

MPY #6761H

; MPY #0CECH

PAC

SACH 62H,0

; SACH 62H,4

LT 71H

MPY #0B6E8H

; MPY #16DDH

PAC

SACH 61H,0

; SACH 61H,4

LACC 72H

SACL 73H

LACC 71H

SACL 72H

LACC 70H

SACL 71H

; DMOV 72H

; DMOV 71H

; LTD 70H

LT 70H

MPY #0F184H

; MPY #1E30H

PAC

SACH 60H,0

; SACH 60H,4

LACC 20H

SUB 21H

ADD 22H

67

SUB 23H

ADD 24H

ADD 60H

SUB 61H

ADD 62H

SUB 63H

SACL 70H

ADD #800H

SACL 00H

OUT 00H,1AH

IN 0,04H

B LOOP1

NOP

NOP

H: B H

% Band Reject Filter:

;IIR BANDREJECT FILTER

;.MMREGS

.TEXT

START:

LDP #100H

LACC #00H

LAR AR0,#00FFH

LAR AR1,#8000H

MAR *,AR1

LOOP:
SACL *+,AR0

BANZ LOOP,AR1

LOOP1:

LACC #00H

SACL 00H

68

IN 0,06H

LAR AR7,#30H

MAR *,AR7

BACK: BANZ BACK,*-

IN 0,04H

NOP

NOP

NOP

NOP

LT 04H

MPY #003BH

PAC

; SACH 24H,0

; RPT #0BH

; SFR

SACH 24H,4

LT 03H

MPY #0000H

PAC

; RPT #0BH

; SFR

; SACH 23H,0

SACH 23H,4

LT 02H

MPY #0077H

PAC

; RPT #0BH

; SFR

; SACH 22H,0

SACH 22H,4

LT 01H

69

MPY #0000H

PAC

; RPT #0BH

; SFR

; SACH 21H,0

SACH 21H,4

LACC 03H

SACL 04H

LACC 02H

SACL 03H

LACC 01H

LACC 02H

LACC 00H

AND #0FFFH

XOR #800H

SUB #800H

SACL 00H

SACL 01H

ZAP

LT 00H

MPY #003BH

PAC

; RPT #0BH

; SFR

; SACH 20H,0

SACH 20H,4

LT 73H

MPY #0B04H

PAC

; RPT #0BH

; SFR

70

; SACH 63H,0

SACH 63H,4

LT 72H

MPY #1226H

PAC

; RPT #0BH

; SFR

; SACH 62H,0

SACH 62H,4

LT 71H

MPY #21A3H

PAC

; RPT #0BH

; SFR

; SACH 61H,0

SACH 61H,4

LACC 72H

SACL 73H

LACC 71H

SACL 72H

LACC 70H

SACL 71H

LT 70H

MPY #15E9H

PAC

; RPT #0BH

; SFR

; SACH 60H,0

SACH 60H,4

LACC 20H

ADD 21H

SUB 22H

71

ADD 23H

ADD 24H

ADD 60H

SUB 61H

ADD 62H

SUB 63H

SACL 70H

ADD #800H

SACL 00H

; OUT 00H,1AH

OUT 0,04H

B LOOP1

NOP

NOP

H: B H

RESULT:

Thus the IIR Filter was implemented using DSP Processor.

72

EXP. NO: 11 IMPLEMENT UP-SAMPLING AND DOWN-SAMPLING

DATE:

AIM

To write a program to implement Up-sampling and Down-sampling operation using MATLAB.

APPARATUS REQUIRED:

Personal Computer

MATLAB Software

ALGORITHM:

1. Start the program.

2. Get the number of samples.

3. Calculate the output using the interpolator and decimator formula.

4. Stop the process.

THEORY:

Decimation is the process of reducing the sampling rate. In practice, this usually implies low pass-filtering a

signal, then throwing away some of its samples. "Down sampling" is a more specific term which refers to just the process

of throwing away samples, without the low pass filtering operation.

The decimation factor is simply the ratio of the input rate to the output rate. It is usually symbolized by "D", so

input rate / output rate D.A signal can be down sampled (without doing any filtering) whenever it is "oversampled", that

is, when a sampling rate was used that was greater than the Nyquist criteria required.

Specifically, the signal's highest frequency must be less than half the post-decimation sampling rate.

Interpolation is the process of increasing the sampling rate. In practice, this usually implies low pass-filtering a signal,

then throwing away some of its samples. "Up sampling" is a more specific term which refers to just the process of

throwing away samples, without the low pass filtering operation. The interpolation factor is simply the ratio of the input

rate to the output rate. It is usually symbolized by "M", so input rate / output rate=M.

A signal can be up sampled (without doing any filtering) whenever it is "under sampled", that is, when a

sampling rate was used that was greater than the Nyquist criteria required. Specifically, the signal's highest frequency

must be double the post-interpolation sampling rate.

73

PROCEDURE:

 Start the MATLAB software and create new M-file.

 Type the program in the file.

 Save & compile the program.

 Give the input data.

 Observe the output waveform.

 Thus the graph is to be plotted

PROGRAM:

%down sampler

clf;

n = 0: 49;

m = 0: 50*3 - 1;

x = sin(2*pi*0.042*m);

y = x([1: 3: length(x)]);

subplot(2,1,1)

stem(n, x(1:50)); axis([0 50 -1.2 1.2]);

title(‟Input Sequence‟);

xlabel(‟Time index n‟);

ylabel(‟Amplitude‟);

subplot(2,1,2)

stem(n, y); axis([0 50 -1.2 1.2]);

title(‟Output Sequence‟);

xlabel(‟Time index n‟);

ylabel(‟Amplitude‟);

74

OUTPUT:

PROGRAM

%UP SAMPLING

clc;

clear all;

close all;

N=125;

N= 0 : 1: N -1 ;

X= sin (2* pi * n/15);

L=2;

figure (1)

stem (n,x);

grid on;

xlabel (ʹNo. of samplesʹ);

ylabel (ʹAmplitudeʹ);

title (ʹOriginal sequenceʹ);

x1 =[zeros (1, L*N)];

n1 = 1:1: L*N;

j= 1:L: L*N;

x1 (j) =x;

figure(2)

stem (n1-1, x1);

75

grid on;

xlabel (ʹNo. of samplesʹ);

ylabel (ʹAmplitudeʹ);

title (ʹ Unsampled sequenceʹ);

a=1;

b=fir1(5, 0.5, lʹowʹ);

y=filter (b,a, x1);

figure (3)

stem (n1-1, y);

grid on;

xlabel(ʹ No. of samplesʹ);

ylabel (ʹAmplitudeʹ);

title (ʹInterpolated sequenceʹ);

OUTPUT:

RESULT:

Thus the Up sampling and down-sampling operations were implemented using MATLAB.

	Vision
	Mission
	Vision
	Mission
	EXP NO. : 01 STUDY OF LOGIC GATES
	DATE :
	OR GATE:
	The OR gate performs a logical addition commonly known as OR function. The output is high when any one of the inputs is high. The output is low level when both the inputs are low.

	EXP NO. : 02
	DATE :
	APPARATUS REQUIRED:
	THEORY:
	2. Associative Law
	3. Distributive Law
	4. Absorption Law
	5. Involution (or) Double complement Law
	6. Idempotent Law
	7. Complementary Law
	8. De Morgan’s Theorem
	Demorgan’s Theorem
	PROCEDURE:
	RESULT:
	EXP NO. :03
	DESIGN AND IMPLEMENTATION OF CODE CONVERTERS
	LOGIC DIAGRAM:
	LOGIC DIAGRAM: (1)
	LOGIC DIAGRAM: (2)
	LOGIC DIAGRAM: (3)
	LOGIC DIAGRAM: (4)
	EXP NO. :06
	EXP NO. :07
	EXP NO. :08
	EXP NO. : 09 DESIGN OF ADDER AND SUBTRACTOR
	LOGIC DIAGRAM:

	Vision
	Mission
	Apparatus required:
	Reverse Bias:
	Tabulation : Reverse Bias:
	Model Graph:
	CHARACTERISTICS OF ZENER DIODE
	Apparatus Required:
	1. Forward Bias:
	2. Reverse Bias:
	Zener Effect :
	Procedure: Forward Bias:
	Reverse Bias:
	Circuit Diagram: Forward Bias:
	Model Graph
	Reverse Bias

	FULL WAVE RECTIFIER
	Aim:
	Apparatus Required :
	Peak- Inverse - Voltage (PIV):
	Full Wave Rectifier Circuit Diagram
	With Filter
	Model Graph:
	With Filter (1)

	DESIGN OF ZENER DIODE REGULATOR
	Aim:
	Apparatus Required:
	CIRCUIT DIAGRAM:
	Procedure:
	Output characteristics:
	Tabulation:
	RESULT:

	COMMON EMITTER INPUT-OUTPUT CHARACTERISTICS.
	Apparatus required:
	Precautions:
	Procedure:
	Output Characteristics:
	Model graph:
	Output characteristics:

	MOSFET DRAIN AND TRANSFER CHARACTERISTICS
	Apparatus Required:
	Circuit Diagram:
	A) Transfer Characteristics:
	Calculation:
	Transfer Characteristics:
	Drain or Output Characteristics:
	Result:
	Aim:
	Apparatus Required :
	Procedure:
	Maximum signal handling capacity :
	Procedure: (1)
	Tabulation [Without Feedback] :
	RESULT:

	FREQUENCY RESPONSE OF COMMON SOURCE AMPLIFIER
	Aim:
	Apparatus Required:
	Procedure:
	a. Dc Analysis:
	Steps:
	Maximum signal handling capacity:
	Procedure: (1)
	Model graph :
	`RESULT:

	FREQUENCY RESPONSE OF COMMON BASE AMPLIFIER
	Aim:
	Apparatus Required:
	Circuit Operation:
	Procedure:
	DC Analysis:
	Steps:
	Maximum signal handling capacity:
	Procedure: (1)
	Model Graph:
	RESULT:

	FREQUENCY RESPONSE OF COMMON COLLECTOR AMPLIFIER
	Aim:
	Apparatus Required:
	Circuit Operation:
	Characteristics of a CC Amplifier
	Procedure:
	Q point analysis:
	Circuit Diagram:
	RESULT:

	FREQUENCY RESPONSE OF CASCODE AMPLIFIER
	Aim:
	Apparatus Required:
	Features:
	Procedure:
	Dc Analysis:
	Steps:
	Q point analysis:
	a. Maximum signal handling capacity:
	Procedure: (1)
	Circuit Diagram:
	Tabulation

	CMRR measurement of Differential Amplifier
	Aim:
	Apparatus Required:
	Procedure:
	DC Analysis:
	Q point analysis:
	a. Maximum signal handling capacity:
	Procedure: (1)
	Tabulation
	Model Graph:

	CLASS A TRANSFORMER COUPLED POWER AMPLIFIER
	Aim:
	Apparatus Required:
	Procedure:
	Circuit Diagram Class A Power Amplifier
	Tabulation:

	Vision
	Mission
	Vision
	Mission
	Vision
	Mission
	IC 741 - General Description:
	Pin Configuration:
	Features:
	SPECIFICATIONS:-
	APPLICATIONS:-
	AIM:
	APPARATUS REQUIRED:
	RC PHASE SHIFT OSCILLATOR:- CIRCUIT DIAGRAM:-
	MODEL GRAPH:
	WIEN BRIDGE OSCILLATOR:- CIRCUIT DIAGRAM:-
	MODEL GRAPH: (1)
	PROCEDURE- (RC PHASE SHIFT):-
	DESIGN PROCEDURE:
	PROCEDURE:
	RESULT:
	HARTLEY OSCILLATOR OSCILLATOR:-CIRCUIT DIAGRAM:-
	MODEL GRAPH: (2)
	TABULATION:.
	PROCEDURE: (1)
	DESIGN PROCEDURE: (HARTLEY):-
	RESULT: (1)
	INTEGRATOR:- CIRCUIT DIAGRAM:-
	MODELGRAPH: SINE WAVEFORM
	DIFFERENTIATOR:-CIRCUIT DIAGRAM:
	(ii)FOR SINE WAVE INPUT
	TABULATION:
	RESULT: (2)
	AIM: (1)
	APPARATUS REQUIRED: (1)
	Clipper:
	Clamper:
	CIRCUIT DIAGRAM:POSITIVE CLIPPER
	MODEL GRAPH: POSITIVE CLIPPER
	TABULATION: (1)
	CIRCUIT DIAGRAM:POSITIVE CLAMPER
	MODEL GRAPH: POSITIVE CLAMPER
	TABULATION: (2)
	RESULT: (3)
	AIM: (2)
	APPARATUS REQUIRED: (2)
	CIRCUIT DIAGRAM:
	COMMON MODE GAIN CALCULATION - AC
	RESULT: (4)
	LOWPASS FILTER:- CIRCUIT DIAGRAM:-
	MODEL GRAPH: (3)
	RESULT: (5)

	PLL IC 565
	Block Diagram of IC 565
	PROCEDURE:

	Pin Configuration:
	Specifications:
	Applications:
	CIRCUITDIAGRAM
	DESIGN PROCEDURE:-
	THEORY:
	PLL as Frequency Multiplier
	(b) : PLL output under locked conditions without 555
	SAMPLE READINGS:
	PROCEDURE:-
	RESULT:
	DESIGN PROCEDURE:
	RESULT: (1)
	MODEL GRAPH:
	-
	+
	- (1)
	TABULATION:
	PROCEDURE-(INVERTING & NON-INVERTING AMPLIFIER):-
	PROCEDURE:
	RESULT:
	AIM:
	APPARATUS REQUIRED:
	CIRCUIT DIAGRAM - (LM723):
	TABULATION: (1)
	CHARACTERISTICS OF THE LM317HVK:
	DESIGN PROCEDURE: (IC723)
	PIN DIAGRAM:
	MODEL GRAPH:
	PROCEDURE: (1)
	RESULT: (1)

	Tuned Collector Oscillator has been simulated and analyzed by Pspice.
	Circuit diagram
	Stagger Tuned Oscillator has been simulated and analyzed by Pspice.
	Circuit diagram (1)
	Schmitt Trigger has been simulated and analyzed by Pspice.
	Circuit diagram (2)
	Vision
	Mission
	EXP. NO: 1 GENERATION OF ELEMENTARY DISCRETE-TIME SEQUENCES DATE:
	AIM:
	APPARATUS REQUIRED:
	ALGORITHM:
	THEORY:
	PROCEDURE:
	PROGRAM:
	%Unit step sequence:
	%Generation of sine sequence:
	%Generation of cosine sequence:
	%Exponential sequence:
	%Ramp signal:
	%Impulse signal:
	%Generation of sine sequence: (1)
	%Generation of cosine sequence: (1)
	%Exponential sequence: (1)
	OUTPUT:
	OUTPUT: (1)
	OUTPUT: (2)
	RESULT:

	EXP. NO: 2 LINEAR CONVOLUTION AND CIRCULAR CONVOLUTION DATE:
	AIM:
	APPARATUS REQUIRED:
	ALGORITHM:
	THEORY:
	PROCEDURE:
	PROGRAM:
	OUTPUT

	PROGRAM
	%Circular convolution
	OUTPUT:
	RESULT:

	EXP.NO:3 AUTO CORRELATION AND CROSS CORRELATION DATE:
	AIM:
	APPARATUS REQUIRED:
	ALGORITHM:
	PROCEDURE:
	PROGRAM:
	OUTPUT (Cross Correlation):
	OUTPUT (Auto Correlation):
	RESULT:

	EXP. NO: 4 FREQUENCY ANALYSIS USING DFT DATE:
	AIM
	APPARATUS REQUIRED:
	ALGORITHM:
	THEORY:
	PROGRAM:
	INPUT:
	OUTPUT:

	EXP.NO: 5A DESIGN OF FIR FILTER USING RECTANGULAR WINDOW DATE:
	AIM
	APPARATUS REQUIRED
	ALGORITHM
	THEORY
	PROCEDURE
	PROGRAM:
	OUTPUT
	RESULT

	EXP.NO: 5B DESIGN OF FIR FILTER USING HAMMING WINDOW DATE:
	AIM:
	APPARATUS REQUIRED:
	ALGORITHM:
	THEORY:
	PROCEDURE:
	PROGRAM:
	OUTPUT:
	RESULT:

	EXP. NO: 6A IIR FILTER USING BUTTERWORTH FILTER APPROXIMATION DATE:
	AIM:
	APPARATUS REQUIRED:
	ALGORITHM:
	THEORY:
	PROCEDURE:
	PROGRAM:
	OUTPUT:
	RESULT:

	EXP. NO: 6B IIR FILTER USING CHEBYSHEV FILTER APPROXIMATION DATE:
	AIM:
	APPARATUS REQUIRED:
	ALGORITHM:
	THEORY:
	PROCEDURE:
	PROGRAM:
	OUTPUT:

	EXP.NO:7 STUDY OF ARCHITECTURE OF DIGITAL SIGNAL PROCESSOR DATE:
	AIM:
	Introduction:
	Architecture
	1. Central Processing Unit (CPU)
	2 Arithmetic Logic Unit (ALU)
	3 Accumulators
	4 Barrel Shifter
	5 Multiplier/Adder
	6 Compare, Select, and Store Unit (CSSU)
	7 Program Control
	8 Status Registers (ST0, ST1)
	9 Auxiliary Registers (AR0–AR7)
	10 Temporary Register (TREG)
	11 Transition Register (TRN)
	12 Stack-Pointer Register (SP)
	13 Circular-Buffer-Size Register (BK)
	14 Block-Repeat Registers (BRC, RSA, REA)
	15 Interrupt Registers (IMR, IFR)
	16 Processor-Mode Status Register (PMST)
	17 Power-Down Modes
	RESULT:

	EXP. NO: 8 MAC OPERATIONS USING VARIOUS ADDRESSING MODES DATE:
	AIM:
	TOOLS REQURIED:
	PROCEDURE:
	PROGRAM ADDITION
	SUBTRACTION:
	INPUT:
	OUTPUT:
	RESULT

	EXP. NO: 9 FIR FILTER IMPLEMENTATION DATE:
	AIM:
	TOOLS REQURIED:
	ALGORITHM:
	THEORY:
	PROCEDURE:
	%FIR LOW PASS FILTER:
	%FIR HIGH PASS FILTER:
	% FIR BAND PASS FILTER:
	% FIR BAND REJECT FILTER:
	RESULT:

	EXP. NO: 10 IIR FILTER IMPLEMENTATION DATE:
	AIM:
	TOOLS REQURIED:
	ALGORITHM:
	THEORY:
	PROCEDURE:
	PROGRAM FOR IIR FILTER:
	%High Pass Filter:
	%Band Pass Filter:
	% Band Reject Filter:
	RESULT:

	EXP. NO: 11 IMPLEMENT UP-SAMPLING AND DOWN-SAMPLING DATE:

